scikit-learn-intelex 2024.0.1__py312-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/__init__.py +61 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/__main__.py +59 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_config.py +110 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_device_offload.py +223 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_utils.py +95 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +17 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/__init__.py +21 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +187 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +37 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +31 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +28 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/dispatcher.py +329 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +424 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +30 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1947 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +118 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/glob/__main__.py +73 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py +88 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +30 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +373 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +77 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +29 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/__init__.py +20 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +27 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/__init__.py +24 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/ranking.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +40 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py +22 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/split.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +35 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py +28 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/common.py +264 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +331 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +307 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +220 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/lof.py +437 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +85 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/__init__.py +18 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +20 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +84 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +370 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +376 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +38 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +24 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +19 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +30 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +50 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +21 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +21 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +19 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +79 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +19 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +21 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +19 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +25 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/__init__.py +30 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/_common.py +188 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/nusvc.py +272 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/nusvr.py +163 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/svc.py +301 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/svr.py +164 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +102 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +170 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_config.py +39 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +225 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +210 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +50 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +122 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +428 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +118 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/__init__.py +19 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/parallel.py +59 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/validation.py +18 -0
- scikit_learn_intelex-2024.0.1.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2024.0.1.dist-info/METADATA +230 -0
- scikit_learn_intelex-2024.0.1.dist-info/RECORD +90 -0
- scikit_learn_intelex-2024.0.1.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2024.0.1.dist-info/top_level.txt +1 -0
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# ===============================================================================
|
|
3
|
+
# Copyright 2021 Intel Corporation
|
|
4
|
+
#
|
|
5
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
# you may not use this file except in compliance with the License.
|
|
7
|
+
# You may obtain a copy of the License at
|
|
8
|
+
#
|
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
#
|
|
11
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
# See the License for the specific language governing permissions and
|
|
15
|
+
# limitations under the License.
|
|
16
|
+
# ===============================================================================
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
from sklearn.datasets import load_breast_cancer
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def test_sklearnex_import_roc_auc():
|
|
24
|
+
from sklearnex.linear_model import LogisticRegression
|
|
25
|
+
from sklearnex.metrics import roc_auc_score
|
|
26
|
+
|
|
27
|
+
X, y = load_breast_cancer(return_X_y=True)
|
|
28
|
+
clf = LogisticRegression(solver="liblinear", random_state=0).fit(X, y)
|
|
29
|
+
res = roc_auc_score(y, clf.decision_function(X))
|
|
30
|
+
assert_allclose(res, 0.99, atol=1e-2)
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def test_sklearnex_import_pairwise_distances():
|
|
34
|
+
from sklearnex.metrics import pairwise_distances
|
|
35
|
+
|
|
36
|
+
rng = np.random.RandomState(0)
|
|
37
|
+
x = np.abs(rng.rand(4), dtype=np.float64)
|
|
38
|
+
x = np.vstack([x, x])
|
|
39
|
+
res = pairwise_distances(x, metric="cosine")
|
|
40
|
+
assert_allclose(res, [[0.0, 0.0], [0.0, 0.0]], atol=1e-2)
|
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# ===============================================================================
|
|
3
|
+
# Copyright 2021 Intel Corporation
|
|
4
|
+
#
|
|
5
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
# you may not use this file except in compliance with the License.
|
|
7
|
+
# You may obtain a copy of the License at
|
|
8
|
+
#
|
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
#
|
|
11
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
# See the License for the specific language governing permissions and
|
|
15
|
+
# limitations under the License.
|
|
16
|
+
# ===============================================================================
|
|
17
|
+
|
|
18
|
+
from .split import train_test_split
|
|
19
|
+
|
|
20
|
+
__all__ = [
|
|
21
|
+
"train_test_split",
|
|
22
|
+
]
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# ===============================================================================
