scikit-learn-intelex 2024.0.1__py310-none-win_amd64.whl → 2025.1.0__py310-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/_daal4py.cp310-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/doc/third-party-programs.txt +424 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mb/model_builders.py +377 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp310-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +248 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn}/cluster/__init__.py +3 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +597 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/__init__.py +4 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +524 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1397 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn}/linear_model/__init__.py +29 -30
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +272 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +325 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/manifold}/__init__.py +4 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +405 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +236 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +4 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/_models_info.py +13 -22
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/test_patching.py +10 -42
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/utils/_launch_algorithms.py +4 -5
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +503 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +139 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +74 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +734 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/linear_model → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils}/__init__.py +5 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +75 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +693 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/__init__.py +83 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_config.py +54 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_device_offload.py +222 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp310-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp310-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +160 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +110 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +564 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +115 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_base.py +38 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_policy.py +59 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_spmd_policy.py +30 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +125 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/tests/test_policy.py +76 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +125 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +146 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +122 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +154 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +126 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +414 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition}/__init__.py +3 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +204 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +186 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +198 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +727 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +258 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +329 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +249 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +250 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +767 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +25 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +153 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/svm.py +556 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +351 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +176 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/test_common.py +57 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +162 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +102 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/__init__.py +49 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +81 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/_dpep_helpers.py +56 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/validation.py +440 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/__init__.py +12 -7
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/_config.py +22 -16
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +126 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/_utils.py +42 -5
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +230 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +1 -2
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +18 -8
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +395 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -7
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +159 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/conftest.py +82 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +398 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -1
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +425 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +26 -6
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +242 -28
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +262 -180
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +39 -22
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +13 -1
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +482 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +425 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +341 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +413 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +24 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +167 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +134 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -1
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +21 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +5 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +3 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +5 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +1 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +236 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +54 -8
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +51 -151
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +46 -146
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +53 -95
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +16 -19
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/decomposition → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview}/__init__.py +1 -3
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/covariance}/__init__.py +19 -20
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +138 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +233 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/__init__.py +19 -18
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/ridge.py +424 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +1 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +21 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition}/__init__.py +3 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +4 -12
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +21 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_config.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +14 -18
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -1
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +339 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +172 -73
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +73 -66
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +171 -73
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +65 -62
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +12 -21
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +390 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +123 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +379 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +276 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +108 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +6 -8
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +385 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +321 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +44 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +371 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +82 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -1
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/METADATA +231 -230
- scikit_learn_intelex-2025.1.0.dist-info/RECORD +257 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/WHEEL +1 -1
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_device_offload.py +0 -223
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -18
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -31
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -18
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -28
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -373
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -18
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +0 -77
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -29
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/lof.py +0 -437
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -84
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -370
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +0 -376
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -188
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -225
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -210
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
- scikit_learn_intelex-2024.0.1.dist-info/RECORD +0 -90
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,288 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_convert_to_dataframe,
|
|
23
|
+
get_dataframes_and_queues,
|
|
24
|
+
)
|
|
25
|
+
from sklearnex.tests.utils.spmd import (
|
|
26
|
+
_assert_unordered_allclose,
|
|
27
|
+
_generate_classification_data,
|
|
28
|
+
_generate_regression_data,
|
|
29
|
+
_get_local_tensor,
|
|
30
|
+
_mpi_libs_and_gpu_available,
|
|
31
|
+
_spmd_assert_allclose,
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
@pytest.mark.skipif(
|
|
36
|
+
not _mpi_libs_and_gpu_available,
|
|
37
|
+
reason="GPU device and MPI libs required for test",
|
|
38
|
+
)
|
|
39
|
+
@pytest.mark.parametrize(
|
|
40
|
+
"dataframe,queue",
|
|
41
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
42
|
+
)
|
|
43
|
+
@pytest.mark.mpi
|
|
44
|
+
def test_knncls_spmd_gold(dataframe, queue):
|
|
45
|
+
# Import spmd and batch algo
|
|
46
|
+
from sklearnex.neighbors import KNeighborsClassifier as KNeighborsClassifier_Batch
|
|
47
|
+
from sklearnex.spmd.neighbors import KNeighborsClassifier as KNeighborsClassifier_SPMD
|
|
48
|
+
|
|
49
|
+
# Create gold data and convert to dataframe
|
|
50
|
+
X_train = np.array(
|
|
51
|
+
[
|
|
52
|
+
[0.0, 0.0],
|
|
53
|
+
[0.0, 1.0],
|
|
54
|
+
[1.0, 0.0],
|
|
55
|
+
[0.0, 2.0],
|
|
56
|
+
[2.0, 0.0],
|
|
57
|
+
[0.9, 1.0],
|
|
58
|
+
[0.0, -1.0],
|
|
59
|
+
[-1.0, 0.0],
|
|
60
|
+
[-1.0, -1.0],
|
|
61
|
+
]
|
|
62
|
+
)
