scikit-learn-intelex 2024.4.0__py312-none-win_amd64.whl → 2025.10.0__py312-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/_daal4py.cp312-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +94 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/gbt_convertors.py +1199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/logistic_regression_builders.py +211 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/tree_based_builders.py +425 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp312-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +252 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +565 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn}/decomposition/__init__.py +2 -2
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +528 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +333 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1285 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn}/linear_model/__init__.py +29 -28
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +826 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +269 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +290 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +2 -2
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +561 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_enet.py +157 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +198 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold}/__init__.py +3 -3
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +432 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +259 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +4 -2
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/_models_info.py +164 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +493 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +136 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +72 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +736 -0
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils}/__init__.py +5 -3
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +772 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/__init__.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_config.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_device_offload.py +199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp312-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp312-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +165 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +241 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/utils.py +50 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +582 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +145 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_backend.py +258 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +148 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/tests/test_sycl.py +148 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +121 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +190 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +158 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_dlpack.py +64 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_sycl_usm.py +63 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +131 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +686 -0
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition}/__init__.py +3 -2
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +218 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +124 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +291 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/dummy.py +137 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +781 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +201 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +230 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +293 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +252 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal}/neighbors/__init__.py +19 -19
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +690 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +202 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/svm.py +592 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +352 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +168 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/test_common.py +71 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +179 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +94 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +98 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_sycl_queue_manager.py +213 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_third_party.py +220 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/tests/test_validation.py +142 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/validation.py +503 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/__init__.py +7 -3
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/__main__.py +2 -2
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_config.py +163 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +205 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_utils.py +219 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/base.py +109 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +241 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +128 -78
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +101 -32
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +1 -1
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +38 -29
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +399 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -6
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +157 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/conftest.py +20 -1
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +440 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +307 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +558 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +164 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +199 -21
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +207 -2
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/__init__.py +19 -17
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/_dummy.py +615 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/tests/test_dummy.py +62 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +288 -440
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +196 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +1 -1
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +17 -3
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +44 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +427 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +407 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +363 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +466 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +407 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +167 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +565 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_ridge.py +256 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +11 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +256 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +3 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +3 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +3 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +30 -62
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +56 -9
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +45 -101
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +63 -94
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +49 -25
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +6 -4
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +261 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +54 -8
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +406 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +390 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +117 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +314 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +9 -4
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +108 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +180 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +3 -4
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +120 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +200 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +23 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +6 -4
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +276 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +146 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +299 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +299 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +2 -1
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +28 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +7 -4
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +345 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +162 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +169 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +1 -3
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +433 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +403 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +99 -117
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +55 -16
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +95 -113
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +51 -16
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +43 -20
