scikit-learn-intelex 2024.0.1__py312-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/__init__.py +61 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/__main__.py +59 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_config.py +110 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_device_offload.py +223 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_utils.py +95 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +17 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/__init__.py +21 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +187 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +37 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +31 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +28 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/dispatcher.py +329 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +424 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +30 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1947 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +118 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/glob/__main__.py +73 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py +88 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +30 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +373 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +77 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +29 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/__init__.py +20 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +27 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/__init__.py +24 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/ranking.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +40 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py +22 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/split.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +35 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py +28 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/common.py +264 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +331 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +307 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +220 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/lof.py +437 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +85 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/__init__.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +20 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +84 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +370 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +376 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +38 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +24 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +19 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +30 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +50 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +21 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +21 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +19 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +79 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +19 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +21 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +19 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +25 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/__init__.py +30 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/_common.py +188 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/nusvc.py +272 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/nusvr.py +163 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/svc.py +301 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/svr.py +164 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +102 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +170 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_config.py +39 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +225 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +210 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +50 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +122 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +428 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +118 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/__init__.py +19 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/parallel.py +59 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/validation.py +18 -0
- scikit_learn_intelex-2024.0.1.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2024.0.1.dist-info/METADATA +230 -0
- scikit_learn_intelex-2024.0.1.dist-info/RECORD +90 -0
- scikit_learn_intelex-2024.0.1.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2024.0.1.dist-info/top_level.txt +1 -0
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# ===============================================================================
|
|
3
|
+
# Copyright 2021 Intel Corporation
|
|
4
|
+
#
|
|
5
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
# you may not use this file except in compliance with the License.
|
|
7
|
+
# You may obtain a copy of the License at
|
|
8
|
+
#
|
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
#
|
|
11
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
# See the License for the specific language governing permissions and
|
|
15
|
+
# limitations under the License.
|
|
16
|
+
# ===============================================================================
|
|
17
|
+
|
|
18
|
+
import warnings
|
|
19
|
+
|
|
20
|
+
from sklearn.neighbors._ball_tree import BallTree
|
|
21
|
+
from sklearn.neighbors._base import NeighborsBase as sklearn_NeighborsBase
|
|
22
|
+
from sklearn.neighbors._kd_tree import KDTree
|
|
23
|
+
|
|
24
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
25
|
+
|
|
26
|
+
if not sklearn_check_version("1.2"):
|
|
27
|
+
from sklearn.neighbors._base import _check_weights
|
|
28
|
+
|
|
29
|
+
import numpy as np
|
|
30
|
+
from sklearn.neighbors._base import VALID_METRICS
|
|
31
|
+
from sklearn.neighbors._classification import (
|
|
32
|
+
KNeighborsClassifier as sklearn_KNeighborsClassifier,
|
|
33
|
+
)
|
|
34
|
+
from sklearn.neighbors._unsupervised import NearestNeighbors as sklearn_NearestNeighbors
|
|
35
|
+
from sklearn.utils.validation import _deprecate_positional_args, check_is_fitted
|
|
36
|
+
|
|
37
|
+
from onedal.neighbors import KNeighborsClassifier as onedal_KNeighborsClassifier
|
|
38
|
+
from onedal.utils import _check_array, _num_features, _num_samples
|
|
39
|
+
|
|
40
|
+
from .._device_offload import dispatch, wrap_output_data
|
|
41
|
+
from .common import KNeighborsDispatchingBase