|
|
63
|
+
# TODO: handle situations where not all classes are present on all ranks?
|
|
64
|
+
y_train = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0])
|
|
65
|
+
X_test = np.array(
|
|
66
|
+
[
|
|
67
|
+
[1.0, -0.5],
|
|
68
|
+
[-5.0, 1.0],
|
|
69
|
+
[0.0, 1.0],
|
|
70
|
+
[10.0, -10.0],
|
|
71
|
+
]
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
75
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
76
|
+
)
|
|
77
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
78
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
79
|
+
)
|
|
80
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
81
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
# Ensure predictions of batch algo match spmd
|
|
85
|
+
spmd_model = KNeighborsClassifier_SPMD(n_neighbors=1, algorithm="brute").fit(
|
|
86
|
+
local_dpt_X_train, local_dpt_y_train
|
|
87
|
+
)
|
|
88
|
+
batch_model = KNeighborsClassifier_Batch(n_neighbors=1, algorithm="brute").fit(
|
|
89
|
+
X_train, y_train
|
|
90
|
+
)
|
|
91
|
+
spmd_dists, spmd_indcs = spmd_model.kneighbors(local_dpt_X_test)
|
|
92
|
+
batch_dists, batch_indcs = batch_model.kneighbors(X_test)
|
|
93
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
94
|
+
batch_result = batch_model.predict(X_test)
|
|
95
|
+
|
|
96
|
+
_assert_unordered_allclose(spmd_indcs, batch_indcs, localize=True)
|
|
97
|
+
_assert_unordered_allclose(spmd_dists, batch_dists, localize=True)
|
|
98
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
@pytest.mark.skipif(
|
|
102
|
+
not _mpi_libs_and_gpu_available,
|
|
103
|
+
reason="GPU device and MPI libs required for test",
|
|
104
|
+
)
|
|
105
|
+
@pytest.mark.parametrize("n_samples", [200, 10000])
|
|
106
|
+
@pytest.mark.parametrize("n_features_and_classes", [(5, 2), (25, 2), (25, 10)])
|
|
107
|
+
@pytest.mark.parametrize("n_neighbors", [1, 5, 20])
|
|
108
|
+
@pytest.mark.parametrize("weights", ["uniform", "distance"])
|
|
109
|
+
@pytest.mark.parametrize(
|
|
110
|
+
"dataframe,queue",
|
|
111
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
112
|
+
)
|
|
113
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
114
|
+
@pytest.mark.mpi
|
|
115
|
+
def test_knncls_spmd_synthetic(
|
|
116
|
+
n_samples,
|
|
117
|
+
n_features_and_classes,
|
|
118
|
+
n_neighbors,
|
|
119
|
+
weights,
|
|
120
|
+
dataframe,
|
|
121
|
+
queue,
|
|
122
|
+
dtype,
|
|
123
|
+
metric="euclidean",
|
|
124
|
+
):
|
|
125
|
+
n_features, n_classes = n_features_and_classes
|
|
126
|
+
# Import spmd and batch algo
|
|
127
|
+
from sklearnex.neighbors import KNeighborsClassifier as KNeighborsClassifier_Batch
|
|
128
|
+
from sklearnex.spmd.neighbors import KNeighborsClassifier as KNeighborsClassifier_SPMD
|
|
129
|
+
|
|
130
|
+
# Generate data and convert to dataframe
|
|
131
|
+
X_train, X_test, y_train, _ = _generate_classification_data(
|
|
132
|
+
n_samples, n_features, n_classes, dtype=dtype
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
136
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
137
|
+
)
|
|
138
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
139
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
140
|
+
)
|
|
141
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
