scikit-learn-intelex 2024.0.1__py310-none-win_amd64.whl → 2025.1.0__py310-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/_daal4py.cp310-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/doc/third-party-programs.txt +424 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mb/model_builders.py +377 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp310-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +248 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn}/cluster/__init__.py +3 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +597 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/__init__.py +4 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +524 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1397 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn}/linear_model/__init__.py +29 -30
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +272 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +325 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/manifold}/__init__.py +4 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +405 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +236 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +4 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/_models_info.py +13 -22
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/test_patching.py +10 -42
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/utils/_launch_algorithms.py +4 -5
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +503 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +139 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +74 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +734 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/linear_model → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils}/__init__.py +5 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +75 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +693 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/__init__.py +83 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_config.py +54 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_device_offload.py +222 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp310-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp310-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +160 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +110 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +564 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +115 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_base.py +38 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_policy.py +59 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_spmd_policy.py +30 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +125 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/tests/test_policy.py +76 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +125 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +146 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +122 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +154 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +126 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +414 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition}/__init__.py +3 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +204 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +186 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +198 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +727 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +258 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +329 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +249 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +250 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +767 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +25 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +153 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/svm.py +556 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +351 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +176 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/test_common.py +57 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +162 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +102 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/__init__.py +49 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +81 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/_dpep_helpers.py +56 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/validation.py +440 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/__init__.py +12 -7
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/_config.py +22 -16
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +126 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/_utils.py +42 -5
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +230 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +1 -2
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +18 -8
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +395 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -7
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +159 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/conftest.py +82 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +398 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -1
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +425 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +26 -6
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +242 -28
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +262 -180
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +39 -22
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +13 -1
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +482 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +425 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +341 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +413 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +24 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +167 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +134 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -1