|
|
42
|
+
|
|
43
|
+
if sklearn_check_version("0.24"):
|
|
44
|
+
|
|
45
|
+
class KNeighborsClassifier_(sklearn_KNeighborsClassifier):
|
|
46
|
+
if sklearn_check_version("1.2"):
|
|
47
|
+
_parameter_constraints: dict = {
|
|
48
|
+
**sklearn_KNeighborsClassifier._parameter_constraints
|
|
49
|
+
}
|
|
50
|
+
|
|
51
|
+
@_deprecate_positional_args
|
|
52
|
+
def __init__(
|
|
53
|
+
self,
|
|
54
|
+
n_neighbors=5,
|
|
55
|
+
*,
|
|
56
|
+
weights="uniform",
|
|
57
|
+
algorithm="auto",
|
|
58
|
+
leaf_size=30,
|
|
59
|
+
p=2,
|
|
60
|
+
metric="minkowski",
|
|
61
|
+
metric_params=None,
|
|
62
|
+
n_jobs=None,
|
|
63
|
+
**kwargs,
|
|
64
|
+
):
|
|
65
|
+
super().__init__(
|
|
66
|
+
n_neighbors=n_neighbors,
|
|
67
|
+
algorithm=algorithm,
|
|
68
|
+
leaf_size=leaf_size,
|
|
69
|
+
metric=metric,
|
|
70
|
+
p=p,
|
|
71
|
+
metric_params=metric_params,
|
|
72
|
+
n_jobs=n_jobs,
|
|
73
|
+
**kwargs,
|
|
74
|
+
)
|
|
75
|
+
self.weights = (
|
|
76
|
+
weights if sklearn_check_version("1.0") else _check_weights(weights)
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
elif sklearn_check_version("0.22"):
|
|
80
|
+
from sklearn.neighbors._base import (
|
|
81
|
+
SupervisedIntegerMixin as BaseSupervisedIntegerMixin,
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
class KNeighborsClassifier_(sklearn_KNeighborsClassifier, BaseSupervisedIntegerMixin):
|
|
85
|
+
@_deprecate_positional_args
|
|
86
|
+
def __init__(
|
|
87
|
+
self,
|
|
88
|
+
n_neighbors=5,
|
|
89
|
+
*,
|
|
90
|
+
weights="uniform",
|
|
91
|
+
algorithm="auto",
|
|
92
|
+
leaf_size=30,
|
|
93
|
+
p=2,
|
|
94
|
+
metric="minkowski",
|
|
95
|
+
metric_params=None,
|
|
96
|
+
n_jobs=None,
|
|
97
|
+
**kwargs,
|
|
98
|
+
):
|
|
99
|
+
super().__init__(
|
|
100
|
+
n_neighbors=n_neighbors,
|
|
101
|
+
algorithm=algorithm,
|
|
102
|
+
leaf_size=leaf_size,
|
|
103
|
+
metric=metric,
|
|
104
|
+
p=p,
|
|
105
|
+
metric_params=metric_params,
|
|
106
|
+
n_jobs=n_jobs,
|
|
107
|
+
**kwargs,
|
|
108
|
+
)
|
|
109
|
+
self.weights = _check_weights(weights)
|
|
110
|
+
|
|
111
|
+
else:
|
|
112
|
+
from sklearn.neighbors.base import (
|
|
113
|
+
SupervisedIntegerMixin as BaseSupervisedIntegerMixin,
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
class KNeighborsClassifier_(sklearn_KNeighborsClassifier, BaseSupervisedIntegerMixin):
|
|
117
|
+
@_deprecate_positional_args
|
|
118
|
+
def __init__(
|
|
119
|
+
self,
|
|
120
|
+
n_neighbors=5,
|
|
121
|
+
*,
|
|
122
|
+
weights="uniform",
|
|
123
|
+
algorithm="auto",
|
|
124
|
+
leaf_size=30,
|
|
125
|
+
p=2,
|
|
126
|
+
metric="minkowski",
|
|
127
|
+
metric_params=None,
|
|
128
|
+
n_jobs=None,
|
|
129
|
+
**kwargs,
|
|
130
|
+
):
|
|
131
|
+
super().__init__(
|
|
132
|
+
n_neighbors=n_neighbors,
|
|
133
|
+
algorithm=algorithm,
|
|
134
|
+
leaf_size=leaf_size,
|
|
135
|
+
metric=metric,
|
|
136
|
+
p=p,
|
|
137
|
+
metric_params=metric_params,
|
|
138
|
+
n_jobs=n_jobs,
|
|
139
|
+
**kwargs,
|
|
140
|
+
)
|
|
141
|
+
self.weights = _check_weights(weights)
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
class KNeighborsClassifier(KNeighborsClassifier_, KNeighborsDispatchingBase):
|
|
145
|
+
if sklearn_check_version("1.2"):
|
|
146
|
+
_parameter_constraints: dict = {**KNeighborsClassifier_._parameter_constraints}
|
|
147
|
+
|
|
148
|
+
if sklearn_check_version("1.0"):