142
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
# Ensure predictions of batch algo match spmd
|
|
146
|
+
spmd_model = KNeighborsClassifier_SPMD(
|
|
147
|
+
n_neighbors=n_neighbors, weights=weights, metric=metric, algorithm="brute"
|
|
148
|
+
).fit(local_dpt_X_train, local_dpt_y_train)
|
|
149
|
+
batch_model = KNeighborsClassifier_Batch(
|
|
150
|
+
n_neighbors=n_neighbors, weights=weights, metric=metric, algorithm="brute"
|
|
151
|
+
).fit(X_train, y_train)
|
|
152
|
+
spmd_dists, spmd_indcs = spmd_model.kneighbors(local_dpt_X_test)
|
|
153
|
+
batch_dists, batch_indcs = batch_model.kneighbors(X_test)
|
|
154
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
155
|
+
batch_result = batch_model.predict(X_test)
|
|
156
|
+
|
|
157
|
+
tol = 1e-4
|
|
158
|
+
if dtype == np.float64:
|
|
159
|
+
_assert_unordered_allclose(spmd_indcs, batch_indcs, localize=True)
|
|
160
|
+
_assert_unordered_allclose(
|
|
161
|
+
spmd_dists, batch_dists, localize=True, rtol=tol, atol=tol
|
|
162
|
+
)
|
|
163
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
@pytest.mark.skipif(
|
|
167
|
+
not _mpi_libs_and_gpu_available,
|
|
168
|
+
reason="GPU device and MPI libs required for test",
|
|
169
|
+
)
|
|
170
|
+
@pytest.mark.parametrize(
|
|
171
|
+
"dataframe,queue",
|
|
172
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
173
|
+
)
|
|
174
|
+
@pytest.mark.mpi
|
|
175
|
+
def test_knnreg_spmd_gold(dataframe, queue):
|
|
176
|
+
# Import spmd and batch algo
|
|
177
|
+
from sklearnex.neighbors import KNeighborsRegressor as KNeighborsRegressor_Batch
|
|
178
|
+
from sklearnex.spmd.neighbors import KNeighborsRegressor as KNeighborsRegressor_SPMD
|
|
179
|
+
|
|
180
|
+
# Create gold data and convert to dataframe
|
|
181
|
+
X_train = np.array(
|
|
182
|
+
[
|
|
183
|
+
[0.0, 0.0],
|
|
184
|
+
[0.0, 1.0],
|
|
185
|
+
[1.0, 0.0],
|
|
186
|
+
[0.0, 2.0],
|
|
187
|
+
[2.0, 0.0],
|
|
188
|
+
[1.0, 1.0],
|
|
189
|
+
[0.0, -1.0],
|
|
190
|
+
[-1.0, 0.0],
|
|
191
|
+
[-1.0, -1.0],
|
|
192
|
+
]
|
|
193
|
+
)
|
|
194
|
+
y_train = np.array([3.0, 5.0, 4.0, 7.0, 5.0, 6.0, 1.0, 2.0, 0.0])
|
|
195
|
+
X_test = np.array(
|
|
196
|
+
[
|
|
197
|
+
[1.0, -0.5],
|
|
198
|
+
[-5.0, 1.0],
|
|
199
|
+
[0.0, 1.0],
|
|
200
|
+
[10.0, -10.0],
|
|
201
|
+
]
|
|
202
|
+
)
|
|
203
|
+
|
|
204
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
205
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
206
|
+
)
|
|
207
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
208
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
209
|
+
)
|
|
210
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
211
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
# Ensure predictions of batch algo match spmd
|
|
215
|
+
spmd_model = KNeighborsRegressor_SPMD(n_neighbors=1, algorithm="brute").fit(
|
|
216
|
+
local_dpt_X_train, local_dpt_y_train
|
|
217
|
+
)
|
|
218
|
+
batch_model = KNeighborsRegressor_Batch(n_neighbors=1, algorithm="brute").fit(
|
|
219
|
+
X_train, y_train
|
|
220
|
+
)
|
|
221
|
+
spmd_dists, spmd_indcs = spmd_model.kneighbors(local_dpt_X_test)
|
|
222
|
+
batch_dists, batch_indcs = batch_model.kneighbors(X_test)
|
|
223
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