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +21 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +5 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +3 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +5 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +1 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +236 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +54 -8
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +51 -151
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +46 -146
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +53 -95
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +16 -19
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/decomposition → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview}/__init__.py +1 -3
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/covariance}/__init__.py +19 -20
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +138 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +233 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/__init__.py +19 -18
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/ridge.py +424 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +1 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +21 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition}/__init__.py +3 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +4 -12
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +21 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_config.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +14 -18
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -1
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +339 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +172 -73
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +73 -66
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +171 -73
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +65 -62
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +12 -21
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +390 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +123 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +379 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +276 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +108 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +6 -8
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +385 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +321 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +44 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +371 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +82 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -1
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/METADATA +231 -230
- scikit_learn_intelex-2025.1.0.dist-info/RECORD +257 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/WHEEL +1 -1
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_device_offload.py +0 -223
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -18
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -31
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -18
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -28
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -373
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -18
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +0 -77
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -29
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/lof.py +0 -437
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -84
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -370
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +0 -376
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -188
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -225
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -210
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
- scikit_learn_intelex-2024.0.1.dist-info/RECORD +0 -90
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,503 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2020 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
# daal4py KNN scikit-learn-compatible base classes
|
|
18
|
+
|
|
19
|
+
import logging
|
|
20
|
+
import numbers
|
|
21
|
+
import warnings
|
|
22
|
+
|
|
23
|
+
import numpy as np
|
|
24
|
+
from scipy import sparse as sp
|
|
25
|
+
from sklearn.base import is_classifier, is_regressor
|
|
26
|
+
from sklearn.neighbors import VALID_METRICS
|
|
27
|
+
from sklearn.neighbors._ball_tree import BallTree
|
|
28
|
+
from sklearn.neighbors._base import KNeighborsMixin as BaseKNeighborsMixin
|
|
29
|
+
from sklearn.neighbors._base import NeighborsBase as BaseNeighborsBase
|
|
30
|
+
from sklearn.neighbors._base import RadiusNeighborsMixin as BaseRadiusNeighborsMixin
|
|
31
|
+
from sklearn.neighbors._kd_tree import KDTree
|
|
32
|
+
from sklearn.utils.multiclass import check_classification_targets
|
|
33
|
+
from sklearn.utils.validation import check_array, check_is_fitted, check_X_y
|
|
34
|
+
|
|
35
|
+
import daal4py as d4p
|
|
36
|
+
|
|
37
|
+
from .._utils import (
|
|
38
|
+
PatchingConditionsChain,
|
|
39
|
+
get_patch_message,
|
|
40
|
+
getFPType,
|
|
41
|
+
sklearn_check_version,
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
if not sklearn_check_version("1.2"):
|
|
45
|
+
from sklearn.neighbors._base import _check_weights
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def training_algorithm(method, fptype, params):
|
|
49
|
+
if method == "brute":
|
|
50
|
+
train_alg = d4p.bf_knn_classification_training
|
|
51
|
+
|
|
52
|
+
else:
|
|
53
|
+
train_alg = d4p.kdtree_knn_classification_training
|
|
54
|
+
|
|
55
|
+
params["fptype"] = fptype
|
|
56
|
+
return train_alg(**params)
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
