scikit-learn-intelex 2024.0.1__py312-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (90) hide show
  1. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/__init__.py +61 -0
  2. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/__main__.py +59 -0
  3. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_config.py +110 -0
  4. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_device_offload.py +223 -0
  5. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_utils.py +95 -0
  6. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
  7. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +17 -0
  8. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/__init__.py +21 -0
  9. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +187 -0
  10. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +18 -0
  11. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +37 -0
  12. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +31 -0
  13. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py +20 -0
  14. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +18 -0
  15. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +28 -0
  16. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/dispatcher.py +329 -0
  17. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +424 -0
  18. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +30 -0
  19. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1947 -0
  20. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +118 -0
  21. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/glob/__main__.py +73 -0
  22. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py +88 -0
  23. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +30 -0
  24. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +18 -0
  25. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +373 -0
  26. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +18 -0
  27. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +18 -0
  28. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +77 -0
  29. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +29 -0
  30. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/__init__.py +20 -0
  31. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +18 -0
  32. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +27 -0
  33. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/__init__.py +24 -0
  34. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py +18 -0
  35. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/ranking.py +18 -0
  36. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +40 -0
  37. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py +22 -0
  38. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/split.py +18 -0
  39. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +35 -0
  40. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py +28 -0
  41. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/common.py +264 -0
  42. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +331 -0
  43. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +307 -0
  44. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +220 -0
  45. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/lof.py +437 -0
  46. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +85 -0
  47. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/__init__.py +18 -0
  48. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +20 -0
  49. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +84 -0
  50. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +370 -0
  51. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +20 -0
  52. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +376 -0
  53. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +38 -0
  54. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +24 -0
  55. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +19 -0
  56. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  57. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +30 -0
  58. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +50 -0
  59. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +21 -0
  60. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +19 -0
  61. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +21 -0
  62. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +19 -0
  63. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +79 -0
  64. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +19 -0
  65. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +21 -0
  66. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +19 -0
  67. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +25 -0
  68. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/__init__.py +30 -0
  69. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/_common.py +188 -0
  70. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/nusvc.py +272 -0
  71. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/nusvr.py +163 -0
  72. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/svc.py +301 -0
  73. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/svr.py +164 -0
  74. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +102 -0
  75. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +170 -0
  76. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_config.py +39 -0
  77. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +225 -0
  78. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +210 -0
  79. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +50 -0
  80. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +122 -0
  81. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +428 -0
  82. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +118 -0
  83. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/__init__.py +19 -0
  84. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/parallel.py +59 -0
  85. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/validation.py +18 -0
  86. scikit_learn_intelex-2024.0.1.dist-info/LICENSE.txt +202 -0
  87. scikit_learn_intelex-2024.0.1.dist-info/METADATA +230 -0
  88. scikit_learn_intelex-2024.0.1.dist-info/RECORD +90 -0
  89. scikit_learn_intelex-2024.0.1.dist-info/WHEEL +5 -0
  90. scikit_learn_intelex-2024.0.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,85 @@
1
+ #!/usr/bin/env python
2
+ # ===============================================================================
3
+ # Copyright 2021 Intel Corporation
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ # ===============================================================================
17
+
18
+ import numpy as np
19
+ import pytest
20
+ from numpy.testing import assert_allclose
21
+
22
+ from onedal.tests.utils._dataframes_support import (
23
+ _as_numpy,
24
+ _convert_to_dataframe,
25
+ get_dataframes_and_queues,
26
+ )
27
+
28
+
29
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
30
+ def test_sklearnex_import_knn_classifier(dataframe, queue):
31
+ from sklearnex.neighbors import KNeighborsClassifier
32
+
33
+ X = _convert_to_dataframe([[0], [1], [2], [3]], sycl_queue=queue, target_df=dataframe)
34
+ y = _convert_to_dataframe([0, 0, 1, 1], sycl_queue=queue, target_df=dataframe)
35
+ neigh = KNeighborsClassifier(n_neighbors=3).fit(X, y)
36
+ y_test = _convert_to_dataframe([[1.1]], sycl_queue=queue, target_df=dataframe)
37
+ pred = _as_numpy(neigh.predict(y_test))
38
+ assert "sklearnex" in neigh.__module__
39
+ assert_allclose(pred, [0])
40
+
41
+
42
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
43
+ def test_sklearnex_import_knn_regression(dataframe, queue):
44
+ from sklearnex.neighbors import KNeighborsRegressor
45
+
46
+ X = _convert_to_dataframe([[0], [1], [2], [3]], sycl_queue=queue, target_df=dataframe)
47
+ y = _convert_to_dataframe([0, 0, 1, 1], sycl_queue=queue, target_df=dataframe)
48
+ neigh = KNeighborsRegressor(n_neighbors=2).fit(X, y)
49
+ y_test = _convert_to_dataframe([[1.5]], sycl_queue=queue, target_df=dataframe)
50
+ pred = _as_numpy(neigh.predict(y_test))
51
+ assert "sklearnex" in neigh.__module__
52
+ assert_allclose(pred, [0.5])
53
+
54
+
55
+ # TODO:
56
+ # investigate failure for `dpnp.ndarrays` and `dpctl.tensors`.