|
|
149
|
+
|
|
150
|
+
def __init__(
|
|
151
|
+
self,
|
|
152
|
+
n_neighbors=5,
|
|
153
|
+
*,
|
|
154
|
+
weights="uniform",
|
|
155
|
+
algorithm="auto",
|
|
156
|
+
leaf_size=30,
|
|
157
|
+
p=2,
|
|
158
|
+
metric="minkowski",
|
|
159
|
+
metric_params=None,
|
|
160
|
+
n_jobs=None,
|
|
161
|
+
):
|
|
162
|
+
super().__init__(
|
|
163
|
+
n_neighbors=n_neighbors,
|
|
164
|
+
weights=weights,
|
|
165
|
+
algorithm=algorithm,
|
|
166
|
+
leaf_size=leaf_size,
|
|
167
|
+
metric=metric,
|
|
168
|
+
p=p,
|
|
169
|
+
metric_params=metric_params,
|
|
170
|
+
n_jobs=n_jobs,
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
else:
|
|
174
|
+
|
|
175
|
+
@_deprecate_positional_args
|
|
176
|
+
def __init__(
|
|
177
|
+
self,
|
|
178
|
+
n_neighbors=5,
|
|
179
|
+
*,
|
|
180
|
+
weights="uniform",
|
|
181
|
+
algorithm="auto",
|
|
182
|
+
leaf_size=30,
|
|
183
|
+
p=2,
|
|
184
|
+
metric="minkowski",
|
|
185
|
+
metric_params=None,
|
|
186
|
+
n_jobs=None,
|
|
187
|
+
**kwargs,
|
|
188
|
+
):
|
|
189
|
+
super().__init__(
|
|
190
|
+
n_neighbors=n_neighbors,
|
|
191
|
+
weights=weights,
|
|
192
|
+
algorithm=algorithm,
|
|
193
|
+
leaf_size=leaf_size,
|
|
194
|
+
metric=metric,
|
|
195
|
+
p=p,
|
|
196
|
+
metric_params=metric_params,
|
|
197
|
+
n_jobs=n_jobs,
|
|
198
|
+
**kwargs,
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
def fit(self, X, y):
|
|
202
|
+
self._fit_validation(X, y)
|
|
203
|
+
dispatch(
|
|
204
|
+
self,
|
|
205
|
+
"fit",
|
|
206
|
+
{
|
|
207
|
+
"onedal": self.__class__._onedal_fit,
|
|
208
|
+
"sklearn": sklearn_KNeighborsClassifier.fit,
|
|
209
|
+
},
|
|
210
|
+
X,
|
|
211
|
+
y,
|
|
212
|
+
)
|
|
213
|
+
return self
|
|
214
|
+
|
|
215
|
+
@wrap_output_data
|
|
216
|
+
def predict(self, X):
|
|
217
|
+
check_is_fitted(self)
|
|
218
|
+
if sklearn_check_version("1.0"):
|
|
219
|
+
self._check_feature_names(X, reset=False)
|
|
220
|
+
return dispatch(
|
|
221
|
+
self,
|
|
222
|
+
"predict",
|
|
223
|
+
{
|
|
224
|
+
"onedal": self.__class__._onedal_predict,
|
|
225
|
+
"sklearn": sklearn_KNeighborsClassifier.predict,
|
|
226
|
+
},
|
|
227
|
+
X,
|
|
228
|
+
)
|
|
229
|
+
|
|
230
|
+
@wrap_output_data
|
|
231
|
+
def predict_proba(self, X):
|
|
232
|
+
check_is_fitted(self)
|
|
233
|
+
if sklearn_check_version("1.0"):
|
|
234
|
+
self._check_feature_names(X, reset=False)
|
|
235
|
+
return dispatch(
|
|
236
|
+
self,
|
|
237
|
+
"predict_proba",
|
|
238
|
+
{
|
|
239
|
+
"onedal": self.__class__._onedal_predict_proba,
|
|
240
|
+
"sklearn": sklearn_KNeighborsClassifier.predict_proba,
|
|
241
|
+
},
|
|
242
|
+
X,
|
|
243
|
+
)
|
|
244
|
+
|
|
245
|
+
@wrap_output_data
|
|
246
|
+
def kneighbors(self, X=None, n_neighbors=None, return_distance=True):
|
|
247
|
+
check_is_fitted(self)
|
|
248
|
+
if sklearn_check_version("1.0"):
|
|
249
|
+
self._check_feature_names(X, reset=False)
|
|
250
|
+
return dispatch(
|
|
251
|
+
self,
|
|
252
|
+
"kneighbors",
|
|
253
|
+
{
|
|
254
|
+
"onedal": self.__class__._onedal_kneighbors,
|
|
255
|
+
"sklearn": sklearn_KNeighborsClassifier.kneighbors,
|
|
256
|
+
},
|
|
257
|
+
X,
|
|
258
|
+
n_neighbors,
|
|
259
|
+
return_distance,
|
|
260
|
+
)
|
|
261
|
+
|
|
262
|
+
@wrap_output_data
|
|
263
|
+
def radius_neighbors(
|
|
264
|
+
self, X=None, radius=None, return_distance=True, sort_results=False
|
|
265
|
+
):
|