def prediction_algorithm(method, fptype, params):
|
|
60
|
+
if method == "brute":
|
|
61
|
+
predict_alg = d4p.bf_knn_classification_prediction
|
|
62
|
+
else:
|
|
63
|
+
predict_alg = d4p.kdtree_knn_classification_prediction
|
|
64
|
+
|
|
65
|
+
params["fptype"] = fptype
|
|
66
|
+
return predict_alg(**params)
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def parse_auto_method(estimator, method, n_samples, n_features):
|
|
70
|
+
result_method = method
|
|
71
|
+
|
|
72
|
+
if method in ["auto", "ball_tree"]:
|
|
73
|
+
condition = (
|
|
74
|
+
estimator.n_neighbors is not None
|
|
75
|
+
and estimator.n_neighbors >= estimator.n_samples_fit_ // 2
|
|
76
|
+
)
|
|
77
|
+
if estimator.metric == "precomputed" or n_features > 11 or condition:
|
|
78
|
+
result_method = "brute"
|
|
79
|
+
else:
|
|
80
|
+
if estimator.effective_metric_ in VALID_METRICS["kd_tree"]:
|
|
81
|
+
result_method = "kd_tree"
|
|
82
|
+
else:
|
|
83
|
+
result_method = "brute"
|
|
84
|
+
|
|
85
|
+
return result_method
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def daal4py_fit(estimator, X, fptype):
|
|
89
|
+
estimator._fit_X = X
|
|
90
|
+
estimator._fit_method = estimator.algorithm
|
|
91
|
+
estimator.effective_metric_ = "euclidean"
|
|
92
|
+
estimator._tree = None
|
|
93
|
+
weights = getattr(estimator, "weights", "uniform")
|
|
94
|
+
|
|
95
|
+
params = {
|
|
96
|
+
"method": "defaultDense",
|
|
97
|
+
"k": estimator.n_neighbors,
|
|
98
|
+
"voteWeights": "voteUniform" if weights == "uniform" else "voteDistance",
|
|
99
|
+
"resultsToCompute": "computeIndicesOfNeighbors|computeDistances",
|
|
100
|
+
"resultsToEvaluate": (
|
|
101
|
+
"none" if getattr(estimator, "_y", None) is None else "computeClassLabels"
|
|
102
|
+
),
|
|
103
|
+
}
|
|
104
|
+
if hasattr(estimator, "classes_"):
|
|
105
|
+
params["nClasses"] = len(estimator.classes_)
|
|
106
|
+
|
|
107
|
+
if getattr(estimator, "_y", None) is None:
|
|
108
|
+
labels = None
|
|
109
|
+
else:
|
|
110
|
+
labels = estimator._y.reshape(-1, 1)
|
|
111
|
+
|
|
112
|
+
method = parse_auto_method(
|
|
113
|
+
estimator, estimator.algorithm, estimator.n_samples_fit_, estimator.n_features_in_
|
|
114
|
+
)
|
|
115
|
+
estimator._fit_method = method
|
|
116
|
+
train_alg = training_algorithm(method, fptype, params)
|
|
117
|
+
estimator._daal_model = train_alg.compute(X, labels).model
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
def daal4py_kneighbors(estimator, X=None, n_neighbors=None, return_distance=True):
|
|
121
|
+
n_features = getattr(estimator, "n_features_in_", None)
|
|
122
|
+
shape = getattr(X, "shape", None)
|
|
123
|
+
if n_features and shape and len(shape) > 1 and shape[1] != n_features:
|
|
124
|
+
raise ValueError(
|
|
125
|
+
(
|
|
126
|
+
f"X has {X.shape[1]} features, "
|
|
127
|
+
f"but kneighbors is expecting {n_features} features as input"
|
|
128
|
+
)
|
|
129
|
+
)
|
|
130
|
+
|
|
131
|
+
check_is_fitted(estimator)
|
|
132
|
+
|
|
133
|
+
if n_neighbors is None:
|
|
134
|
+
n_neighbors = estimator.n_neighbors
|
|
135
|
+
elif n_neighbors <= 0:
|
|
136
|
+
raise ValueError("Expected n_neighbors > 0. Got %d" % n_neighbors)
|
|
137
|
+
else:
|
|
138
|
+
if not isinstance(n_neighbors, numbers.Integral):
|
|
139
|
+
raise TypeError(
|
|
140
|
+
"n_neighbors does not take %s value, "
|
|
141
|
+
"enter integer value" % type(n_neighbors)
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
if X is not None:
|
|
145
|
+
query_is_train = False
|
|
146
|
+
X = check_array(X, accept_sparse="csr", dtype=[np.float64, np.float32])
|
|
147
|
+
else:
|
|
148
|
+
query_is_train = True
|
|
149
|
+
X = estimator._fit_X
|
|
150
|
+
# Include an extra neighbor to account for the sample itself being
|
|
151
|
+
# returned, which is removed later
|
|
152
|
+
n_neighbors += 1
|
|
153
|
+
|
|
154
|
+
n_samples_fit = estimator.n_samples_fit_
|
|
155
|
+
if n_neighbors > n_samples_fit:
|
|
156
|
+
raise ValueError(
|
|
157
|
+
"Expected n_neighbors <= n_samples, "
|
|
158
|
+
" but n_samples = %d, n_neighbors = %d" % (n_samples_fit, n_neighbors)
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
chunked_results = None
|
|
162
|
+
|
|
163
|
+
try:
|
|
164
|
+
fptype = getFPType(X)
|
|
165
|
+
except ValueError:
|
|
166
|
+
fptype = None
|
|
167
|
+
|
|
168
|
+
weights = getattr(estimator, "weights", "uniform")
|
|
169
|
+
|
|
170
|
+
params = {
|
|
171
|
+
"method": "defaultDense",
|
|
172
|
+
"k": n_neighbors,
|
|
173
|
+
"voteWeights": "voteUniform" if weights == "uniform" else "voteDistance",
|
|
174
|
+
"resultsToCompute": "computeIndicesOfNeighbors|computeDistances",
|
|
175
|
+
"resultsToEvaluate": (
|
|
176
|
+
"none" if getattr(estimator, "_y", None) is None else "computeClassLabels"
|
|
177
|
+
),
|
|
178
|
+
}
|
|
179
|
+
if hasattr(estimator, "classes_"):
|
|
180
|
+
params["nClasses"] = len(estimator.classes_)
|
|
181
|
+
|
|
182
|
+
method = parse_auto_method(
|
|
183
|
+
estimator, estimator._fit_method, estimator.n_samples_fit_, n_features
|
|
184
|
+
)
|
|
185
|
+
|
|
186
|
+
predict_alg = prediction_algorithm(method, fptype, params)
|
|
187
|
+
prediction_result = predict_alg.compute(X, estimator._daal_model)
|
|
188
|
+
|
|
189
|
+
distances = prediction_result.distances
|
|
190
|
+
indices = prediction_result.indices
|
|
191
|
+
|
|
192
|
+
if method == "kd_tree":
|
|
193
|
+
for i in range(distances.shape[0]):
|
|
194
|
+
seq = distances[i].argsort()
|
|
195
|
+
indices[i] = indices[i][seq]
|
|
196
|
+
distances[i] = distances[i][seq]
|
|
197
|
+
|
|
198
|
+
if return_distance:
|
|
199
|
+
results = distances, indices.astype(int)
|
|
200
|
+
else:
|
|
201
|
+
results = indices.astype(int)
|
|
202
|
+
|
|
203
|
+
if chunked_results is not None:
|
|
204
|
+
if return_distance:
|
|
205
|
+
neigh_dist, neigh_ind = zip(*chunked_results)
|
|
206
|
+
results = np.vstack(neigh_dist), np.vstack(neigh_ind)
|
|
207
|
+
else:
|
|
208
|
+
results = np.vstack(chunked_results)
|
|
209
|
+
|
|
210
|
+
if not query_is_train:
|
|
211
|
+
return results
|
|
212
|
+
# If the query data is the same as the indexed data, we would like
|
|
213
|
+
# to ignore the first nearest neighbor of every sample, i.e
|
|
214
|
+
# the sample itself.
|
|
215
|
+
if return_distance:
|
|
216
|
+
neigh_dist, neigh_ind = results
|
|
217
|
+
else:
|
|
218
|
+
neigh_ind = results
|
|
219
|
+
|
|
220
|
+
n_queries, _ = X.shape
|
|
221
|
+
sample_range = np.arange(n_queries)[:, None]
|
|
222
|
+
sample_mask = neigh_ind != sample_range
|
|
223
|
+
|
|
224
|
+
# Corner case: When the number of duplicates are more
|
|
225
|
+
# than the number of neighbors, the first NN will not
|
|
226
|
+
# be the sample, but a duplicate.
|
|
227
|
+
# In that case mask the first duplicate.
|
|
228
|
+
dup_gr_nbrs = np.all(sample_mask, axis=1)
|
|
229
|
+
sample_mask[:, 0][dup_gr_nbrs] = False
|
|
230
|
+
neigh_ind = np.reshape(neigh_ind[sample_mask], (n_queries, n_neighbors - 1))
|
|
231
|
+
|
|
232
|
+
if return_distance:
|
|
233
|
+
neigh_dist = np.reshape(neigh_dist[sample_mask], (n_queries, n_neighbors - 1))
|
|
234
|
+
return neigh_dist, neigh_ind
|
|
235
|
+
return neigh_ind
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
def validate_data(
|
|
239
|
+
estimator, X, y=None, reset=True, validate_separately=False, **check_params
|
|
240
|
+
):
|
|
241
|
+
if y is None:
|
|
242
|
+
try:
|
|
243
|
+
requires_y = estimator._get_tags()["requires_y"]
|
|
244
|
+
except KeyError:
|
|
245
|
+
requires_y = False
|
|
246
|
+
|
|
247
|
+
if requires_y:
|
|
248
|
+
raise ValueError(
|
|
249
|
+
f"This {estimator.__class__.__name__} estimator "
|
|
250
|
+
f"requires y to be passed, but the target y is None."
|
|
251
|
+
)
|
|
252
|
+
X = check_array(X, **check_params)
|
|
253
|
+
out = X, y
|
|
254
|
+
else:
|
|
255
|
+
if validate_separately:
|
|
256
|
+
# We need this because some estimators validate X and y
|
|
257
|
+
# separately, and in general, separately calling check_array()
|
|
258
|
+
# on X and y isn't equivalent to just calling check_X_y()
|
|
259
|
+
# :(
|
|
260
|
+
check_X_params, check_y_params = validate_separately
|
|
261
|
+
X = check_array(X, **check_X_params)
|
|
262
|
+
y = check_array(y, **check_y_params)
|
|
263
|
+
else:
|
|
264
|
+
X, y = check_X_y(X, y, **check_params)
|
|
265
|
+
out = X, y
|
|
266
|
+
|
|
267
|
+
if check_params.get("ensure_2d", True):
|
|
268
|
+
estimator._check_n_features(X, reset=reset)
|
|
269
|
+
|
|
270
|
+
return out
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
class NeighborsBase(BaseNeighborsBase):
|
|
274
|
+
def __init__(
|
|
275
|
+
self,
|
|
276
|
+
n_neighbors=None,
|
|
277
|
+
radius=None,
|
|
278
|
+
algorithm="auto",
|
|
279
|
+
leaf_size=30,
|
|
280
|
+
metric="minkowski",
|
|
281
|
+
p=2,
|
|
282
|
+
metric_params=None,
|
|
283
|
+
n_jobs=None,
|
|
284
|
+
):
|
|
285
|
+
super().__init__(
|
|
286
|
+
n_neighbors=n_neighbors,
|
|
287
|
+
radius=radius,
|
|
288
|
+
algorithm=algorithm,
|
|
289
|
+
leaf_size=leaf_size,
|
|
290
|
+
metric=metric,
|
|
291
|
+
p=p,
|
|
292
|
+
metric_params=metric_params,
|
|
293
|
+
n_jobs=n_jobs,
|
|
294
|
+
)
|
|
295
|
+
|
|
296
|
+
def _fit(self, X, y=None):