|
|
3
|
+
# Copyright 2021 Intel Corporation
|
|
4
|
+
#
|
|
5
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
# you may not use this file except in compliance with the License.
|
|
7
|
+
# You may obtain a copy of the License at
|
|
8
|
+
#
|
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
#
|
|
11
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
# See the License for the specific language governing permissions and
|
|
15
|
+
# limitations under the License.
|
|
16
|
+
# ===============================================================================
|
|
17
|
+
|
|
18
|
+
from daal4py.sklearn.model_selection import train_test_split
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# ===============================================================================
|
|
3
|
+
# Copyright 2021 Intel Corporation
|
|
4
|
+
#
|
|
5
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
# you may not use this file except in compliance with the License.
|
|
7
|
+
# You may obtain a copy of the License at
|
|
8
|
+
#
|
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
#
|
|
11
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
# See the License for the specific language governing permissions and
|
|
15
|
+
# limitations under the License.
|
|
16
|
+
# ===============================================================================
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
# TODO:
|
|
23
|
+
# add pytest params for checking different dataframe inputs/outputs.
|
|
24
|
+
def test_sklearnex_import_train_test_split():
|
|
25
|
+
from sklearnex.model_selection import train_test_split
|
|
26
|
+
|
|
27
|
+
X = np.arange(100).reshape((10, 10))
|
|
28
|
+
y = np.arange(10)
|
|
29
|
+
|
|
30
|
+
split = train_test_split(X, y, test_size=None, train_size=0.5)
|
|
31
|
+
X_train, X_test, y_train, y_test = split
|
|
32
|
+
assert len(y_test) == len(y_train)
|
|
33
|
+
|
|
34
|
+
assert_allclose(X_train[:, 0], y_train * 10)
|
|
35
|
+
assert_allclose(X_test[:, 0], y_test * 10)
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# ===============================================================================
|
|
3
|
+
# Copyright 2021 Intel Corporation
|
|
4
|
+
#
|
|
5
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
# you may not use this file except in compliance with the License.
|
|
7
|
+
# You may obtain a copy of the License at
|
|
8
|
+
#
|
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
#
|
|
11
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
# See the License for the specific language governing permissions and
|
|
15
|
+
# limitations under the License.
|
|
16
|
+
# ===============================================================================
|
|
17
|
+
|
|
18
|
+
from .knn_classification import KNeighborsClassifier
|
|
19
|
+
from .knn_regression import KNeighborsRegressor
|
|
20
|
+
from .knn_unsupervised import NearestNeighbors
|
|
21
|
+
from .lof import LocalOutlierFactor
|
|
22
|
+
|
|
23
|
+
__all__ = [
|
|
24
|
+
"KNeighborsClassifier",
|
|
25
|
+
"KNeighborsRegressor",
|
|
26
|
+
"LocalOutlierFactor",
|
|
27
|
+
"NearestNeighbors",
|
|
28
|
+
]
|
|
@@ -0,0 +1,264 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# ==============================================================================
|
|
3
|
+
# Copyright 2023 Intel Corporation
|
|
4
|
+
#
|
|
5
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
# you may not use this file except in compliance with the License.
|
|
7
|
+