224
|
+
batch_result = batch_model.predict(X_test)
|
|
225
|
+
|
|
226
|
+
_assert_unordered_allclose(spmd_indcs, batch_indcs, localize=True)
|
|
227
|
+
_assert_unordered_allclose(spmd_dists, batch_dists, localize=True)
|
|
228
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
@pytest.mark.skipif(
|
|
232
|
+
not _mpi_libs_and_gpu_available,
|
|
233
|
+
reason="GPU device and MPI libs required for test",
|
|
234
|
+
)
|
|
235
|
+
@pytest.mark.parametrize("n_samples", [200, 10000])
|
|
236
|
+
@pytest.mark.parametrize("n_features", [5, 25])
|
|
237
|
+
@pytest.mark.parametrize("n_neighbors", [1, 5, 20])
|
|
238
|
+
@pytest.mark.parametrize("weights", ["uniform", "distance"])
|
|
239
|
+
@pytest.mark.parametrize(
|
|
240
|
+
"metric", ["euclidean", "manhattan", "minkowski", "chebyshev", "cosine"]
|
|
241
|
+
)
|
|
242
|
+
@pytest.mark.parametrize(
|
|
243
|
+
"dataframe,queue",
|
|
244
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
245
|
+
)
|
|
246
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
247
|
+
@pytest.mark.mpi
|
|
248
|
+
def test_knnreg_spmd_synthetic(
|
|
249
|
+
n_samples, n_features, n_neighbors, weights, metric, dataframe, queue, dtype
|
|
250
|
+
):
|
|
251
|
+
# Import spmd and batch algo
|
|
252
|
+
from sklearnex.neighbors import KNeighborsRegressor as KNeighborsRegressor_Batch
|
|
253
|
+
from sklearnex.spmd.neighbors import KNeighborsRegressor as KNeighborsRegressor_SPMD
|
|
254
|
+
|
|
255
|
+
# Generate data and convert to dataframe
|
|
256
|
+
X_train, X_test, y_train, _ = _generate_regression_data(
|
|
257
|
+
n_samples, n_features, dtype=dtype
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
261
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
262
|
+
)
|
|
263
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
264
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
265
|
+
)
|
|
266
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
267
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
# Ensure predictions of batch algo match spmd
|
|
271
|
+
spmd_model = KNeighborsRegressor_SPMD(
|
|
272
|
+
n_neighbors=n_neighbors, weights=weights, metric=metric, algorithm="brute"
|
|
273
|
+
).fit(local_dpt_X_train, local_dpt_y_train)
|
|
274
|
+
batch_model = KNeighborsRegressor_Batch(
|
|
275
|
+
n_neighbors=n_neighbors, weights=weights, metric=metric, algorithm="brute"
|
|
276
|
+
).fit(X_train, y_train)
|
|
277
|
+
spmd_dists, spmd_indcs = spmd_model.kneighbors(local_dpt_X_test)
|
|
278
|
+
batch_dists, batch_indcs = batch_model.kneighbors(X_test)
|
|
279
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
280
|
+
batch_result = batch_model.predict(X_test)
|
|
281
|
+
|
|
282
|
+
tol = 0.005 if dtype == np.float32 else 1e-4
|
|
283
|
+
if dtype == np.float64:
|
|
284
|
+
_assert_unordered_allclose(spmd_indcs, batch_indcs, localize=True)
|
|
285
|
+
_assert_unordered_allclose(
|
|
286
|
+
spmd_dists, batch_dists, localize=True, rtol=tol, atol=tol
|
|
287
|
+
)
|
|
288
|
+
_spmd_assert_allclose(spmd_result, batch_result, rtol=tol, atol=tol)
|
|
@@ -0,0 +1,339 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import warnings
|
|
18
|
+
from abc import ABC
|
|
19
|
+
from numbers import Number, Real