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +607 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_hyperparameters.py +111 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +335 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +5 -4
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +111 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +122 -75
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +335 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +48 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +420 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/validation.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py +3 -1
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +217 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/class_weight.py +100 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py +97 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_class_weight.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_validation.py +238 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/validation.py +212 -0
- scikit_learn_intelex-2025.10.0.dist-info/METADATA +182 -0
- scikit_learn_intelex-2025.10.0.dist-info/RECORD +267 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2025.10.0.dist-info}/WHEEL +1 -1
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_config.py +0 -110
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +0 -250
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_utils.py +0 -109
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -17
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -30
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -130
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +0 -143
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -335
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -56
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -113
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -316
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -17
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +0 -385
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +0 -117
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -91
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -26
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -84
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -303
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -133
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -50
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -71
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -185
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py +0 -164
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -39
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -227
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +0 -99
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -20
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py +0 -97
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -59
- scikit_learn_intelex-2024.4.0.dist-info/METADATA +0 -230
- scikit_learn_intelex-2024.4.0.dist-info/RECORD +0 -101
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal}/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2025.10.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2025.10.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,736 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2014 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from __future__ import print_function
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
import sklearn.svm._base as svm_base
|
|
21
|
+
import sklearn.svm._classes as svm_classes
|
|
22
|
+
from scipy import sparse as sp
|
|
23
|
+
from sklearn.calibration import CalibratedClassifierCV
|
|
24
|
+
from sklearn.exceptions import NotFittedError
|
|
25
|
+
from sklearn.model_selection import StratifiedKFold
|
|
26
|
+
from sklearn.utils import check_random_state
|
|
27
|
+
from sklearn.utils.multiclass import _ovr_decision_function
|
|
28
|
+
from sklearn.utils.validation import (
|
|
29
|
+
_check_sample_weight,
|
|
30
|
+
_num_samples,
|
|
31
|
+
check_consistent_length,
|
|
32
|
+
check_is_fitted,
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
import daal4py
|
|
36
|
+
|
|
37
|
+
from .._utils import PatchingConditionsChain, getFPType, make2d
|
|
38
|
+
from ..utils.validation import validate_data
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def _get_libsvm_impl():
|
|
42
|
+
return ["c_svc", "nu_svc", "one_class", "epsilon_svr", "nu_svr"]
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def _dual_coef_getter(self):
|
|
46
|
+
return self._internal_dual_coef_
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def _intercept_getter(self):
|
|
50
|
+
return self._internal_intercept_
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def _dual_coef_setter(self, val):
|
|
54
|
+
self._internal_dual_coef_ = val
|
|
55
|
+
if hasattr(self, "daal_model_"):
|
|
56
|
+
del self.daal_model_
|
|
57
|
+
if getattr(self, "_daal_fit", False):
|
|
58
|
+
self._daal_fit = False
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def _intercept_setter(self, val):
|
|
62
|
+
self._internal_intercept_ = val
|
|
63
|
+
if hasattr(self, "daal_model_"):
|
|
64
|
+
del self.daal_model_
|
|
65
|
+
if getattr(self, "_daal_fit", False):
|
|
66
|
+
self._daal_fit = False
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
# Methods to extract coefficients
|
|
70
|
+
def group_indices_by_class(num_classes, sv_ind_by_clf, labels):
|
|
71
|
+
sv_ind_counters = np.zeros(num_classes, dtype=np.intp)
|
|
72
|
+
|
|
73
|
+
num_of_sv_per_class = np.bincount(labels[np.hstack(sv_ind_by_clf)])
|
|
74
|
+
sv_ind_by_class = [np.empty(n, dtype=np.int32) for n in num_of_sv_per_class]
|
|
75
|
+
|
|
76
|
+
for indices_per_clf in sv_ind_by_clf:
|
|
77
|
+
for sv_index in indices_per_clf:
|
|
78
|
+
sv_label = labels[sv_index]
|
|
79
|
+
i = sv_ind_counters[sv_label]
|
|
80
|
+
sv_ind_by_class[sv_label][i] = sv_index
|
|
81
|
+
sv_ind_counters[sv_label] += 1
|
|
82
|
+
|
|
83
|
+
return sv_ind_by_class
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def map_sv_to_columns_in_dual_coef_matrix(sv_ind_by_class):
|
|
87
|
+
from collections import defaultdict
|
|
88
|
+
|
|
89
|
+
sv_ind_mapping = defaultdict(lambda: -1)
|
|
90
|
+
p = 0
|
|
91
|
+
for indices_per_class in sv_ind_by_class:
|
|
92
|
+
indices_per_class.sort()
|
|
93
|
+
for sv_index in indices_per_class:
|
|
94
|
+
if sv_ind_mapping[sv_index] == -1:
|
|
95
|
+
sv_ind_mapping[sv_index] = p
|
|
96
|
+
p += 1
|
|
97
|
+
return sv_ind_mapping
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
def map_to_lexicographic(n):
|
|
101
|
+
"""Returns permutation of reverse lexicographics to
|
|
102
|
+
lexicographics orders for pairs of n consecutive integer indexes
|
|
103
|
+
"""
|
|
104
|
+
from itertools import combinations, count
|
|
105
|
+
|
|
106
|
+
two_class_order_gen = ((j, i) for i in range(n) for j in range(i))
|
|
107
|
+
reverse_lookup = {key: val for key, val in zip(two_class_order_gen, count(0))}
|
|
108
|
+
perm_iter = (reverse_lookup[pair] for pair in combinations(range(n), 2))
|
|
109
|
+
return np.fromiter(perm_iter, dtype=np.intp)
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
def permute_list(li, perm):
|
|
113
|
+
"Rearrange `li` according to `perm`"
|
|
114
|
+
return [li[i] for i in perm]
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
def extract_dual_coef(num_classes, sv_ind_by_clf, sv_coef_by_clf, labels):
|
|
118
|
+
"""Construct dual coefficients array in SKLearn peculiar layout,
|
|
119
|
+
as well corresponding support vector indexes
|
|
120
|
+
"""
|
|
121
|
+
sv_ind_by_class = group_indices_by_class(num_classes, sv_ind_by_clf, labels)
|
|
122
|
+
sv_ind_mapping = map_sv_to_columns_in_dual_coef_matrix(sv_ind_by_class)
|
|
123
|
+
|
|
124
|
+
num_unique_sv = len(sv_ind_mapping)
|
|
125
|
+
dc_dt = sv_coef_by_clf[0].dtype
|
|
126
|
+
|
|
127
|
+
dual_coef = np.zeros((num_classes - 1, num_unique_sv), dtype=dc_dt)
|
|
128
|
+
support_ = np.empty((num_unique_sv,), dtype=np.int32)
|
|
129
|
+
|
|
130
|
+
p = 0
|
|
131
|
+
for i in range(0, num_classes):
|
|
132
|
+
for j in range(i + 1, num_classes):
|
|
133
|
+
sv_ind_i_vs_j = sv_ind_by_clf[p]
|
|
134
|
+
sv_coef_i_vs_j = sv_coef_by_clf[p]
|
|
135
|
+
p += 1
|
|
136
|
+
|
|
137
|
+
for k, sv_index in enumerate(sv_ind_i_vs_j):
|
|
138
|
+
label = labels[sv_index]
|
|
139
|
+
col_index = sv_ind_mapping[sv_index]
|
|
140
|
+
if j == label:
|
|
141
|
+
row_index = i
|
|
142
|
+
else:
|
|
143
|
+
row_index = j - 1
|
|
144
|
+
dual_coef[row_index, col_index] = sv_coef_i_vs_j[k]
|
|
145
|
+
support_[col_index] = sv_index
|
|
146
|
+
|
|
147
|
+
return dual_coef, support_
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
def _daal4py_kf(kernel, X_fptype, gamma=1.0, is_sparse=False):
|
|
151
|
+
method = "fastCSR" if is_sparse else "defaultDense"
|
|
152
|
+
if kernel == "rbf":
|
|
153
|
+
sigma_value = np.sqrt(0.5 / gamma)
|
|
154
|
+
kf = daal4py.kernel_function_rbf(
|
|
155
|
+
fptype=X_fptype, method=method, sigma=sigma_value
|
|
156
|
+
)
|
|
157
|
+
elif kernel == "linear":
|
|
158
|
+
kf = daal4py.kernel_function_linear(fptype=X_fptype, method=method)
|
|
159
|
+
else:
|
|
160
|
+
raise ValueError(
|
|
161
|
+
"_daal4py_fit received unexpected kernel specification {}.".format(kernel)
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
return kf
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
def _daal4py_check_weight(self, X, y, sample_weight):
|
|
168
|
+
ww = None
|
|
169
|
+
if sample_weight.shape[0] > 0:
|
|
170
|
+
sample_weight = _check_sample_weight(sample_weight, X)
|
|
171
|
+
if np.all(sample_weight <= 0):
|
|
172
|
+
raise ValueError("Invalid input - all samples have zero or negative weights.")