|
|
297
|
+
if self.metric_params is not None and "p" in self.metric_params:
|
|
298
|
+
if self.p is not None:
|
|
299
|
+
warnings.warn(
|
|
300
|
+
"Parameter p is found in metric_params. "
|
|
301
|
+
"The corresponding parameter from __init__ "
|
|
302
|
+
"is ignored.",
|
|
303
|
+
SyntaxWarning,
|
|
304
|
+
stacklevel=2,
|
|
305
|
+
)
|
|
306
|
+
|
|
307
|
+
if (
|
|
308
|
+
hasattr(self, "weights")
|
|
309
|
+
and sklearn_check_version("1.0")
|
|
310
|
+
and not sklearn_check_version("1.2")
|
|
311
|
+
):
|
|
312
|
+
self.weights = _check_weights(self.weights)
|
|
313
|
+
|
|
314
|
+
if sklearn_check_version("1.0"):
|
|
315
|
+
self._check_feature_names(X, reset=True)
|
|
316
|
+
|
|
317
|
+
X_incorrect_type = isinstance(
|
|
318
|
+
X, (KDTree, BallTree, NeighborsBase, BaseNeighborsBase)
|
|
319
|
+
)
|
|
320
|
+
single_output = True
|
|
321
|
+
self._daal_model = None
|
|
322
|
+
shape = None
|
|
323
|
+
correct_n_classes = True
|
|
324
|
+
|
|
325
|
+
try:
|
|
326
|
+
requires_y = self._get_tags()["requires_y"]
|
|
327
|
+
except KeyError:
|
|
328
|
+
requires_y = False
|
|
329
|
+
|
|
330
|
+
if y is not None or requires_y:
|
|
331
|
+
if not X_incorrect_type or y is None:
|
|
332
|
+
X, y = validate_data(
|
|
333
|
+
self,
|
|
334
|
+
X,
|
|
335
|
+
y,
|
|
336
|
+
accept_sparse="csr",
|
|
337
|
+
multi_output=True,
|
|
338
|
+
dtype=[np.float64, np.float32],
|
|
339
|
+
)
|
|
340
|
+
single_output = False if y.ndim > 1 and y.shape[1] > 1 else True
|
|
341
|
+
|
|
342
|
+
shape = y.shape
|
|
343
|
+
|
|
344
|
+
if is_classifier(self) or is_regressor(self):
|
|
345
|
+
if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1:
|
|
346
|
+
self.outputs_2d_ = False
|
|
347
|
+
y = y.reshape((-1, 1))
|
|
348
|
+
else:
|
|
349
|
+
self.outputs_2d_ = True
|
|
350
|
+
|
|
351
|
+
if is_classifier(self):
|
|
352
|
+
check_classification_targets(y)
|
|
353
|
+
self.classes_ = []
|
|
354
|
+
self._y = np.empty(y.shape, dtype=int)
|
|
355
|
+
for k in range(self._y.shape[1]):
|
|
356
|
+
classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True)
|
|
357
|
+
self.classes_.append(classes)
|
|
358
|
+
|
|
359
|
+
if not self.outputs_2d_:
|
|
360
|
+
self.classes_ = self.classes_[0]
|
|
361
|
+
self._y = self._y.ravel()
|
|
362
|
+
|
|
363
|
+
n_classes = len(self.classes_)
|
|
364
|
+
if n_classes < 2:
|
|
365
|
+
correct_n_classes = False
|
|
366
|
+
else:
|
|
367
|
+
self._y = y
|
|
368
|
+
else:
|
|
369
|
+
if not X_incorrect_type:
|
|
370
|
+
X, _ = validate_data(
|
|
371
|
+
self, X, accept_sparse="csr", dtype=[np.float64, np.float32]
|
|
372
|
+
)
|
|
373
|
+
|
|
374
|
+
if not X_incorrect_type:
|
|
375
|
+
self.n_samples_fit_ = X.shape[0]
|
|
376
|
+
self.n_features_in_ = X.shape[1]
|
|
377
|
+
|
|
378
|
+
try:
|
|
379
|
+
fptype = getFPType(X)
|
|
380
|
+
except ValueError:
|
|
381
|
+
fptype = None
|
|
382
|
+
|
|
383
|
+
weights = getattr(self, "weights", "uniform")
|
|
384
|
+
|
|
385
|
+
def stock_fit(self, X, y):
|
|
386
|
+
result = super(NeighborsBase, self)._fit(X, y)
|
|
387
|
+
return result
|
|
388
|
+
|
|
389
|
+
if self.n_neighbors is not None:
|
|
390
|
+