|
|
20
|
+
|
|
21
|
+
import numpy as np
|
|
22
|
+
from scipy import sparse as sp
|
|
23
|
+
from sklearn.base import BaseEstimator, ClassifierMixin
|
|
24
|
+
from sklearn.calibration import CalibratedClassifierCV
|
|
25
|
+
from sklearn.metrics import r2_score
|
|
26
|
+
from sklearn.preprocessing import LabelEncoder
|
|
27
|
+
|
|
28
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
29
|
+
from onedal.utils import _check_array, _check_X_y, _column_or_1d
|
|
30
|
+
|
|
31
|
+
from .._config import config_context, get_config
|
|
32
|
+
from .._utils import PatchingConditionsChain
|
|
33
|
+
|
|
34
|
+
if sklearn_check_version("1.6"):
|
|
35
|
+
from sklearn.utils.validation import validate_data
|
|
36
|
+
else:
|
|
37
|
+
validate_data = BaseEstimator._validate_data
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
class BaseSVM(BaseEstimator, ABC):
|
|
41
|
+
|
|
42
|
+
@property
|
|
43
|
+
def _dual_coef_(self):
|
|
44
|
+
return self._dualcoef_
|
|
45
|
+
|
|
46
|
+
@_dual_coef_.setter
|
|
47
|
+
def _dual_coef_(self, value):
|
|
48
|
+
self._dualcoef_ = value
|
|
49
|
+
if hasattr(self, "_onedal_estimator"):
|
|
50
|
+
self._onedal_estimator.dual_coef_ = value
|
|
51
|
+
if hasattr(self._onedal_estimator, "_onedal_model"):
|
|
52
|
+
del self._onedal_estimator._onedal_model
|
|
53
|
+
|
|
54
|
+
@_dual_coef_.deleter
|
|
55
|
+
def _dual_coef_(self):
|
|
56
|
+
del self._dualcoef_
|
|
57
|
+
|
|
58
|
+
@property
|
|
59
|
+
def intercept_(self):
|
|
60
|
+
return self._icept_
|
|
61
|
+
|
|
62
|
+
@intercept_.setter
|
|
63
|
+
def intercept_(self, value):
|
|
64
|
+
self._icept_ = value
|
|
65
|
+
if hasattr(self, "_onedal_estimator"):
|
|
66
|
+
self._onedal_estimator.intercept_ = value
|
|
67
|
+
if hasattr(self._onedal_estimator, "_onedal_model"):
|
|
68
|
+
del self._onedal_estimator._onedal_model
|
|
69
|
+
|
|
70
|
+
@intercept_.deleter
|
|
71
|
+
def intercept_(self):
|
|
72
|
+
del self._icept_
|
|
73
|
+
|
|
74
|
+
def _onedal_gpu_supported(self, method_name, *data):
|
|
75
|
+
patching_status = PatchingConditionsChain(f"sklearn.{method_name}")
|
|
76
|
+
patching_status.and_conditions([(False, "GPU offloading is not supported.")])
|
|
77
|
+
return patching_status
|
|
78
|
+
|
|
79
|
+
def _onedal_cpu_supported(self, method_name, *data):
|
|
80
|
+
class_name = self.__class__.__name__
|
|
81
|
+
patching_status = PatchingConditionsChain(
|
|
82
|
+
f"sklearn.svm.{class_name}.{method_name}"
|
|
83
|
+
)
|
|
84
|
+
if method_name == "fit":
|
|
85
|
+
patching_status.and_conditions(
|
|
86
|
+
[
|
|
87
|
+
(
|
|
88
|
+
self.kernel in ["linear", "rbf", "poly", "sigmoid"],
|
|
89
|
+
f'Kernel is "{self.kernel}" while '
|
|
90
|
+
'"linear", "rbf", "poly" and "sigmoid" are only supported.',
|
|
91
|
+
)
|
|
92
|
+
]
|
|
93
|
+
)
|
|
94
|
+
return patching_status
|
|
95
|
+
inference_methods = (
|
|
96
|
+
["predict", "score"]
|
|
97
|
+
if class_name.endswith("R")
|
|
98
|
+
else ["predict", "predict_proba", "decision_function", "score"]
|
|
99
|
+
)
|
|
100
|
+
if method_name in inference_methods:
|
|
101
|
+
patching_status.and_conditions(
|
|
102
|
+
[(hasattr(self, "_onedal_estimator"), "oneDAL model was not trained.")]