|
266
|
+
_onedal_estimator = getattr(self, "_onedal_estimator", None)
|
|
267
|
+
|
|
268
|
+
if (
|
|
269
|
+
_onedal_estimator is not None
|
|
270
|
+
or getattr(self, "_tree", 0) is None
|
|
271
|
+
and self._fit_method == "kd_tree"
|
|
272
|
+
):
|
|
273
|
+
if sklearn_check_version("0.24"):
|
|
274
|
+
sklearn_NearestNeighbors.fit(self, self._fit_X, getattr(self, "_y", None))
|
|
275
|
+
else:
|
|
276
|
+
sklearn_NearestNeighbors.fit(self, self._fit_X)
|
|
277
|
+
if sklearn_check_version("0.22"):
|
|
278
|
+
result = sklearn_NearestNeighbors.radius_neighbors(
|
|
279
|
+
self, X, radius, return_distance, sort_results
|
|
280
|
+
)
|
|
281
|
+
else:
|
|
282
|
+
result = sklearn_NearestNeighbors.radius_neighbors(
|
|
283
|
+
self, X, radius, return_distance
|
|
284
|
+
)
|
|
285
|
+
|
|
286
|
+
return result
|
|
287
|
+
|
|
288
|
+
def _onedal_fit(self, X, y, queue=None):
|
|
289
|
+
onedal_params = {
|
|
290
|
+
"n_neighbors": self.n_neighbors,
|
|
291
|
+
"weights": self.weights,
|
|
292
|
+
"algorithm": self.algorithm,
|
|
293
|
+
"metric": self.effective_metric_,
|
|
294
|
+
"p": self.effective_metric_params_["p"],
|
|
295
|
+
}
|
|
296
|
+
|
|
297
|
+
try:
|
|
298
|
+
requires_y = self._get_tags()["requires_y"]
|
|
299
|
+
except KeyError:
|
|
300
|
+
requires_y = False
|
|
301
|
+
|
|
302
|
+
self._onedal_estimator = onedal_KNeighborsClassifier(**onedal_params)
|
|
303
|
+
self._onedal_estimator.requires_y = requires_y
|
|
304
|
+
self._onedal_estimator.effective_metric_ = self.effective_metric_
|
|
305
|
+
self._onedal_estimator.effective_metric_params_ = self.effective_metric_params_
|
|
306
|
+
self._onedal_estimator.fit(X, y, queue=queue)
|
|
307
|
+
|
|
308
|
+
self._save_attributes()
|
|
309
|
+
|
|
310
|
+
def _onedal_predict(self, X, queue=None):
|
|
311
|
+
return self._onedal_estimator.predict(X, queue=queue)
|
|
312
|
+
|
|
313
|
+
def _onedal_predict_proba(self, X, queue=None):
|
|
314
|
+
return self._onedal_estimator.predict_proba(X, queue=queue)
|
|
315
|
+
|
|
316
|
+
def _onedal_kneighbors(
|
|
317
|
+
self, X=None, n_neighbors=None, return_distance=True, queue=None
|
|
318
|
+
):
|
|
319
|
+
return self._onedal_estimator.kneighbors(
|
|
320
|
+
X, n_neighbors, return_distance, queue=queue
|
|
321
|
+
)
|
|
322
|
+
|
|
323
|
+
def _save_attributes(self):
|
|
324
|
+
self.classes_ = self._onedal_estimator.classes_
|
|
325
|
+
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
326
|
+
self.n_samples_fit_ = self._onedal_estimator.n_samples_fit_
|
|
327
|
+
self._fit_X = self._onedal_estimator._fit_X
|
|
328
|
+
self._y = self._onedal_estimator._y
|
|
329
|
+
self._fit_method = self._onedal_estimator._fit_method
|
|
330
|
+
self.outputs_2d_ = self._onedal_estimator.outputs_2d_
|
|
331
|
+
self._tree = self._onedal_estimator._tree
|
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py
ADDED
|
@@ -0,0 +1,307 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# ==============================================================================
|
|
3
|
+
# Copyright 2021 Intel Corporation
|
|
4
|
+
#
|
|
5
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
# you may not use this file except in compliance with the License.
|
|
7
|
+
# You may obtain a copy of the License at
|
|
8
|
+
#
|
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
#
|
|
11