# You may obtain a copy of the License at
|
|
8
|
+
#
|
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
#
|
|
11
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
# See the License for the specific language governing permissions and
|
|
15
|
+
# limitations under the License.
|
|
16
|
+
# ==============================================================================
|
|
17
|
+
|
|
18
|
+
import warnings
|
|
19
|
+
|
|
20
|
+
import numpy as np
|
|
21
|
+
from scipy import sparse as sp
|
|
22
|
+
from sklearn.neighbors._ball_tree import BallTree
|
|
23
|
+
from sklearn.neighbors._base import VALID_METRICS
|
|
24
|
+
from sklearn.neighbors._base import NeighborsBase as sklearn_NeighborsBase
|
|
25
|
+
from sklearn.neighbors._kd_tree import KDTree
|
|
26
|
+
|
|
27
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
28
|
+
from onedal.utils import _check_array, _num_features, _num_samples
|
|
29
|
+
|
|
30
|
+
from .._utils import PatchingConditionsChain
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
class KNeighborsDispatchingBase:
|
|
34
|
+
def _fit_validation(self, X, y=None):
|
|
35
|
+
if sklearn_check_version("1.2"):
|
|
36
|
+
self._validate_params()
|
|
37
|
+
if sklearn_check_version("1.0"):
|
|
38
|
+
self._check_feature_names(X, reset=True)
|
|
39
|
+
if self.metric_params is not None and "p" in self.metric_params:
|
|
40
|
+
if self.p is not None:
|
|
41
|
+
warnings.warn(
|
|
42
|
+
"Parameter p is found in metric_params. "
|
|
43
|
+
"The corresponding parameter from __init__ "
|
|
44
|
+
"is ignored.",
|
|
45
|
+
SyntaxWarning,
|
|
46
|
+
stacklevel=2,
|
|
47
|
+
)
|
|
48
|
+
self.effective_metric_params_ = self.metric_params.copy()
|
|
49
|
+
effective_p = self.metric_params["p"]
|
|
50
|
+
else:
|
|
51
|
+
self.effective_metric_params_ = {}
|
|
52
|
+
effective_p = self.p
|
|
53
|
+
|
|
54
|
+
self.effective_metric_params_["p"] = effective_p
|
|
55
|
+
self.effective_metric_ = self.metric
|
|
56
|
+
# For minkowski distance, use more efficient methods where available
|
|
57
|
+
if self.metric == "minkowski":
|
|
58
|
+
p = self.effective_metric_params_["p"]
|
|
59
|
+
if p == 1:
|
|
60
|
+
self.effective_metric_ = "manhattan"
|
|
61
|
+
elif p == 2:
|
|
62
|
+
self.effective_metric_ = "euclidean"
|
|
63
|
+
elif p == np.inf:
|
|
64
|
+
self.effective_metric_ = "chebyshev"
|
|
65
|
+
|
|
66
|
+
if not isinstance(X, (KDTree, BallTree, sklearn_NeighborsBase)):
|
|
67
|
+
self._fit_X = _check_array(
|
|
68
|
+
X, dtype=[np.float64, np.float32], accept_sparse=True
|
|
69
|
+
)
|
|
70
|
+
self.n_samples_fit_ = _num_samples(self._fit_X)
|
|
71
|
+
self.n_features_in_ = _num_features(self._fit_X)
|
|
72
|
+
|
|
73
|
+
if self.algorithm == "auto":
|
|
74
|
+
# A tree approach is better for small number of neighbors or small
|
|
75
|
+
# number of features, with KDTree generally faster when available
|
|
76
|
+
is_n_neighbors_valid_for_brute = (
|
|
77
|
+
self.n_neighbors is not None
|
|
78
|
+
and self.n_neighbors >= self._fit_X.shape[0] // 2
|
|
79
|
+
)
|
|
80
|
+
if self._fit_X.shape[1] > 15 or is_n_neighbors_valid_for_brute:
|
|
81
|
+
self._fit_method = "brute"
|
|
82
|
+
else:
|
|
83
|
+
if self.effective_metric_ in VALID_METRICS["kd_tree"]:
|
|
84
|
+
self._fit_method = "kd_tree"
|
|
85
|
+
elif (
|
|
86
|
+
callable(self.effective_metric_)
|
|
87
|
+
or self.effective_metric_ in VALID_METRICS["ball_tree"]
|
|
88
|
+
):
|
|
89
|
+
self._fit_method = "ball_tree"
|
|
90
|
+
else:
|
|
91
|
+
self._fit_method = "brute"