57
+ @pytest.mark.parametrize(
58
+ "dataframe,queue", get_dataframes_and_queues(dataframe_filter_="numpy")
59
+ )
60
+ def test_sklearnex_import_nn(dataframe, queue):
61
+ from sklearnex.neighbors import NearestNeighbors
62
+
63
+ X = [[0, 0, 2], [1, 0, 0], [0, 0, 1]]
64
+ X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
65
+ test = _convert_to_dataframe([[0, 0, 1.3]], sycl_queue=queue, target_df=dataframe)
66
+ neigh = NearestNeighbors(n_neighbors=2).fit(X)
67
+ result = neigh.kneighbors(test, 2, return_distance=False)
68
+ result = _as_numpy(result)
69
+ assert "sklearnex" in neigh.__module__
70
+ assert_allclose(result, [[2, 0]])
71
+
72
+
73
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
74
+ def test_sklearnex_import_lof(dataframe, queue):
75
+ from sklearnex.neighbors import LocalOutlierFactor
76
+
77
+ X = [[7, 7, 7], [1, 0, 0], [0, 0, 1], [0, 0, 1]]
78
+ X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
79
+ lof = LocalOutlierFactor(n_neighbors=2)
80
+ result = lof.fit_predict(X)
81
+ result = _as_numpy(result)
82
+ assert hasattr(lof, "_knn")
83
+ assert "sklearnex" in lof.__module__
84
+ assert "sklearnex" in lof._knn.__module__
85
+ assert_allclose(result, [-1, 1, 1, 1])
@@ -0,0 +1,18 @@
1
+ #!/usr/bin/env python
2
+ # ==============================================================================
3
+ # Copyright 2023 Intel Corporation
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ # ==============================================================================
17
+
18
+ __all__ = ["cluster", "decomposition"]
@@ -0,0 +1,20 @@
1
+ #!/usr/bin/env python
2
+ # ==============================================================================
3
+ # Copyright 2023 Intel Corporation
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ # ==============================================================================
17
+
18
+ from .k_means import KMeans
19
+
20
+ __all__ = ["KMeans"]
@@ -0,0 +1,84 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from abc import ABC
18
+
19
+
20
+ def get_cluster_centers(self):
21
+ return self._cluster_centers_
22
+
23
+
24
+ def set_cluster_centers(self, value):
25
+ self._cluster_centers_ = value
26
+ if hasattr(self, "_onedal_estimator"):
27
+ self._onedal_estimator.cluster_centers_ = value
28
+
29
+
30
+ def get_labels(self):
31
+ return self._labels_
32
+
33
+
34
+ def set_labels(self, value):
35
+ self._labels_ = value
36
+ if hasattr(self, "_onedal_estimator"):
37
+ self._onedal_estimator.labels_ = value
38
+
39
+
40
+ def get_inertia(self):
41
+ return self._inertia_
42
+
43
+
44
+ def set_inertia(self, value):
45
+ self._inertia_ = value
46
+ if hasattr(self, "_onedal_estimator"):
47
+ self._onedal_estimator.inertia_ = value
48
+
49
+
50
+ def get_n_iter(self):
51
+ return self._n_iter_
52
+
53
+
54
+ def set_n_iter(self, value):
55
+ self._n_iter_ = value
56
+ if hasattr(self, "_onedal_estimator"):
57
+ self._onedal_estimator.n_iter_ = value
58
+
59
+
60
+ class BaseKMeans(ABC):
61
+ def _save_attributes(self):
62
+ assert hasattr(self, "_onedal_estimator")
63
+ self.n_features_in_ = self._onedal_estimator.n_features_in_
64
+ self.fit_status_ = 0
65
+ self._tol = self._onedal_estimator._tol
66
+ self._n_init = self._onedal_estimator._n_init
67
+ self._n_iter_ = self._onedal_estimator.n_iter_
68
+ self._labels_ = self._onedal_estimator.labels_
69
+ self._inertia_ = self._onedal_estimator.inertia_
70
+ self._algorithm = self._onedal_estimator.algorithm
71
+ self._cluster_centers_ = self._onedal_estimator.cluster_centers_
72
+ self._sparse = False
73
+
74