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
# See the License for the specific language governing permissions and
|
|
15
|
+
# limitations under the License.
|
|
16
|
+
# ==============================================================================
|
|
17
|
+
|
|
18
|
+
import warnings
|
|
19
|
+
|
|
20
|
+
from sklearn.neighbors._ball_tree import BallTree
|
|
21
|
+
from sklearn.neighbors._base import NeighborsBase as sklearn_NeighborsBase
|
|
22
|
+
from sklearn.neighbors._kd_tree import KDTree
|
|
23
|
+
|
|
24
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
25
|
+
|
|
26
|
+
if not sklearn_check_version("1.2"):
|
|
27
|
+
from sklearn.neighbors._base import _check_weights
|
|
28
|
+
|
|
29
|
+
import numpy as np
|
|
30
|
+
from sklearn.neighbors._base import VALID_METRICS
|
|
31
|
+
from sklearn.neighbors._regression import (
|
|
32
|
+
KNeighborsRegressor as sklearn_KNeighborsRegressor,
|
|
33
|
+
)
|
|
34
|
+
from sklearn.neighbors._unsupervised import NearestNeighbors as sklearn_NearestNeighbors
|
|
35
|
+
from sklearn.utils.validation import _deprecate_positional_args, check_is_fitted
|
|
36
|
+
|
|
37
|
+
from onedal.neighbors import KNeighborsRegressor as onedal_KNeighborsRegressor
|
|
38
|
+
from onedal.utils import _check_array, _num_features, _num_samples
|
|
39
|
+
|
|
40
|
+
from .._device_offload import dispatch, wrap_output_data
|
|
41
|
+
from .common import KNeighborsDispatchingBase
|
|
42
|
+
|
|
43
|
+
if sklearn_check_version("0.24"):
|
|
44
|
+
|
|
45
|
+
class KNeighborsRegressor_(sklearn_KNeighborsRegressor):
|
|
46
|
+
if sklearn_check_version("1.2"):
|
|
47
|
+
_parameter_constraints: dict = {
|
|
48
|
+
**sklearn_KNeighborsRegressor._parameter_constraints
|
|
49
|
+
}
|
|
50
|
+
|
|
51
|
+
@_deprecate_positional_args
|
|
52
|
+
def __init__(
|
|
53
|
+
self,
|
|
54
|
+
n_neighbors=5,
|
|
55
|
+
*,
|
|
56
|
+
weights="uniform",
|
|
57
|
+
algorithm="auto",
|
|
58
|
+
leaf_size=30,
|
|
59
|
+
p=2,
|
|
60
|
+
metric="minkowski",
|
|
61
|
+
metric_params=None,
|
|
62
|
+
n_jobs=None,
|
|
63
|
+
**kwargs,
|
|
64
|
+
):
|
|
65
|
+
super().__init__(
|
|
66
|
+
n_neighbors=n_neighbors,
|
|
67
|
+
algorithm=algorithm,
|
|
68
|
+
leaf_size=leaf_size,
|
|
69
|
+
metric=metric,
|
|
70
|
+
p=p,
|
|
71
|
+
metric_params=metric_params,
|
|
72
|
+
n_jobs=n_jobs,
|
|
73
|
+
**kwargs,
|
|
74
|
+
)
|
|
75
|
+
self.weights = (
|
|
76
|
+
weights if sklearn_check_version("1.0") else _check_weights(weights)
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
elif sklearn_check_version("0.22"):
|
|
80
|
+
from sklearn.neighbors._base import SupervisedFloatMixin as BaseSupervisedFloatMixin
|
|
81
|
+
|
|
82
|
+
class KNeighborsRegressor_(sklearn_KNeighborsRegressor, BaseSupervisedFloatMixin):
|
|
83
|
+
@_deprecate_positional_args
|
|
84
|
+
def __init__(
|
|
85
|
+
self,
|
|
86
|
+
n_neighbors=5,
|
|
87
|
+
*,
|
|
88
|
+
weights="uniform",
|
|
89
|
+
algorithm="auto",
|
|
90
|
+
leaf_size=30,
|
|
91
|
+
p=2,
|
|
92
|
+
metric="minkowski",
|
|
93
|
+
metric_params=None,
|
|
94
|
+
n_jobs=None,
|
|
95
|
+
**kwargs,
|
|
96
|
+
):
|
|
97
|
+
super().__init__(
|
|
98
|
+
n_neighbors=n_neighbors,
|
|
99
|
+
algorithm=algorithm,
|
|
100
|
+
leaf_size=leaf_size,
|
|
101
|
+
metric=metric,
|
|
102
|
+
p=p,
|
|
103
|
+
metric_params=metric_params,
|
|
104
|
+
n_jobs=n_jobs,
|
|
105
|
+
**kwargs,
|