|
|
173
|
+
if np.any(sample_weight <= 0):
|
|
174
|
+
if len(np.unique(y[sample_weight > 0])) != len(self.classes_):
|
|
175
|
+
raise ValueError(
|
|
176
|
+
"Invalid input - all samples with positive weights "
|
|
177
|
+
"have the same label."
|
|
178
|
+
)
|
|
179
|
+
ww = sample_weight
|
|
180
|
+
elif self.class_weight is not None:
|
|
181
|
+
ww = np.ones(X.shape[0], dtype=np.float64)
|
|
182
|
+
if self.class_weight is not None:
|
|
183
|
+
for i, v in enumerate(self.class_weight_):
|
|
184
|
+
ww[y == i] *= v
|
|
185
|
+
return ww
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
def _daal4py_svm(
|
|
189
|
+
fptype,
|
|
190
|
+
C,
|
|
191
|
+
accuracyThreshold,
|
|
192
|
+
tau,
|
|
193
|
+
maxIterations,
|
|
194
|
+
cacheSize,
|
|
195
|
+
doShrinking,
|
|
196
|
+
kernel,
|
|
197
|
+
nClasses=2,
|
|
198
|
+
):
|
|
199
|
+
svm_train = daal4py.svm_training(
|
|
200
|
+
method="thunder",
|
|
201
|
+
fptype=fptype,
|
|
202
|
+
C=C,
|
|
203
|
+
accuracyThreshold=accuracyThreshold,
|
|
204
|
+
tau=tau,
|
|
205
|
+
maxIterations=maxIterations,
|
|
206
|
+
cacheSize=cacheSize,
|
|
207
|
+
doShrinking=doShrinking,
|
|
208
|
+
kernel=kernel,
|
|
209
|
+
)
|
|
210
|
+
if nClasses == 2:
|
|
211
|
+
algo = svm_train
|
|
212
|
+
else:
|
|
213
|
+
algo = daal4py.multi_class_classifier_training(
|
|
214
|
+
nClasses=nClasses,
|
|
215
|
+
fptype=fptype,
|
|
216
|
+
method="oneAgainstOne",
|
|
217
|
+
training=svm_train,
|
|
218
|
+
)
|
|
219
|
+
|
|
220
|
+
return algo
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
def _daal4py_fit(self, X, y_inp, sample_weight, kernel, is_sparse=False):
|
|
224
|
+
if self.C <= 0:
|
|
225
|
+
raise ValueError("C <= 0")
|
|
226
|
+
num_classes = len(self.classes_)
|
|
227
|
+
|
|
228
|
+
if sample_weight is not None:
|
|
229
|
+
sample_weight = make2d(sample_weight)
|
|
230
|
+
|
|
231
|
+
y = make2d(y_inp)
|
|
232
|
+
X_fptype = getFPType(X)
|
|
233
|
+
kf = _daal4py_kf(kernel, X_fptype, gamma=self._gamma, is_sparse=is_sparse)
|
|
234
|
+
algo = _daal4py_svm(
|
|
235
|
+
fptype=X_fptype,
|
|
236
|
+
C=float(self.C),
|
|
237
|
+
accuracyThreshold=float(self.tol),
|
|
238
|
+
tau=1e-12,
|
|
239
|
+
maxIterations=int(self.max_iter if self.max_iter > 0 else 2**30),
|
|
240
|
+
cacheSize=int(self.cache_size * 1024 * 1024),
|
|
241
|
+
doShrinking=bool(self.shrinking),
|
|
242
|
+
kernel=kf,
|
|
243
|
+
nClasses=num_classes,
|
|
244
|
+
)
|
|
245
|
+
|
|
246
|
+
res = algo.compute(data=X, labels=y, weights=sample_weight)
|
|
247
|
+
|
|
248
|
+
model = res.model
|
|
249
|
+
self.daal_model_ = model
|
|
250
|
+
|
|
251
|
+
if num_classes == 2:
|
|
252
|
+
# binary
|
|
253
|
+
two_class_sv_ind_ = model.SupportIndices
|
|
254
|
+
two_class_sv_ind_ = two_class_sv_ind_.ravel()
|
|
255
|
+
|
|
256
|
+
# support indexes need permutation to arrange them
|
|
257
|
+
# into the same layout as that of Scikit-Learn
|
|
258
|
+
tmp = np.empty(
|
|
259
|
+
two_class_sv_ind_.shape,
|
|
260
|
+
dtype=np.dtype([("label", y.dtype), ("ind", two_class_sv_ind_.dtype)]),
|
|
261
|
+
)
|
|
262
|
+
tmp["label"][:] = y[two_class_sv_ind_].ravel()
|
|
263
|
+
tmp["ind"][:] = two_class_sv_ind_
|
|
264
|
+
perm = np.argsort(tmp, order=["label", "ind"])