+ self.n_iter_ = property(get_n_iter, set_n_iter)
75
+ self.labels_ = property(get_labels, set_labels)
76
+ self.inertia_ = property(get_labels, set_inertia)
77
+ self.cluster_centers_ = property(get_cluster_centers, set_cluster_centers)
78
+
79
+ self._is_in_fit = True
80
+ self.n_iter_ = self._n_iter_
81
+ self.labels_ = self._labels_
82
+ self.inertia_ = self._inertia_
83
+ self.cluster_centers_ = self._cluster_centers_
84
+ self._is_in_fit = False
@@ -0,0 +1,370 @@
1
+ #!/usr/bin/env python
2
+ # ==============================================================================
3
+ # Copyright 2023 Intel Corporation
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ # ==============================================================================
17
+
18
+ import logging
19
+
20
+ from daal4py.sklearn._utils import daal_check_version
21
+
22
+ if daal_check_version((2023, "P", 200)):
23
+ import numpy as np
24
+ from scipy.sparse import issparse
25
+ from sklearn.cluster import KMeans as sklearn_KMeans
26
+ from sklearn.utils._openmp_helpers import _openmp_effective_n_threads
27
+ from sklearn.utils.validation import (
28
+ _deprecate_positional_args,
29
+ _num_samples,
30
+ check_is_fitted,
31
+ )
32
+
33
+ from daal4py.sklearn._utils import sklearn_check_version
34
+ from onedal.cluster import KMeans as onedal_KMeans
35
+
36
+ from ..._device_offload import dispatch, wrap_output_data
37
+ from ..._utils import PatchingConditionsChain
38
+ from ._common import BaseKMeans
39
+
40
+ class KMeans(sklearn_KMeans, BaseKMeans):
41
+ __doc__ = sklearn_KMeans.__doc__
42
+ n_iter_, inertia_ = None, None
43
+ labels_, cluster_centers_ = None, None
44
+
45
+ if sklearn_check_version("1.2"):
46
+ _parameter_constraints: dict = {**sklearn_KMeans._parameter_constraints}
47
+
48
+ @_deprecate_positional_args
49
+ def __init__(
50
+ self,
51
+ n_clusters=8,
52
+ *,
53
+ init="k-means++",
54
+ n_init="auto" if sklearn_check_version("1.4") else "warn",
55
+ max_iter=300,
56
+ tol=1e-4,
57
+ verbose=0,
58
+ random_state=None,
59
+ copy_x=True,
60
+ algorithm="lloyd",
61
+ ):
62
+ super().__init__(
63
+ n_clusters=n_clusters,
64
+ init=init,
65
+ max_iter=max_iter,
66
+ tol=tol,
67
+ n_init=n_init,
68
+ verbose=verbose,
69
+ random_state=random_state,
70
+ copy_x=copy_x,
71
+ algorithm=algorithm,
72
+ )
73
+
74
+ elif sklearn_check_version("1.0"):
75
+
76
+ @_deprecate_positional_args
77
+ def __init__(
78
+ self,
79
+ n_clusters=8,
80
+ *,
81
+ init="k-means++",
82
+ n_init=10,
83
+ max_iter=300,
84
+ tol=1e-4,
85
+ verbose=0,
86
+ random_state=None,
87
+ copy_x=True,
88
+ algorithm="auto",
89
+ ):
90
+ super().__init__(
91
+ n_clusters=n_clusters,
92
+ init=init,
93
+ max_iter=max_iter,
94
+ tol=tol,
95
+ n_init=n_init,
96
+ verbose=verbose,
97
+ random_state=random_state,
98
+ copy_x=copy_x,
99
+ algorithm=algorithm,
100
+ )
101
+
102
+ else:
103
+
104
+ @_deprecate_positional_args
105
+ def __init__(
106
+ self,
107
+ n_clusters=8,
108
+ *,
109
+ init="k-means++",
110
+ n_init=10,
111
+ max_iter=300,
112
+ tol=1e-4,
113
+ precompute_distances="deprecated",
114
+ verbose=0,
115
+ random_state=None,
116
+ copy_x=True,
117
+ n_jobs="deprecated",
118
+ algorithm="auto",
119
+ ):
120
+ super().__init__(
121
+ n_clusters=n_clusters,
122
+ init=init,
123
+ max_iter=max_iter,
124
+ tol=tol,
125
+ precompute_distances=precompute_distances,
126
+ n_init=n_init,
127
+ verbose=verbose,
128
+ random_state=random_state,
129
+ copy_x=copy_x,
130
+ n_jobs=n_jobs,
131
+ algorithm=algorithm,
132
+ )
133
+
134
+ def _initialize_onedal_estimator(self):
135
+ onedal_params = {
136