|
106
|
+
)
|
|
107
|
+
self.weights = _check_weights(weights)
|
|
108
|
+
|
|
109
|
+
else:
|
|
110
|
+
from sklearn.neighbors.base import SupervisedFloatMixin as BaseSupervisedFloatMixin
|
|
111
|
+
|
|
112
|
+
class KNeighborsRegressor_(sklearn_KNeighborsRegressor, BaseSupervisedFloatMixin):
|
|
113
|
+
@_deprecate_positional_args
|
|
114
|
+
def __init__(
|
|
115
|
+
self,
|
|
116
|
+
n_neighbors=5,
|
|
117
|
+
*,
|
|
118
|
+
weights="uniform",
|
|
119
|
+
algorithm="auto",
|
|
120
|
+
leaf_size=30,
|
|
121
|
+
p=2,
|
|
122
|
+
metric="minkowski",
|
|
123
|
+
metric_params=None,
|
|
124
|
+
n_jobs=None,
|
|
125
|
+
**kwargs,
|
|
126
|
+
):
|
|
127
|
+
super().__init__(
|
|
128
|
+
n_neighbors=n_neighbors,
|
|
129
|
+
algorithm=algorithm,
|
|
130
|
+
leaf_size=leaf_size,
|
|
131
|
+
metric=metric,
|
|
132
|
+
p=p,
|
|
133
|
+
metric_params=metric_params,
|
|
134
|
+
n_jobs=n_jobs,
|
|
135
|
+
**kwargs,
|
|
136
|
+
)
|
|
137
|
+
self.weights = _check_weights(weights)
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
class KNeighborsRegressor(KNeighborsRegressor_, KNeighborsDispatchingBase):
|
|
141
|
+
if sklearn_check_version("1.2"):
|
|
142
|
+
_parameter_constraints: dict = {**KNeighborsRegressor_._parameter_constraints}
|
|
143
|
+
|
|
144
|
+
if sklearn_check_version("1.0"):
|
|
145
|
+
|
|
146
|
+
def __init__(
|
|
147
|
+
self,
|
|
148
|
+
n_neighbors=5,
|
|
149
|
+
*,
|
|
150
|
+
weights="uniform",
|
|
151
|
+
algorithm="auto",
|
|
152
|
+
leaf_size=30,
|
|
153
|
+
p=2,
|
|
154
|
+
metric="minkowski",
|
|
155
|
+
metric_params=None,
|
|
156
|
+
n_jobs=None,
|
|
157
|
+
):
|
|
158
|
+
super().__init__(
|
|
159
|
+
n_neighbors=n_neighbors,
|
|
160
|
+
weights=weights,
|
|
161
|
+
algorithm=algorithm,
|
|
162
|
+
leaf_size=leaf_size,
|
|
163
|
+
metric=metric,
|
|
164
|
+
p=p,
|
|
165
|
+
metric_params=metric_params,
|
|
166
|
+
n_jobs=n_jobs,
|
|
167
|
+
)
|
|
168
|
+
|
|
169
|
+
else:
|
|
170
|
+
|
|
171
|
+
@_deprecate_positional_args
|
|
172
|
+
def __init__(
|
|
173
|
+
self,
|
|
174
|
+
n_neighbors=5,
|
|
175
|
+
*,
|
|
176
|
+
weights="uniform",
|
|
177
|
+
algorithm="auto",
|
|
178
|
+
leaf_size=30,
|
|
179
|
+
p=2,
|
|
180
|
+
metric="minkowski",
|
|
181
|
+
metric_params=None,
|
|
182
|
+
n_jobs=None,
|
|
183
|
+
**kwargs,
|
|
184
|
+
):
|
|
185
|
+
super().__init__(
|
|
186
|
+
n_neighbors=n_neighbors,
|
|
187
|
+
weights=weights,
|
|
188
|
+
algorithm=algorithm,
|
|
189
|
+
leaf_size=leaf_size,
|
|
190
|
+
metric=metric,
|
|
191
|
+
p=p,
|
|
192
|
+
metric_params=metric_params,
|
|
193
|
+
n_jobs=n_jobs,
|
|
194
|
+
**kwargs,
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
def fit(self, X, y):
|
|
198
|
+
self._fit_validation(X, y)
|
|
199
|
+
dispatch(
|
|
200
|
+
self,
|
|
201
|
+
"fit",
|
|
202
|
+
{
|
|
203
|
+
"onedal": self.__class__._onedal_fit,
|
|
204
|
+
"sklearn": sklearn_KNeighborsRegressor.fit,
|
|
205
|
+
},
|
|
206
|
+
X,
|
|
207
|
+
y,
|
|
208
|
+
)
|
|
209
|
+
return self
|
|
210
|
+
|
|
211
|
+
@wrap_output_data
|
|
212
|
+
def predict(self, X):
|
|
213
|
+
check_is_fitted(self)
|
|
214
|
+
if sklearn_check_version("1.0"):
|
|
215
|
+
self._check_feature_names(X, reset=False)
|
|
216
|
+
return dispatch(
|
|
217
|
+
self,
|
|
218
|
+
"predict",
|
|
219
|
+
{
|
|
220
|
+
"onedal": self.__class__._onedal_predict,
|
|
221
|
+
"sklearn": sklearn_KNeighborsRegressor.predict,