|
|
265
|
+
del tmp
|
|
266
|
+
|
|
267
|
+
self.support_ = two_class_sv_ind_[perm]
|
|
268
|
+
self.support_vectors_ = X[self.support_]
|
|
269
|
+
|
|
270
|
+
self.dual_coef_ = model.ClassificationCoefficients.T
|
|
271
|
+
if is_sparse:
|
|
272
|
+
self.dual_coef_ = sp.csr_matrix(self.dual_coef_)
|
|
273
|
+
self.dual_coef_ = self.dual_coef_[:, perm]
|
|
274
|
+
self.intercept_ = np.array([model.Bias])
|
|
275
|
+
|
|
276
|
+
else:
|
|
277
|
+
# multi-class
|
|
278
|
+
intercepts = []
|
|
279
|
+
coefs = []
|
|
280
|
+
sv_ind_by_clf = []
|
|
281
|
+
label_indexes = []
|
|
282
|
+
|
|
283
|
+
model_id = 0
|
|
284
|
+
for i1 in range(num_classes):
|
|
285
|
+
label_indexes.append(np.where(y == i1)[0])
|
|
286
|
+
for i2 in range(i1):
|
|
287
|
+
svm_model = model.TwoClassClassifierModel(model_id)
|
|
288
|
+
|
|
289
|
+
# Indices correspond to input features with label i1
|
|
290
|
+
# followed by input features with label i2
|
|
291
|
+
two_class_sv_ind_ = svm_model.SupportIndices
|
|
292
|
+
# Map these indexes to indexes of the training data
|
|
293
|
+
sv_ind = np.take(
|
|
294
|
+
np.hstack((label_indexes[i1], label_indexes[i2])),
|
|
295
|
+
two_class_sv_ind_.ravel(),
|
|
296
|
+
)
|
|
297
|
+
sv_ind_by_clf.append(sv_ind)
|
|
298
|
+
|
|
299
|
+
# svs_ = getArrayFromNumericTable(svm_model.getSupportVectors())
|
|
300
|
+
# assert np.array_equal(svs_, X[sv_ind])
|
|
301
|
+
|
|
302
|
+
intercepts.append(-svm_model.Bias)
|
|
303
|
+
coefs.append(-svm_model.ClassificationCoefficients)
|
|
304
|
+
model_id += 1
|
|
305
|
+
|
|
306
|
+
# permute solutions to lexicographic ordering
|
|
307
|
+
to_lex_perm = map_to_lexicographic(num_classes)
|
|
308
|
+
sv_ind_by_clf = permute_list(sv_ind_by_clf, to_lex_perm)
|
|
309
|
+
sv_coef_by_clf = permute_list(coefs, to_lex_perm)
|
|
310
|
+
intercepts = permute_list(intercepts, to_lex_perm)
|
|
311
|
+
|
|
312
|
+
self.dual_coef_, self.support_ = extract_dual_coef(
|
|
313
|
+
num_classes, # number of classes
|
|
314
|
+
sv_ind_by_clf, # support vector indexes by two-class classifiers
|
|
315
|
+
sv_coef_by_clf, # classification coefficients by two-class classifiers
|
|
316
|
+
y.squeeze().astype(np.intp, copy=False), # integer labels
|
|
317
|
+
)
|
|
318
|
+
if is_sparse:
|
|
319
|
+
self.dual_coef_ = sp.csr_matrix(self.dual_coef_)
|
|
320
|
+
self.support_vectors_ = X[self.support_]
|
|
321
|
+
self.intercept_ = np.array(intercepts)
|
|
322
|
+
|
|
323
|
+
indices = y.take(self.support_, axis=0)
|
|
324
|
+
self._n_support = np.array(
|
|
325
|
+
[np.sum(indices == i) for i, c in enumerate(self.classes_)], dtype=np.int32
|
|
326
|
+
)
|
|
327
|
+
|
|
328
|
+
self._probA = np.empty(0)
|
|
329
|
+
self._probB = np.empty(0)
|
|
330
|
+
|
|
331
|
+
|
|
332
|
+
def _compute_gamma(gamma, kernel, X):
|
|
333
|
+
"""
|
|
334
|
+
Computes actual value of 'gamma' parameter of RBF kernel
|
|
335
|
+
corresponding to SVC keyword values `gamma` and `kernel`, and feature
|
|
336
|
+
matrix X, with sparsity `sparse`.
|
|
337
|
+
|
|
338
|
+
In 0.20 gamma='scale' used to mean compute 'gamma' based on
|
|
339
|
+
column-wise standard deviation, but in 0.20.3 it was changed
|
|
340
|
+
to use column-wise variance.