|
|
103
|
+
)
|
|
104
|
+
return patching_status
|
|
105
|
+
raise RuntimeError(f"Unknown method {method_name} in {class_name}")
|
|
106
|
+
|
|
107
|
+
def _compute_gamma_sigma(self, X):
|
|
108
|
+
# only run extended conversion if kernel is not linear
|
|
109
|
+
# set to a value = 1.0, so gamma will always be passed to
|
|
110
|
+
# the onedal estimator as a float type
|
|
111
|
+
if self.kernel == "linear":
|
|
112
|
+
return 1.0
|
|
113
|
+
|
|
114
|
+
if isinstance(self.gamma, str):
|
|
115
|
+
if self.gamma == "scale":
|
|
116
|
+
if sp.issparse(X):
|
|
117
|
+
# var = E[X^2] - E[X]^2
|
|
118
|
+
X_sc = (X.multiply(X)).mean() - (X.mean()) ** 2
|
|
119
|
+
else:
|
|
120
|
+
X_sc = X.var()
|
|
121
|
+
_gamma = 1.0 / (X.shape[1] * X_sc) if X_sc != 0 else 1.0
|
|
122
|
+
elif self.gamma == "auto":
|
|
123
|
+
_gamma = 1.0 / X.shape[1]
|
|
124
|
+
else:
|
|
125
|
+
raise ValueError(
|
|
126
|
+
"When 'gamma' is a string, it should be either 'scale' or "
|
|
127
|
+
"'auto'. Got '{}' instead.".format(self.gamma)
|
|
128
|
+
)
|
|
129
|
+
else:
|
|
130
|
+
if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
|
|
131
|
+
if isinstance(self.gamma, Real):
|
|
132
|
+
if self.gamma <= 0:
|
|
133
|
+
msg = (
|
|
134
|
+
f"gamma value must be > 0; {self.gamma!r} is invalid. Use"
|
|
135
|
+
" a positive number or use 'auto' to set gamma to a"
|
|
136
|
+
" value of 1 / n_features."
|
|
137
|
+
)
|
|
138
|
+
raise ValueError(msg)
|
|
139
|
+
_gamma = self.gamma
|
|
140
|
+
else:
|
|
141
|
+
msg = (
|
|
142
|
+
"The gamma value should be set to 'scale', 'auto' or a"
|
|
143
|
+
f" positive float value. {self.gamma!r} is not a valid option"
|
|
144
|
+
)
|
|
145
|
+
raise ValueError(msg)
|
|
146
|
+
else:
|
|
147
|
+
_gamma = self.gamma
|
|
148
|
+
return _gamma
|
|
149
|
+
|
|
150
|
+
def _onedal_fit_checks(self, X, y, sample_weight=None):
|
|
151
|
+
if hasattr(self, "decision_function_shape"):
|
|
152
|
+
if self.decision_function_shape not in ("ovr", "ovo", None):
|
|
153
|
+
raise ValueError(
|
|
154
|
+
f"decision_function_shape must be either 'ovr' or 'ovo', "
|
|
155
|
+
f"got {self.decision_function_shape}."
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
if y is None:
|
|
159
|
+
if self._get_tags()["requires_y"]:
|
|
160
|
+
raise ValueError(
|
|
161
|
+
f"This {self.__class__.__name__} estimator "
|
|
162
|
+
f"requires y to be passed, but the target y is None."
|
|
163
|
+
)
|
|
164
|
+
# using onedal _check_X_y to insure X and y are contiguous
|
|
165
|
+
# finite check occurs in onedal estimator
|
|
166
|
+
if sklearn_check_version("1.0"):
|
|
167
|
+
X, y = validate_data(
|
|
168
|
+
self,
|
|
169
|
+
X,
|
|
170
|
+
y,
|
|
171
|
+
dtype=[np.float64, np.float32],
|
|
172
|
+
force_all_finite=False,
|
|
173
|
+
accept_sparse="csr",
|
|
174
|
+
)
|
|
175
|
+
else:
|
|
176
|
+
X, y = _check_X_y(
|
|
177
|
+
X,
|
|
178
|
+
y,
|
|
179
|
+
dtype=[np.float64, np.float32],
|
|
180
|
+
force_all_finite=False,
|
|
181
|
+
accept_sparse="csr",
|
|
182
|
+
)
|
|
183
|
+
y = self._validate_targets(y)
|
|
184
|
+
sample_weight = self._get_sample_weight(X, y, sample_weight)
|
|
185
|
+
return X, y, sample_weight
|
|
186
|
+
|
|
187
|
+
def _get_sample_weight(self, X, y, sample_weight):
|
|
188
|
+
n_samples = X.shape[0]
|
|
189
|
+
dtype = X.dtype
|
|
190
|
+
if n_samples == 1:
|
|
191
|
+
raise ValueError("n_samples=1")
|
|
192
|
+
|
|
193
|
+
sample_weight = np.ascontiguousarray(
|
|
194
|
+
[] if sample_weight is None else sample_weight, dtype=np.float64
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
sample_weight_count = sample_weight.shape[0]
|
|
198
|
+
if sample_weight_count != 0 and sample_weight_count != n_samples:
|
|
199
|
+
raise ValueError(
|
|
200
|
+
"sample_weight and X have incompatible shapes: "
|
|
201
|
+
"%r vs %r\n"
|
|
202
|
+
"Note: Sparse matrices cannot be indexed w/"
|
|
203
|
+
"boolean masks (use `indices=True` in CV)."