|
|
222
|
+
},
|
|
223
|
+
X,
|
|
224
|
+
)
|
|
225
|
+
|
|
226
|
+
@wrap_output_data
|
|
227
|
+
def kneighbors(self, X=None, n_neighbors=None, return_distance=True):
|
|
228
|
+
check_is_fitted(self)
|
|
229
|
+
if sklearn_check_version("1.0"):
|
|
230
|
+
self._check_feature_names(X, reset=False)
|
|
231
|
+
return dispatch(
|
|
232
|
+
self,
|
|
233
|
+
"kneighbors",
|
|
234
|
+
{
|
|
235
|
+
"onedal": self.__class__._onedal_kneighbors,
|
|
236
|
+
"sklearn": sklearn_KNeighborsRegressor.kneighbors,
|
|
237
|
+
},
|
|
238
|
+
X,
|
|
239
|
+
n_neighbors,
|
|
240
|
+
return_distance,
|
|
241
|
+
)
|
|
242
|
+
|
|
243
|
+
@wrap_output_data
|
|
244
|
+
def radius_neighbors(
|
|
245
|
+
self, X=None, radius=None, return_distance=True, sort_results=False
|
|
246
|
+
):
|
|
247
|
+
_onedal_estimator = getattr(self, "_onedal_estimator", None)
|
|
248
|
+
|
|
249
|
+
if (
|
|
250
|
+
_onedal_estimator is not None
|
|
251
|
+
or getattr(self, "_tree", 0) is None
|
|
252
|
+
and self._fit_method == "kd_tree"
|
|
253
|
+
):
|
|
254
|
+
if sklearn_check_version("0.24"):
|
|
255
|
+
sklearn_NearestNeighbors.fit(self, self._fit_X, getattr(self, "_y", None))
|
|
256
|
+
else:
|
|
257
|
+
sklearn_NearestNeighbors.fit(self, self._fit_X)
|
|
258
|
+
if sklearn_check_version("0.22"):
|
|
259
|
+
result = sklearn_NearestNeighbors.radius_neighbors(
|
|
260
|
+
self, X, radius, return_distance, sort_results
|
|
261
|
+
)
|
|
262
|
+
else:
|
|
263
|
+
result = sklearn_NearestNeighbors.radius_neighbors(
|
|
264
|
+
self, X, radius, return_distance
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
return result
|
|
268
|
+
|
|
269
|
+
def _onedal_fit(self, X, y, queue=None):
|
|
270
|
+
onedal_params = {
|
|
271
|
+
"n_neighbors": self.n_neighbors,
|
|
272
|
+
"weights": self.weights,
|
|
273
|
+
"algorithm": self.algorithm,
|
|
274
|
+
"metric": self.effective_metric_,
|
|
275
|
+
"p": self.effective_metric_params_["p"],
|
|
276
|
+
}
|
|
277
|
+
|
|
278
|
+
try:
|
|
279
|
+
requires_y = self._get_tags()["requires_y"]
|
|
280
|
+
except KeyError:
|
|
281
|
+
requires_y = False
|
|
282
|
+
|
|
283
|
+
self._onedal_estimator = onedal_KNeighborsRegressor(**onedal_params)
|
|
284
|
+
self._onedal_estimator.requires_y = requires_y
|
|
285
|
+
self._onedal_estimator.effective_metric_ = self.effective_metric_
|
|
286
|
+
self._onedal_estimator.effective_metric_params_ = self.effective_metric_params_
|
|
287
|
+
self._onedal_estimator.fit(X, y, queue=queue)
|
|
288
|
+
|
|
289
|
+
self._save_attributes()
|
|
290
|
+
|
|
291
|
+
def _onedal_predict(self, X, queue=None):
|
|
292
|
+
return self._onedal_estimator.predict(X, queue=queue)
|
|
293
|
+
|
|
294
|
+
def _onedal_kneighbors(
|
|
295
|
+
self, X=None, n_neighbors=None, return_distance=True, queue=None
|
|
296
|
+
):
|
|
297
|
+
return self._onedal_estimator.kneighbors(
|
|
298
|
+
X, n_neighbors, return_distance, queue=queue
|
|
299
|
+
)
|
|
300
|
+
|
|
301
|
+
def _save_attributes(self):
|
|
302
|
+
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
303
|
+
self.n_samples_fit_ = self._onedal_estimator.n_samples_fit_
|
|
304
|
+
self._fit_X = self._onedal_estimator._fit_X
|
|
305
|
+
self._y = self._onedal_estimator._y
|
|
306
|
+
self._fit_method = self._onedal_estimator._fit_method
|
|
307
|
+
self._tree = self._onedal_estimator._tree
|