if self.n_neighbors <= 0:
|
|
391
|
+
raise ValueError("Expected n_neighbors > 0. Got %d" % self.n_neighbors)
|
|
392
|
+
if not isinstance(self.n_neighbors, numbers.Integral):
|
|
393
|
+
raise TypeError(
|
|
394
|
+
"n_neighbors does not take %s value, "
|
|
395
|
+
"enter integer value" % type(self.n_neighbors)
|
|
396
|
+
)
|
|
397
|
+
|
|
398
|
+
_patching_status = PatchingConditionsChain(
|
|
399
|
+
"sklearn.neighbors.KNeighborsMixin.kneighbors"
|
|
400
|
+
)
|
|
401
|
+
_dal_ready = _patching_status.and_conditions(
|
|
402
|
+
[
|
|
403
|
+
(
|
|
404
|
+
self.metric == "minkowski"
|
|
405
|
+
and self.p == 2
|
|
406
|
+
or self.metric == "euclidean",
|
|
407
|
+
f"'{self.metric}' (p={self.p}) metric is not supported. "
|
|
408
|
+
"Only 'euclidean' or 'minkowski' with p=2 metrics are supported.",
|
|
409
|
+
),
|
|
410
|
+
(not X_incorrect_type, "X is not Tree or Neighbors instance or array."),
|
|
411
|
+
(
|
|
412
|
+
weights in ["uniform", "distance"],
|
|
413
|
+
f"'{weights}' weights is not supported. "
|
|
414
|
+
"Only 'uniform' and 'distance' weights are supported.",
|
|
415
|
+
),
|
|
416
|
+
(
|
|
417
|
+
self.algorithm in ["brute", "kd_tree", "auto", "ball_tree"],
|
|
418
|
+
f"'{self.algorithm}' algorithm is not supported. "
|
|
419
|
+
"Only 'brute', 'kd_tree', 'auto' and 'ball_tree' "
|
|
420
|
+
"algorithms are supported.",
|
|
421
|
+
),
|
|
422
|
+
(single_output, "Multiple outputs are not supported."),
|
|
423
|
+
(fptype is not None, "Unable to get dtype."),
|
|
424
|
+
(not sp.issparse(X), "X is sparse. Sparse input is not supported."),
|
|
425
|
+
(correct_n_classes, "Number of classes < 2."),
|
|
426
|
+
]
|
|
427
|
+
)
|
|
428
|
+
_patching_status.write_log()
|
|
429
|
+
if _dal_ready:
|
|
430
|
+
try:
|
|
431
|
+
daal4py_fit(self, X, fptype)
|
|
432
|
+
result = self
|
|
433
|
+
except RuntimeError:
|
|
434
|
+
logging.info(
|
|
435
|
+
"sklearn.neighbors.KNeighborsMixin."
|
|
436
|
+
"kneighbors: " + get_patch_message("sklearn_after_daal")
|
|
437
|
+
)
|
|
438
|
+
result = stock_fit(self, X, y)
|
|
439
|
+
else:
|
|
440
|
+
result = stock_fit(self, X, y)
|
|
441
|
+
|
|
442
|
+
if y is not None and is_regressor(self):
|
|
443
|
+
self._y = y if shape is None else y.reshape(shape)
|
|
444
|
+
|
|
445
|
+
return result
|
|
446
|
+
|
|
447
|
+
|
|
448
|
+
class KNeighborsMixin(BaseKNeighborsMixin):
|
|
449
|
+
def kneighbors(self, X=None, n_neighbors=None, return_distance=True):
|
|
450
|
+
daal_model = getattr(self, "_daal_model", None)
|
|
451
|
+
if X is not None and self.metric != "precomputed":
|
|
452
|
+
X = check_array(X, accept_sparse="csr", dtype=[np.float64, np.float32])
|
|
453
|
+
x = self._fit_X if X is None else X
|
|
454
|
+
try:
|
|
455
|
+
fptype = getFPType(x)
|
|
456
|
+
except ValueError:
|
|
457
|
+
fptype = None
|
|
458
|
+
|
|
459
|
+
_patching_status = PatchingConditionsChain(
|
|
460
|
+
"sklearn.neighbors.KNeighborsMixin.kneighbors"
|
|
461
|
+
)
|
|
462
|
+
_dal_ready = _patching_status.and_conditions(
|
|
463
|
+
[
|
|
464
|
+
(daal_model is not None, "oneDAL model was not trained."),
|
|
465
|
+
(fptype is not None, "Unable to get dtype."),