+ "n_clusters": self.n_clusters,
137
+ "init": self.init,
138
+ "max_iter": self.max_iter,
139
+ "tol": self.tol,
140
+ "n_init": self.n_init,
141
+ "verbose": self.verbose,
142
+ "random_state": self.random_state,
143
+ }
144
+
145
+ self._onedal_estimator = onedal_KMeans(**onedal_params)
146
+
147
+ def _onedal_fit_supported(self, method_name, X, y=None, sample_weight=None):
148
+ assert method_name == "fit"
149
+
150
+ class_name = self.__class__.__name__
151
+ patching_status = PatchingConditionsChain(f"sklearn.cluster.{class_name}.fit")
152
+
153
+ sample_count = _num_samples(X)
154
+ self._algorithm = self.algorithm
155
+ supported_algs = ["auto", "full", "lloyd"]
156
+ correct_count = self.n_clusters < sample_count
157
+
158
+ patching_status.and_conditions(
159
+ [
160
+ (
161
+ self.algorithm in supported_algs,
162
+ "Only lloyd algorithm is supported.",
163
+ ),
164
+ (not issparse(self.init), "Sparse init values are not supported"),
165
+ (correct_count, "n_clusters is smaller than number of samples"),
166
+ (sample_weight is None, "Sample weight is not None."),
167
+ (not issparse(X), "Sparse input is not supported."),
168
+ ]
169
+ )
170
+
171
+ return patching_status
172
+
173
+ def fit(self, X, y=None, sample_weight=None):
174
+ """Compute k-means clustering.
175
+
176
+ Parameters
177
+ ----------
178
+ X : array-like or sparse matrix, shape=(n_samples, n_features)
179
+ Training instances to cluster. It must be noted that the data
180
+ will be converted to C ordering, which will cause a memory
181
+ copy if the given data is not C-contiguous.
182
+
183
+ y : Ignored
184
+ not used, present here for API consistency by convention.
185
+
186
+ sample_weight : array-like, shape (n_samples,), optional
187
+ The weights for each observation in X. If None, all observations
188
+ are assigned equal weight (default: None)
189
+
190
+ """
191
+
192
+ if sklearn_check_version("1.0"):
193
+ self._check_feature_names(X, reset=True)
194
+ if sklearn_check_version("1.2"):
195
+ self._validate_params()
196
+
197
+ dispatch(
198
+ self,
199
+ "fit",
200
+ {
201
+ "onedal": self.__class__._onedal_fit,
202
+ "sklearn": sklearn_KMeans.fit,
203
+ },
204
+ X,
205
+ y,
206
+ sample_weight,
207
+ )
208
+
209
+ return self
210
+
211
+ def _onedal_fit(self, X, _, sample_weight, queue=None):
212
+ assert sample_weight is None
213
+
214
+ X = self._validate_data(
215
+ X,
216
+ accept_sparse=False,
217
+ dtype=[np.float64, np.float32],
218
+ )
219
+
220
+ if sklearn_check_version("1.2"):
221
+ self._check_params_vs_input(X)
222
+ else:
223
+ self._check_params(X)
224
+
225
+ self._n_features_out = self.n_clusters
226
+ self._n_threads = _openmp_effective_n_threads()
227
+
228
+ self._initialize_onedal_estimator()
229
+ self._onedal_estimator.fit(X, queue=queue)
230
+
231
+ self._save_attributes()
232
+
233
+ def _onedal_predict_supported(self, method_name, X):
234
+ assert method_name == "predict"
235
+
236
+ class_name = self.__class__.__name__
237
+ patching_status = PatchingConditionsChain(
238
+ f"sklearn.cluster.{class_name}.predict"
239
+ )
240
+
241
+ supported_algs = ["auto", "full", "lloyd"]
242
+ dense_centers = not issparse(self.cluster_centers_)
243
+
244
+ patching_status.and_conditions(
245
+ [
246
+ (
247
+ self.algorithm in supported_algs,
248
+ "Only lloyd algorithm is supported.",
249
+ ),
250
+ (dense_centers, "Sparse clusters is not supported."),
251
+ (not issparse(X), "Sparse input is not supported."),
252
+ ]
253
+ )
254
+
255
+ return patching_status
256
+
257
+ @wrap_output_data
258
+ def predict(self, X):
259
+ """Compute k-means clustering.