|
|
341
|
+
|
|
342
|
+
See: https://github.com/scikit-learn/scikit-learn/pull/13221
|
|
343
|
+
"""
|
|
344
|
+
if gamma == "scale":
|
|
345
|
+
kernel_uses_gamma = not callable(kernel) and kernel not in (
|
|
346
|
+
"linear",
|
|
347
|
+
"precomputed",
|
|
348
|
+
)
|
|
349
|
+
if kernel_uses_gamma:
|
|
350
|
+
if sp.isspmatrix(X):
|
|
351
|
+
# var = E[X^2] - E[X]^2
|
|
352
|
+
X_sc = (X.multiply(X)).mean() - (X.mean()) ** 2
|
|
353
|
+
else:
|
|
354
|
+
X_sc = X.var()
|
|
355
|
+
else:
|
|
356
|
+
X_sc = 1.0 / X.shape[1]
|
|
357
|
+
if gamma == "scale":
|
|
358
|
+
if X_sc != 0:
|
|
359
|
+
_gamma = 1.0 / (X.shape[1] * X_sc)
|
|
360
|
+
else:
|
|
361
|
+
_gamma = 1.0
|
|
362
|
+
else:
|
|
363
|
+
_gamma = 1.0 / X.shape[1]
|
|
364
|
+
elif gamma == "auto":
|
|
365
|
+
_gamma = 1.0 / X.shape[1]
|
|
366
|
+
elif isinstance(gamma, str):
|
|
367
|
+
raise ValueError(
|
|
368
|
+
"When 'gamma' is a string, it should be either 'scale' or "
|
|
369
|
+
"'auto'. Got '{}' instead.".format(gamma)
|
|
370
|
+
)
|
|
371
|
+
else:
|
|
372
|
+
_gamma = gamma
|
|
373
|
+
|
|
374
|
+
return _gamma
|
|
375
|
+
|
|
376
|
+
|
|
377
|
+
def fit(self, X, y, sample_weight=None):
|
|
378
|
+
"""Fit the SVM model according to the given training data.
|
|
379
|
+
|
|
380
|
+
Parameters
|
|
381
|
+
----------
|
|
382
|
+
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
|
383
|
+
Training vectors, where n_samples is the number of samples
|
|
384
|
+
and n_features is the number of features.
|
|
385
|
+
For kernel="precomputed", the expected shape of X is
|
|
386
|
+
(n_samples, n_samples).
|
|
387
|
+
|
|
388
|
+
y : array-like, shape (n_samples,)
|
|
389
|
+
Target values (class labels in classification, real numbers in
|
|
390
|
+
regression)
|
|
391
|
+
|
|
392
|
+
sample_weight : array-like, shape (n_samples,)
|
|
393
|
+
Per-sample weights. Rescale C per sample. Higher weights
|
|
394
|
+
force the classifier to put more emphasis on these points.
|
|
395
|
+
|
|
396
|
+
Returns
|
|
397
|
+
-------
|
|
398
|
+
self : object
|
|
399
|
+
|
|
400
|
+
Notes
|
|
401
|
+
------
|
|
402
|
+
If X and y are not C-ordered and contiguous arrays of np.float64 and
|
|
403
|
+
X is not a scipy.sparse.csr_matrix, X and/or y may be copied.
|
|
404
|
+
|
|
405
|
+
If X is a dense array, then the other methods will not support sparse
|
|
406
|
+
matrices as input.
|
|
407
|
+
"""
|
|
408
|
+
rnd = check_random_state(self.random_state)
|
|
409
|
+
|
|
410
|
+
is_sparse = sp.isspmatrix(X)
|
|
411
|
+
if is_sparse and self.kernel == "precomputed":
|
|
412
|
+
raise TypeError("Sparse precomputed kernels are not supported.")
|
|
413
|
+
self._sparse = is_sparse and not callable(self.kernel)
|
|
414
|
+
|
|
415
|
+
if hasattr(self, "decision_function_shape"):
|
|
416
|
+
if self.decision_function_shape not in ("ovr", "ovo"):
|
|
417
|
+
raise ValueError(
|
|
418
|
+
f"decision_function_shape must be either 'ovr' or 'ovo', "
|
|
419
|
+
f"got {self.decision_function_shape}."