|
|
204
|
+
% (len(sample_weight), X.shape)
|
|
205
|
+
)
|
|
206
|
+
|
|
207
|
+
if sample_weight_count == 0:
|
|
208
|
+
if not isinstance(self, ClassifierMixin) or self.class_weight_ is None:
|
|
209
|
+
return None
|
|
210
|
+
sample_weight = np.ones(n_samples, dtype=dtype)
|
|
211
|
+
elif isinstance(sample_weight, Number):
|
|
212
|
+
sample_weight = np.full(n_samples, sample_weight, dtype=dtype)
|
|
213
|
+
else:
|
|
214
|
+
sample_weight = _check_array(
|
|
215
|
+
sample_weight,
|
|
216
|
+
accept_sparse=False,
|
|
217
|
+
ensure_2d=False,
|
|
218
|
+
dtype=dtype,
|
|
219
|
+
order="C",
|
|
220
|
+
)
|
|
221
|
+
if sample_weight.ndim != 1:
|
|
222
|
+
raise ValueError("Sample weights must be 1D array or scalar")
|
|
223
|
+
|
|
224
|
+
if sample_weight.shape != (n_samples,):
|
|
225
|
+
raise ValueError(
|
|
226
|
+
"sample_weight.shape == {}, expected {}!".format(
|
|
227
|
+
sample_weight.shape, (n_samples,)
|
|
228
|
+
)
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
if np.all(sample_weight <= 0):
|
|
232
|
+
if "nusvc" in self.__module__:
|
|
233
|
+
raise ValueError("negative dimensions are not allowed")
|
|
234
|
+
else:
|
|
235
|
+
raise ValueError(
|
|
236
|
+
"Invalid input - all samples have zero or negative weights."
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
return sample_weight
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
class BaseSVC(BaseSVM):
|
|
243
|
+
def _compute_balanced_class_weight(self, y):
|
|
244
|
+
y_ = _column_or_1d(y)
|
|
245
|
+
classes, _ = np.unique(y_, return_inverse=True)
|
|
246
|
+
|
|
247
|
+
le = LabelEncoder()
|
|
248
|
+
y_ind = le.fit_transform(y_)
|
|
249
|
+
if not all(np.in1d(classes, le.classes_)):
|
|
250
|
+
raise ValueError("classes should have valid labels that are in y")
|
|
251
|
+
|
|
252
|
+
recip_freq = len(y_) / (len(le.classes_) * np.bincount(y_ind).astype(np.float64))
|
|
253
|
+
return recip_freq[le.transform(classes)]
|
|
254
|
+
|
|
255
|
+
def _fit_proba(self, X, y, sample_weight=None, queue=None):