|
|
466
|
+
(not sp.issparse(X), "X is sparse. Sparse input is not supported."),
|
|
467
|
+
]
|
|
468
|
+
)
|
|
469
|
+
_patching_status.write_log()
|
|
470
|
+
|
|
471
|
+
if _dal_ready:
|
|
472
|
+
result = daal4py_kneighbors(self, X, n_neighbors, return_distance)
|
|
473
|
+
else:
|
|
474
|
+
if (
|
|
475
|
+
daal_model is not None
|
|
476
|
+
or getattr(self, "_tree", 0) is None
|
|
477
|
+
and self._fit_method == "kd_tree"
|
|
478
|
+
):
|
|
479
|
+
BaseNeighborsBase._fit(self, self._fit_X, getattr(self, "_y", None))
|
|
480
|
+
result = super(KNeighborsMixin, self).kneighbors(
|
|
481
|
+
X, n_neighbors, return_distance
|
|
482
|
+
)
|
|
483
|
+
|
|
484
|
+
return result
|
|
485
|
+
|
|
486
|
+
|
|
487
|
+
class RadiusNeighborsMixin(BaseRadiusNeighborsMixin):
|
|
488
|
+
def radius_neighbors(
|
|
489
|
+
self, X=None, radius=None, return_distance=True, sort_results=False
|
|
490
|
+
):
|
|
491
|
+
daal_model = getattr(self, "_daal_model", None)
|
|
492
|
+
|
|
493
|
+
if (
|
|
494
|
+
daal_model is not None
|
|
495
|
+
or getattr(self, "_tree", 0) is None
|
|
496
|
+
and self._fit_method == "kd_tree"
|
|
497
|
+
):
|
|
498
|
+
BaseNeighborsBase._fit(self, self._fit_X, getattr(self, "_y", None))
|
|
499
|
+
result = BaseRadiusNeighborsMixin.radius_neighbors(
|
|
500
|
+
self, X, radius, return_distance, sort_results
|
|
501
|
+
)
|
|
502
|
+
|
|
503
|
+
return result
|
|
@@ -0,0 +1,139 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2020 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
# daal4py KNN classification scikit-learn-compatible classes
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
from scipy import sparse as sp
|
|
21
|
+
from sklearn.base import ClassifierMixin as BaseClassifierMixin
|
|
22
|
+
from sklearn.neighbors._classification import (
|
|
23
|
+
KNeighborsClassifier as BaseKNeighborsClassifier,
|
|
24
|
+
)
|
|
25
|
+
from sklearn.utils.validation import check_array
|
|
26
|
+
|
|
27
|
+
from .._utils import PatchingConditionsChain, getFPType, sklearn_check_version
|
|
28
|
+
from ._base import KNeighborsMixin, NeighborsBase, parse_auto_method, prediction_algorithm
|
|
29
|
+
|
|
30
|
+
if not sklearn_check_version("1.2"):
|
|
31
|
+
from sklearn.neighbors._base import _check_weights
|
|
32
|
+
|
|
33
|
+
from sklearn.utils.validation import _deprecate_positional_args
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def daal4py_classifier_predict(estimator, X, base_predict):
|
|
37
|
+
if sklearn_check_version("1.0"):
|
|
38
|
+
estimator._check_feature_names(X, reset=False)
|
|
39
|
+
X = check_array(X, accept_sparse="csr", dtype=[np.float64, np.float32])
|
|
40
|
+
daal_model = getattr(estimator, "_daal_model", None)
|
|
41
|
+
n_features = getattr(estimator, "n_features_in_", None)
|
|
42
|
+
shape = getattr(X, "shape", None)
|
|
43
|
+
if n_features and shape and len(shape) > 1 and shape[1] != n_features:
|
|
44
|
+
raise ValueError(
|
|
45
|
+
(
|
|
46
|
+
f"X has {X.shape[1]} features, "
|
|
47
|
+
f"but KNNClassifier is expecting "
|
|
48
|
+
f"{n_features} features as input"
|
|
49
|
+
)
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