|
|
420
|
+
)
|
|
421
|
+
|
|
422
|
+
if callable(self.kernel):
|
|
423
|
+
check_consistent_length(X, y)
|
|
424
|
+
else:
|
|
425
|
+
X, y = validate_data(
|
|
426
|
+
self,
|
|
427
|
+
X,
|
|
428
|
+
y,
|
|
429
|
+
dtype=np.float64,
|
|
430
|
+
order="C",
|
|
431
|
+
accept_sparse="csr",
|
|
432
|
+
accept_large_sparse=False,
|
|
433
|
+
)
|
|
434
|
+
y = self._validate_targets(y)
|
|
435
|
+
|
|
436
|
+
sample_weight = np.asarray(
|
|
437
|
+
[] if sample_weight is None else sample_weight, dtype=np.float64
|
|
438
|
+
)
|
|
439
|
+
solver_type = _get_libsvm_impl().index(self._impl)
|
|
440
|
+
|
|
441
|
+
# input validation
|
|
442
|
+
n_samples = _num_samples(X)
|
|
443
|
+
if solver_type != 2 and n_samples != y.shape[0]:
|
|
444
|
+
raise ValueError(
|
|
445
|
+
"X and y have incompatible shapes.\n"
|
|
446
|
+
"X has %s samples, but y has %s." % (n_samples, y.shape[0])
|
|
447
|
+
)
|
|
448
|
+
|
|
449
|
+
if self.kernel == "precomputed" and n_samples != X.shape[1]:
|
|
450
|
+
raise ValueError("X.shape[0] should be equal to X.shape[1]")
|
|
451
|
+
|
|
452
|
+
if sample_weight.shape[0] > 0 and sample_weight.shape[0] != n_samples:
|
|
453
|
+
raise ValueError(
|
|
454
|
+
"sample_weight and X have incompatible shapes: "
|
|
455
|
+
"%r vs %r\n"
|
|
456
|
+
"Note: Sparse matrices cannot be indexed w/"
|
|
457
|
+
"boolean masks (use `indices=True` in CV)." % (sample_weight.shape, X.shape)
|
|
458
|
+
)
|
|
459
|
+
|
|
460
|
+
kernel = "precomputed" if callable(self.kernel) else self.kernel
|
|
461
|
+
if kernel == "precomputed":
|
|
462
|
+
self._gamma = 0.0
|
|
463
|
+
else:
|
|
464
|
+
self._gamma = _compute_gamma(self.gamma, kernel, X)
|
|
465
|
+
|
|
466
|
+
fit = self._sparse_fit if self._sparse else self._dense_fit
|
|
467
|
+
if self.verbose: # pragma: no cover
|
|
468
|
+
print("[LibSVM]", end="")
|
|
469
|
+
|
|
470
|
+
# see comment on the other call to np.iinfo in this file
|
|
471
|
+
seed = rnd.randint(np.iinfo("i").max)
|
|
472
|
+
|
|
473
|
+
_patching_status = PatchingConditionsChain("sklearn.svm.SVC.fit")
|
|
474
|
+
_dal_ready = _patching_status.and_conditions(
|
|
475
|
+
[
|
|
476
|
+
(
|
|
477
|
+
kernel in ["linear", "rbf"],
|
|
478
|
+
f"'{kernel}' kernel is not supported. "
|
|
479
|
+
"Only 'linear' and 'rbf' kernels are supported.",
|
|
480
|
+
)
|
|
481
|
+
]
|
|
482
|
+
)
|
|
483
|
+
_patching_status.write_log()
|
|
484
|
+
if _dal_ready:
|
|
485
|
+
sample_weight = _daal4py_check_weight(self, X, y, sample_weight)
|
|
486
|
+
|
|
487
|
+
self._daal_fit = True
|
|
488
|
+
_daal4py_fit(self, X, y, sample_weight, kernel, is_sparse=is_sparse)
|
|
489
|
+
self.fit_status_ = 0
|
|
490
|
+
|
|
491
|
+
if self.probability:
|
|
492
|
+
params = self.get_params()
|
|
493
|
+
params["probability"] = False
|
|
494
|
+
params["decision_function_shape"] = "ovr"
|
|
495
|
+
clf_base = SVC(**params)
|
|
496
|
+
try:
|
|
497
|
+
n_splits = 5
|
|
498
|
+
cv = StratifiedKFold(
|
|
499
|
+
n_splits=n_splits, shuffle=True, random_state=self.random_state
|
|
500
|
+
)
|
|
501
|
+
self.clf_prob = CalibratedClassifierCV(
|
|
502
|
+
clf_base, ensemble=False, cv=cv, method="sigmoid", n_jobs=n_splits
|
|
503
|
+
)
|
|
504
|
+
|
|
505
|
+
self.clf_prob.fit(X, y, sample_weight)
|
|
506
|
+
except ValueError:
|
|
507
|
+
clf_base = clf_base.fit(X, y, sample_weight)
|
|
508
|
+
self.clf_prob = CalibratedClassifierCV(
|
|
509
|
+
clf_base, cv="prefit", method="sigmoid"
|
|
510
|
+
)
|
|
511
|
+
self.clf_prob.fit(X, y, sample_weight)
|
|
512
|
+
else:
|
|
513
|
+
self._daal_fit = False
|
|
514
|
+
fit(X, y, sample_weight, solver_type, kernel, random_seed=seed)
|
|
515
|
+
|
|
516
|
+
self.shape_fit_ = X.shape if hasattr(X, "shape") else (n_samples,)