|
|
256
|
+
# TODO: rewrite this method when probabilities output is implemented in oneDAL
|
|
257
|
+
|
|
258
|
+
# LibSVM uses the random seed to control cross-validation for probability generation
|
|
259
|
+
# CalibratedClassifierCV with "prefit" does not use an RNG nor a seed. This may
|
|
260
|
+
# impact users without their knowledge, so display a warning.
|
|
261
|
+
if self.random_state is not None:
|
|
262
|
+
warnings.warn(
|
|
263
|
+
"random_state does not influence oneDAL SVM results",
|
|
264
|
+
RuntimeWarning,
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
params = self.get_params()
|
|
268
|
+
params["probability"] = False
|
|
269
|
+
params["decision_function_shape"] = "ovr"
|
|
270
|
+
clf_base = self.__class__(**params)
|
|
271
|
+
|
|
272
|
+
# We use stock metaestimators below, so the only way
|
|
273
|
+
# to pass a queue is using config_context.
|
|
274
|
+
cfg = get_config()
|
|
275
|
+
cfg["target_offload"] = queue
|
|
276
|
+
with config_context(**cfg):
|
|
277
|
+
clf_base.fit(X, y)
|
|
278
|
+
self.clf_prob = CalibratedClassifierCV(
|
|
279
|
+
clf_base,
|
|
280
|
+
ensemble=False,
|
|
281
|
+
cv="prefit",
|
|
282
|
+
method="sigmoid",
|
|
283
|
+
).fit(X, y)
|
|
284
|
+
|
|
285
|
+
def _save_attributes(self):
|
|
286
|
+
self.support_vectors_ = self._onedal_estimator.support_vectors_
|
|
287
|
+
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
288
|
+
self.fit_status_ = 0
|
|
289
|
+
self.dual_coef_ = self._onedal_estimator.dual_coef_
|
|
290
|
+
self.shape_fit_ = self._onedal_estimator.class_weight_
|
|
291
|
+
self.classes_ = self._onedal_estimator.classes_
|
|
292
|
+
if isinstance(self, ClassifierMixin) or not sklearn_check_version("1.2"):
|
|
293
|
+
self.class_weight_ = self._onedal_estimator.class_weight_
|
|
294
|
+
self.support_ = self._onedal_estimator.support_
|
|
295
|
+
|
|
296
|
+
self._icept_ = self._onedal_estimator.intercept_
|
|
297
|
+
self._n_support = self._onedal_estimator._n_support
|
|
298
|
+
self._sparse = False
|
|
299
|
+
self._gamma = self._onedal_estimator._gamma
|
|
300
|
+
if self.probability:
|
|
301
|
+
length = int(len(self.classes_) * (len(self.classes_) - 1) / 2)
|
|
302
|
+
self._probA = np.zeros(length)
|
|
303
|
+
self._probB = np.zeros(length)
|
|
304
|
+
else:
|
|
305
|
+
self._probA = np.empty(0)
|
|
306
|
+
self._probB = np.empty(0)
|
|
307
|
+
|
|
308
|
+
self._dualcoef_ = self.dual_coef_
|
|
309
|
+
|
|
310
|
+
if sklearn_check_version("1.1"):
|
|
311
|
+
length = int(len(self.classes_) * (len(self.classes_) - 1) / 2)
|
|
312
|
+
self.n_iter_ = np.full((length,), self._onedal_estimator.n_iter_)
|
|
313
|
+
|
|
314
|
+
|
|
315
|
+
class BaseSVR(BaseSVM):
|
|
316
|
+
def _save_attributes(self):
|
|
317
|
+
self.support_vectors_ = self._onedal_estimator.support_vectors_
|
|
318
|
+
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
319
|
+
self.fit_status_ = 0
|
|
320
|
+
self.dual_coef_ = self._onedal_estimator.dual_coef_
|
|
321
|
+
self.shape_fit_ = self._onedal_estimator.shape_fit_
|
|
322
|
+
self.support_ = self._onedal_estimator.support_
|
|
323
|
+
|
|
324
|
+
self._icept_ = self._onedal_estimator.intercept_
|
|
325
|
+
self._n_support = [self.support_vectors_.shape[0]]
|
|
326
|
+
self._sparse = False
|
|
327
|
+
self._gamma = self._onedal_estimator._gamma
|
|
328
|
+
self._probA = None
|
|
329
|
+
self._probB = None
|
|
330
|
+
|
|
331
|
+
if sklearn_check_version("1.1"):
|
|
332
|
+
self.n_iter_ = self._onedal_estimator.n_iter_
|
|
333
|
+
|
|
334
|
+
self._dualcoef_ = self.dual_coef_
|
|
335
|
+
|
|
336
|
+
def _onedal_score(self, X, y, sample_weight=None, queue=None):
|
|
337
|
+
return r2_score(
|
|
338
|
+
y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
|
|
339
|
+
)
|