|
|
92
|
+
else:
|
|
93
|
+
self._fit_method = self.algorithm
|
|
94
|
+
|
|
95
|
+
if hasattr(self, "_onedal_estimator"):
|
|
96
|
+
delattr(self, "_onedal_estimator")
|
|
97
|
+
# To cover test case when we pass patched
|
|
98
|
+
# estimator as an input for other estimator
|
|
99
|
+
if isinstance(X, sklearn_NeighborsBase):
|
|
100
|
+
self._fit_X = X._fit_X
|
|
101
|
+
self._tree = X._tree
|
|
102
|
+
self._fit_method = X._fit_method
|
|
103
|
+
self.n_samples_fit_ = X.n_samples_fit_
|
|
104
|
+
self.n_features_in_ = X.n_features_in_
|
|
105
|
+
if hasattr(X, "_onedal_estimator"):
|
|
106
|
+
self.effective_metric_params_.pop("p")
|
|
107
|
+
if self._fit_method == "ball_tree":
|
|
108
|
+
X._tree = BallTree(
|
|
109
|
+
X._fit_X,
|
|
110
|
+
self.leaf_size,
|
|
111
|
+
metric=self.effective_metric_,
|
|
112
|
+
**self.effective_metric_params_,
|
|
113
|
+
)
|
|
114
|
+
elif self._fit_method == "kd_tree":
|
|
115
|
+
X._tree = KDTree(
|
|
116
|
+
X._fit_X,
|
|
117
|
+
self.leaf_size,
|
|
118
|
+
metric=self.effective_metric_,
|
|
119
|
+
**self.effective_metric_params_,
|
|
120
|
+
)
|
|
121
|
+
elif self._fit_method == "brute":
|
|
122
|
+
X._tree = None
|
|
123
|
+
else:
|
|
124
|
+
raise ValueError("algorithm = '%s' not recognized" % self.algorithm)
|
|
125
|
+
|
|
126
|
+
elif isinstance(X, BallTree):
|
|
127
|
+
self._fit_X = X.data
|
|
128
|
+
self._tree = X
|
|
129
|
+
self._fit_method = "ball_tree"
|
|
130
|
+
self.n_samples_fit_ = X.data.shape[0]
|
|
131
|
+
self.n_features_in_ = X.data.shape[1]
|
|
132
|
+
|
|
133
|
+
elif isinstance(X, KDTree):
|
|
134
|
+
self._fit_X = X.data
|
|
135
|
+
self._tree = X
|
|
136
|
+
self._fit_method = "kd_tree"
|
|
137
|
+
self.n_samples_fit_ = X.data.shape[0]
|
|
138
|
+
self.n_features_in_ = X.data.shape[1]
|
|
139
|
+
|
|
140
|
+
def _onedal_supported(self, device, method_name, *data):
|
|
141
|
+
class_name = self.__class__.__name__
|
|
142
|
+
is_classifier = "Classifier" in class_name
|
|
143
|
+
is_regressor = "Regressor" in class_name
|
|
144
|
+
is_unsupervised = not (is_classifier or is_regressor)
|
|
145
|
+
patching_status = PatchingConditionsChain(
|
|
146
|
+
f"sklearn.neighbors.{class_name}.{method_name}"
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
if not patching_status.and_condition(
|
|
150
|
+
not isinstance(data[0], (KDTree, BallTree, sklearn_NeighborsBase)),
|
|
151
|
+
f"Input type {type(data[0])} is not supported.",
|
|
152
|
+
):
|
|
153
|
+
return patching_status
|
|
154
|
+
|
|
155
|
+
if self._fit_method in ["auto", "ball_tree"]:
|
|
156
|
+
condition = (
|
|
157
|
+
self.n_neighbors is not None
|
|
158
|
+
and self.n_neighbors >= self.n_samples_fit_ // 2
|
|
159
|
+
)
|
|
160
|
+
if self.n_features_in_ > 15 or condition:
|
|
161
|
+
result_method = "brute"
|
|
162
|
+
else:
|
|
163
|
+
if self.effective_metric_ in ["euclidean"]:
|
|
164
|
+
result_method = "kd_tree"
|
|
165
|
+
else:
|
|
166
|
+
result_method = "brute"
|
|
167
|
+
else:
|
|
168
|
+
result_method = self._fit_method
|
|
169
|
+
|
|
170
|
+
p_less_than_one = (
|
|
171
|
+
"p" in self.effective_metric_params_.keys()
|
|
172
|
+
and self.effective_metric_params_["p"] < 1
|
|
173
|
+
)
|
|
174
|
+
if not patching_status.and_condition(
|
|
175
|
+
not p_less_than_one, '"p" metric parameter is less than 1'
|
|
176
|
+
):
|
|
177
|
+
return patching_status
|
|
178
|
+
|
|
179
|
+
if not patching_status.and_condition(
|
|
180
|
+
not sp.isspmatrix(data[0]), "Sparse input is not supported."