|
|
517
|
+
|
|
518
|
+
# In binary case, we need to flip the sign of coef, intercept and
|
|
519
|
+
# decision function. Use self._intercept_ and self._dual_coef_ internally.
|
|
520
|
+
if not getattr(self, "_daal_fit", False):
|
|
521
|
+
self._internal_intercept_ = self.intercept_.copy()
|
|
522
|
+
self._internal_dual_coef_ = self.dual_coef_.copy()
|
|
523
|
+
else:
|
|
524
|
+
self._internal_intercept_ = self.intercept_.copy()
|
|
525
|
+
self._internal_dual_coef_ = self.dual_coef_.copy()
|
|
526
|
+
if len(self.classes_) == 2:
|
|
527
|
+
self._internal_dual_coef_ *= -1
|
|
528
|
+
self._internal_intercept_ *= -1
|
|
529
|
+
|
|
530
|
+
if (
|
|
531
|
+
not getattr(self, "_daal_fit", False)
|
|
532
|
+
and len(self.classes_) == 2
|
|
533
|
+
and self._impl in ["c_svc", "nu_svc"]
|
|
534
|
+
):
|
|
535
|
+
self.intercept_ *= -1
|
|
536
|
+
self.dual_coef_ *= -1
|
|
537
|
+
|
|
538
|
+
return self
|
|
539
|
+
|
|
540
|
+
|
|
541
|
+
def _daal4py_predict(self, X, is_decision_function=False):
|
|
542
|
+
X_fptype = getFPType(X)
|
|
543
|
+
num_classes = len(self.classes_)
|
|
544
|
+
|
|
545
|
+
kf = _daal4py_kf(self.kernel, X_fptype, gamma=self._gamma, is_sparse=sp.isspmatrix(X))
|
|
546
|
+
|
|
547
|
+
svm_predict = daal4py.svm_prediction(
|
|
548
|
+
fptype=X_fptype, method="defaultDense", kernel=kf
|
|
549
|
+
)
|
|
550
|
+
if num_classes == 2:
|
|
551
|
+
alg = svm_predict
|
|
552
|
+
else:
|
|
553
|
+
result_to_compute = (
|
|
554
|
+
"computeDecisionFunction" if is_decision_function else "computeClassLabels"
|
|
555
|
+
)
|
|
556
|
+
alg = daal4py.multi_class_classifier_prediction(
|
|
557
|
+
nClasses=num_classes,
|
|
558
|
+
fptype=X_fptype,
|
|
559
|
+
pmethod="voteBased",
|
|
560
|
+
tmethod="oneAgainstOne",
|
|
561
|
+
resultsToEvaluate=result_to_compute,
|
|
562
|
+
prediction=svm_predict,
|
|
563
|
+
)
|
|
564
|
+
|
|
565
|
+
predictionRes = alg.compute(X, self.daal_model_)
|
|
566
|
+
if not is_decision_function or num_classes == 2:
|
|
567
|
+
res = predictionRes.prediction
|
|
568
|
+
res = res.ravel()
|
|
569
|
+
else:
|
|
570
|
+
res = -predictionRes.decisionFunction
|
|
571
|
+
|
|
572
|
+
if num_classes == 2 and not is_decision_function:
|
|
573
|
+
# Convert from oneAPI Data Analytics Library format back to
|
|
574
|
+
# original classes
|
|
575
|
+
np.greater(res, 0, out=res)
|
|
576
|
+
|
|
577
|
+
return res
|
|
578
|
+
|
|
579
|
+
|
|
580
|
+
def predict(self, X):
|
|
581
|
+
check_is_fitted(self)
|
|
582
|
+
|
|
583
|
+
_break_ties = getattr(self, "break_ties", False)
|
|
584
|
+
if _break_ties and self.decision_function_shape == "ovo":
|
|
585
|
+
raise ValueError(
|
|
586
|
+
"break_ties must be False when " "decision_function_shape is 'ovo'"
|
|
587
|
+
)
|
|
588
|
+
|
|
589
|
+
_patching_status = PatchingConditionsChain("sklearn.svm.SVC.predict")
|
|
590
|
+
_dal_ready = _patching_status.and_conditions(
|
|
591
|
+
[
|
|
592
|
+
(not _break_ties, "Breaking ties is not supported."),
|
|
593
|
+
(
|
|
594
|
+
self.decision_function_shape != "ovr",
|
|
595
|
+
"'ovr' decision function shape is not supported.",
|
|
596
|
+
),
|
|
597
|
+
(len(self.classes_) <= 2, "Number of classes > 2."),
|
|
598
|
+
],
|
|
599
|
+
conditions_merging=any,
|
|
600
|
+
)
|
|
601
|
+
_patching_status.write_log()
|
|
602
|
+
if not _dal_ready:
|
|
603
|
+
y = np.argmax(self.decision_function(X), axis=1)
|
|
604
|
+
else:
|
|
605
|
+
X = self._validate_for_predict(X)
|
|
606
|
+
_dal_ready = _patching_status.and_conditions(
|
|
607
|
+
[
|
|
608
|
+
(
|
|
609
|
+
getattr(self, "_daal_fit", False) and hasattr(self, "daal_model_"),
|
|
610
|
+
"oneDAL model was not trained.",
|
|
611
|
+
)
|
|
612
|
+
]
|
|
613
|
+
)
|
|
614
|
+
if _dal_ready:
|
|
615
|
+
if self.probability and self.clf_prob is not None:
|
|
616
|
+
y = self.clf_prob.predict(X)
|
|
617
|
+
else:
|
|
618
|
+
y = _daal4py_predict(self, X)
|
|
619
|
+
else:
|
|
620
|
+
predict_func = self._sparse_predict if self._sparse else self._dense_predict
|
|
621
|
+
y = predict_func(X)
|
|
622
|
+
|
|
623
|
+
return self.classes_.take(np.asarray(y, dtype=np.intp))
|
|
624
|
+
|
|
625
|
+
|
|
626
|
+
def _daal4py_predict_proba(self, X):
|
|
627
|
+
X = self._validate_for_predict(X)
|
|
628
|
+
|
|
629
|
+
if getattr(self, "clf_prob", None) is None:
|
|
630
|
+
raise NotFittedError(
|
|
631
|
+
"predict_proba is not available when fitted with probability=False"
|
|
632
|
+
)
|
|
633
|
+
prob = self.clf_prob.predict_proba(X)
|
|
634
|
+
return prob
|
|
635
|
+
|
|
636
|
+
|
|
637
|
+
@property
|
|
638
|
+
def predict_proba(self):
|
|
639
|
+
self._check_proba()
|
|
640
|
+
_patching_status = PatchingConditionsChain("sklearn.svm.SVC.predict_proba")
|
|
641
|
+
_dal_ready = _patching_status.and_conditions(
|
|
642
|
+
[(getattr(self, "_daal_fit", False), "oneDAL model was not trained.")]