try:
|
|
53
|
+
fptype = getFPType(X)
|
|
54
|
+
except ValueError:
|
|
55
|
+
fptype = None
|
|
56
|
+
|
|
57
|
+
_patching_status = PatchingConditionsChain(
|
|
58
|
+
"sklearn.neighbors.KNeighborsClassifier.predict"
|
|
59
|
+
)
|
|
60
|
+
_dal_ready = _patching_status.and_conditions(
|
|
61
|
+
[
|
|
62
|
+
(daal_model is not None, "oneDAL model was not trained."),
|
|
63
|
+
(fptype is not None, "Unable to get dtype."),
|
|
64
|
+
(not sp.issparse(X), "X is sparse. Sparse input is not supported."),
|
|
65
|
+
]
|
|
66
|
+
)
|
|
67
|
+
_patching_status.write_log()
|
|
68
|
+
|
|
69
|
+
if _dal_ready:
|
|
70
|
+
params = {
|
|
71
|
+
"method": "defaultDense",
|
|
72
|
+
"k": estimator.n_neighbors,
|
|
73
|
+
"nClasses": len(estimator.classes_),
|
|
74
|
+
"voteWeights": (
|
|
75
|
+
"voteUniform" if estimator.weights == "uniform" else "voteDistance"
|
|
76
|
+
),
|
|
77
|
+
"resultsToEvaluate": "computeClassLabels",
|
|
78
|
+
"resultsToCompute": "",
|
|
79
|
+
}
|
|
80
|
+
|
|
81
|
+
method = parse_auto_method(
|
|
82
|
+
estimator, estimator.algorithm, estimator.n_samples_fit_, n_features
|
|
83
|
+
)
|
|
84
|
+
predict_alg = prediction_algorithm(method, fptype, params)
|
|
85
|
+
prediction_result = predict_alg.compute(X, daal_model)
|
|
86
|
+
result = estimator.classes_.take(
|
|
87
|
+
np.asarray(prediction_result.prediction.ravel(), dtype=np.intp)
|
|
88
|
+
)
|
|
89
|
+
else:
|
|
90
|
+
result = base_predict(estimator, X)
|
|
91
|
+
|
|
92
|
+
return result
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
class KNeighborsClassifier(KNeighborsMixin, BaseClassifierMixin, NeighborsBase):
|
|
96
|
+
__doc__ = BaseKNeighborsClassifier.__doc__
|
|
97
|
+
|
|
98
|
+
@_deprecate_positional_args
|
|
99
|
+
def __init__(
|
|
100
|
+
self,
|
|
101
|
+
n_neighbors=5,
|
|
102
|
+
*,
|
|
103
|
+
weights="uniform",
|
|
104
|
+
algorithm="auto",
|
|
105
|
+
leaf_size=30,
|
|
106
|
+
p=2,
|
|
107
|
+
metric="minkowski",
|
|
108
|
+
metric_params=None,
|
|
109
|
+
n_jobs=None,
|
|
110
|
+
**kwargs,
|
|
111
|
+
):
|
|
112
|
+
super().__init__(
|
|
113
|
+
n_neighbors=n_neighbors,
|
|
114
|
+
algorithm=algorithm,
|
|
115
|
+
leaf_size=leaf_size,
|
|
116
|
+
metric=metric,
|
|
117
|
+
p=p,
|
|
118
|
+
metric_params=metric_params,
|
|
119
|
+
n_jobs=n_jobs,
|
|
120
|
+
**kwargs,
|
|
121
|
+
)
|
|
122
|
+
self.weights = (
|
|
123
|
+
weights if sklearn_check_version("1.0") else _check_weights(weights)
|
|
124
|
+
)
|
|
125
|
+
|
|
126
|
+
def fit(self, X, y):
|
|
127
|
+
return NeighborsBase._fit(self, X, y)
|
|
128
|
+
|
|
129
|
+
def predict(self, X):
|
|
130
|
+
return daal4py_classifier_predict(self, X, BaseKNeighborsClassifier.predict)
|
|
131
|
+
|
|
132
|
+
def predict_proba(self, X):
|
|
133
|
+
if sklearn_check_version("1.0"):
|
|
134
|
+
self._check_feature_names(X, reset=False)
|
|
135
|
+
return BaseKNeighborsClassifier.predict_proba(self, X)
|
|
136
|
+
|
|
137
|
+
fit.__doc__ = BaseKNeighborsClassifier.fit.__doc__
|
|
138
|
+
predict.__doc__ = BaseKNeighborsClassifier.predict.__doc__
|
|
139
|
+
predict_proba.__doc__ = BaseKNeighborsClassifier.predict_proba.__doc__
|