|
|
181
|
+
):
|
|
182
|
+
return patching_status
|
|
183
|
+
|
|
184
|
+
if not is_unsupervised:
|
|
185
|
+
is_valid_weights = self.weights in ["uniform", "distance"]
|
|
186
|
+
if is_classifier:
|
|
187
|
+
class_count = 1
|
|
188
|
+
is_single_output = False
|
|
189
|
+
y = None
|
|
190
|
+
# To check multioutput, might be overhead
|
|
191
|
+
if len(data) > 1:
|
|
192
|
+
y = np.asarray(data[1])
|
|
193
|
+
if is_classifier:
|
|
194
|
+
class_count = len(np.unique(y))
|
|
195
|
+
if hasattr(self, "_onedal_estimator"):
|
|
196
|
+
y = self._onedal_estimator._y
|
|
197
|
+
if y is not None and hasattr(y, "ndim") and hasattr(y, "shape"):
|
|
198
|
+
is_single_output = y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1
|
|
199
|
+
|
|
200
|
+
# TODO: add native support for these metric names
|
|
201
|
+
metrics_map = {"manhattan": ["l1", "cityblock"], "euclidean": ["l2"]}
|
|
202
|
+
for origin, aliases in metrics_map.items():
|
|
203
|
+
if self.effective_metric_ in aliases:
|
|
204
|
+
self.effective_metric_ = origin
|
|
205
|
+
break
|
|
206
|
+
if self.effective_metric_ == "manhattan":
|
|
207
|
+
self.effective_metric_params_["p"] = 1
|
|
208
|
+
elif self.effective_metric_ == "euclidean":
|
|
209
|
+
self.effective_metric_params_["p"] = 2
|
|
210
|
+
|
|
211
|
+
onedal_brute_metrics = [
|
|
212
|
+
"manhattan",
|
|
213
|
+
"minkowski",
|
|
214
|
+
"euclidean",
|
|
215
|
+
"chebyshev",
|
|
216
|
+
"cosine",
|
|
217
|
+
]
|
|
218
|
+
onedal_kdtree_metrics = ["euclidean"]
|
|
219
|
+
is_valid_for_brute = (
|
|
220
|
+
result_method == "brute" and self.effective_metric_ in onedal_brute_metrics
|
|
221
|
+
)
|
|
222
|
+
is_valid_for_kd_tree = (
|
|
223
|
+
result_method == "kd_tree" and self.effective_metric_ in onedal_kdtree_metrics
|
|
224
|
+
)
|
|
225
|
+
if result_method == "kd_tree":
|
|
226
|
+
if not patching_status.and_condition(
|
|
227
|
+
device != "gpu", '"kd_tree" method is not supported on GPU.'
|
|
228
|
+
):
|
|
229
|
+
return patching_status
|
|
230
|
+
|
|
231
|
+
if not patching_status.and_condition(
|
|
232
|
+
is_valid_for_kd_tree or is_valid_for_brute,
|
|
233
|
+
f"{result_method} with {self.effective_metric_} metric is not supported.",
|
|
234
|
+
):
|
|
235
|
+
return patching_status
|
|
236
|
+
if not is_unsupervised:
|
|
237
|
+
if not patching_status.and_conditions(
|
|
238
|
+
[
|
|
239
|
+
(is_single_output, "Only single output is supported."),
|
|
240
|
+
(
|
|
241
|
+
is_valid_weights,
|
|
242
|
+
f'"{type(self.weights)}" weights type is not supported.',
|
|
243
|
+
),
|
|
244
|
+
]
|
|
245
|
+
):
|
|
246
|
+
return patching_status
|
|
247
|
+
if method_name == "fit":
|
|
248
|
+
if is_classifier:
|
|
249
|
+
patching_status.and_condition(
|
|
250
|
+
class_count >= 2, "One-class case is not supported."
|
|
251
|
+
)
|
|
252
|
+
return patching_status
|
|
253
|
+
if method_name in ["predict", "predict_proba", "kneighbors"]:
|
|
254
|
+
patching_status.and_condition(
|
|
255
|
+
hasattr(self, "_onedal_estimator"), "oneDAL model was not trained."
|
|
256
|
+
)
|
|
257
|
+
return patching_status
|
|
258
|
+
raise RuntimeError(f"Unknown method {method_name} in {class_name}")
|
|
259
|
+
|
|
260
|
+
def _onedal_gpu_supported(self, method_name, *data):
|
|
261
|
+
return self._onedal_supported("gpu", method_name, *data)
|
|
262
|
+
|
|
263
|
+
def _onedal_cpu_supported(self, method_name, *data):
|
|
264
|
+
return self._onedal_supported("cpu", method_name, *data)
|