|
|
643
|
+
)
|
|
644
|
+
_patching_status.write_log()
|
|
645
|
+
if _dal_ready:
|
|
646
|
+
algo = self._daal4py_predict_proba
|
|
647
|
+
else:
|
|
648
|
+
algo = self._predict_proba
|
|
649
|
+
return algo
|
|
650
|
+
|
|
651
|
+
|
|
652
|
+
def decision_function(self, X):
|
|
653
|
+
_patching_status = PatchingConditionsChain("sklearn.svm.SVC.decision_function")
|
|
654
|
+
_dal_ready = _patching_status.and_conditions(
|
|
655
|
+
[(getattr(self, "_daal_fit", False), "oneDAL model was not trained.")]
|
|
656
|
+
)
|
|
657
|
+
_patching_status.write_log()
|
|
658
|
+
if _dal_ready:
|
|
659
|
+
X = self._validate_for_predict(X)
|
|
660
|
+
dec = _daal4py_predict(self, X, is_decision_function=True)
|
|
661
|
+
else:
|
|
662
|
+
dec = self._decision_function(X)
|
|
663
|
+
if self.decision_function_shape == "ovr" and len(self.classes_) > 2:
|
|
664
|
+
return _ovr_decision_function(dec < 0, -dec, len(self.classes_))
|
|
665
|
+
return dec
|
|
666
|
+
|
|
667
|
+
|
|
668
|
+
__base_svc_init_arg_names__ = []
|
|
669
|
+
|
|
670
|
+
__base_svc_init_function__ = svm_base.BaseSVC.__init__
|
|
671
|
+
__base_svc_init_function_code__ = __base_svc_init_function__.__code__
|
|
672
|
+
|
|
673
|
+
try:
|
|
674
|
+
# retrieve tuple of code argument names to check whether
|
|
675
|
+
# new in 0.22 keyword 'break_ties' is in it
|
|
676
|
+
__base_svc_init_arg_names__ = __base_svc_init_function_code__.co_varnames
|
|
677
|
+
except AttributeError:
|
|
678
|
+
pass
|
|
679
|
+
|
|
680
|
+
del __base_svc_init_function__
|
|
681
|
+
del __base_svc_init_function_code__
|
|
682
|
+
|
|
683
|
+
|
|
684
|
+
class SVC(svm_base.BaseSVC):
|
|
685
|
+
_impl = "c_svc"
|
|
686
|
+
|
|
687
|
+
def __init__(
|
|
688
|
+
self,
|
|
689
|
+
C=1.0,
|
|
690
|
+
kernel="rbf",
|
|
691
|
+
degree=3,
|
|
692
|
+
gamma="scale",
|
|
693
|
+
coef0=0.0,
|
|
694
|
+
shrinking=True,
|
|
695
|
+
probability=False,
|
|
696
|
+
tol=1e-3,
|
|
697
|
+
cache_size=200,
|
|
698
|
+
class_weight=None,
|
|
699
|
+
verbose=False,
|
|
700
|
+
max_iter=-1,
|
|
701
|
+
decision_function_shape="ovr",
|
|
702
|
+
break_ties=False,
|
|
703
|
+
random_state=None,
|
|
704
|
+
):
|
|
705
|
+
super(SVC, self).__init__(
|
|
706
|
+
kernel=kernel,
|
|
707
|
+
degree=degree,
|
|
708
|
+
gamma=gamma,
|
|
709
|
+
coef0=coef0,
|
|
710
|
+
tol=tol,
|
|
711
|
+
C=C,
|
|
712
|
+
nu=0.0,
|
|
713
|
+
shrinking=shrinking,
|
|
714
|
+
probability=probability,
|
|
715
|
+
cache_size=cache_size,
|
|
716
|
+
class_weight=class_weight,
|
|
717
|
+
verbose=verbose,
|
|
718
|
+
max_iter=max_iter,
|
|
719
|
+
decision_function_shape=decision_function_shape,
|
|
720
|
+
break_ties=break_ties,
|
|
721
|
+
random_state=random_state,
|
|
722
|
+
)
|
|
723
|
+
|
|
724
|
+
|
|
725
|
+
SVC.fit = fit
|
|
726
|
+
SVC.predict = predict
|
|
727
|
+
SVC.predict_proba = predict_proba
|
|
728
|
+
SVC.decision_function = decision_function
|
|
729
|
+
SVC._daal4py_predict_proba = _daal4py_predict_proba
|
|
730
|
+
SVC._dual_coef_ = property(_dual_coef_getter, _dual_coef_setter)
|
|
731
|
+
SVC._intercept_ = property(_intercept_getter, _intercept_setter)
|
|
732
|
+
SVC.__doc__ = svm_classes.SVC.__doc__
|
|
733
|
+
SVC.fit.__doc__ = fit.__doc__
|
|
734
|
+
SVC.predict.__doc__ = predict.__doc__
|
|
735
|
+
SVC.predict_proba.__doc__ = predict_proba.__doc__
|
|
736
|
+
SVC.decision_function.__doc__ = decision_function.__doc__
|