260
+
261
+ Parameters
262
+ ----------
263
+ X : array-like or sparse matrix, shape=(n_samples, n_features)
264
+ Training instances to cluster. It must be noted that the data
265
+ will be converted to C ordering, which will cause a memory
266
+ copy if the given data is not C-contiguous.
267
+
268
+ y : Ignored
269
+ not used, present here for API consistency by convention.
270
+
271
+ sample_weight : array-like, shape (n_samples,), optional
272
+ The weights for each observation in X. If None, all observations
273
+ are assigned equal weight (default: None)
274
+
275
+ """
276
+
277
+ if sklearn_check_version("1.0"):
278
+ self._check_feature_names(X, reset=True)
279
+ if sklearn_check_version("1.2"):
280
+ self._validate_params()
281
+
282
+ return dispatch(
283
+ self,
284
+ "predict",
285
+ {
286
+ "onedal": self.__class__._onedal_predict,
287
+ "sklearn": sklearn_KMeans.predict,
288
+ },
289
+ X,
290
+ )
291
+
292
+ def _onedal_predict(self, X, queue=None):
293
+ X = self._validate_data(
294
+ X, accept_sparse=False, reset=False, dtype=[np.float64, np.float32]
295
+ )
296
+ if not hasattr(self, "_onedal_estimator"):
297
+ self._initialize_onedal_estimator()
298
+ self._onedal_estimator.cluster_centers_ = self.cluster_centers_
299
+
300
+ return self._onedal_estimator.predict(X, queue=queue)
301
+
302
+ def _onedal_supported(self, method_name, *data):
303
+ if method_name == "fit":
304
+ return self._onedal_fit_supported(method_name, *data)
305
+ if method_name == "predict":
306
+ return self._onedal_predict_supported(method_name, *data)
307
+ raise RuntimeError(
308
+ f"Unknown method {method_name} in {self.__class__.__name__}"
309
+ )
310
+
311
+ def _onedal_gpu_supported(self, method_name, *data):
312
+ return self._onedal_supported(method_name, *data)
313
+
314
+ def _onedal_cpu_supported(self, method_name, *data):
315
+ return self._onedal_supported(method_name, *data)
316
+
317
+ @wrap_output_data
318
+ def fit_transform(self, X, y=None, sample_weight=None):
319
+ """Compute clustering and transform X to cluster-distance space.
320
+
321
+ Equivalent to fit(X).transform(X), but more efficiently implemented.
322
+
323
+ Parameters
324
+ ----------
325
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
326
+ New data to transform.
327
+
328
+ y : Ignored
329
+ Not used, present here for API consistency by convention.
330
+
331
+ sample_weight : array-like of shape (n_samples,), default=None
332
+ The weights for each observation in X. If None, all observations
333
+ are assigned equal weight.
334
+
335
+ Returns
336
+ -------
337
+ X_new : ndarray of shape (n_samples, n_clusters)
338
+ X transformed in the new space.
339
+ """
340
+ return self.fit(X, sample_weight=sample_weight)._transform(X)
341
+
342
+ @wrap_output_data
343
+ def transform(self, X):
344
+ """Transform X to a cluster-distance space.
345
+
346
+ In the new space, each dimension is the distance to the cluster
347
+ centers. Note that even if X is sparse, the array returned by
348
+ `transform` will typically be dense.
349
+
350
+ Parameters
351
+ ----------
352
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
353
+ New data to transform.
354
+
355
+ Returns
356
+ -------
357
+ X_new : ndarray of shape (n_samples, n_clusters)
358
+ X transformed in the new space.
359
+ """
360
+ check_is_fitted(self)
361
+
362
+ X = self._check_test_data(X)
363
+ return self._transform(X)
364
+
365
+ else:
366
+ from daal4py.sklearn.cluster import KMeans
367
+
368
+ logging.warning(
369
+ "Preview KMeans requires oneDAL version >= 2023.2 " "but it was not found"
370
+ )
@@ -0,0 +1,20 @@
1
+ #!/usr/bin/env python
2
+ # ===============================================================================
3
+ # Copyright 2023 Intel Corporation
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ # ===============================================================================
17
+
18
+ from .pca import PCA
19
+
20
+ __all__ = ["PCA"]