scikit-learn-intelex 2024.0.1__py310-none-win_amd64.whl → 2025.1.0__py310-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/_daal4py.cp310-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/doc/third-party-programs.txt +424 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mb/model_builders.py +377 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp310-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +248 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn}/cluster/__init__.py +3 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +597 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/__init__.py +4 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +524 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1397 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn}/linear_model/__init__.py +29 -30
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +272 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +325 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/manifold}/__init__.py +4 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +405 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +236 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +4 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/_models_info.py +13 -22
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/test_patching.py +10 -42
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/utils/_launch_algorithms.py +4 -5
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +503 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +139 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +74 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +734 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/linear_model → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils}/__init__.py +5 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +75 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +693 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/__init__.py +83 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_config.py +54 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_device_offload.py +222 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp310-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp310-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +160 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +110 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +564 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +115 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_base.py +38 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_policy.py +59 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_spmd_policy.py +30 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +125 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/tests/test_policy.py +76 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +125 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +146 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +122 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +154 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +126 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +414 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition}/__init__.py +3 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +204 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +186 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +198 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +727 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +258 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +329 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +249 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +250 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +767 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +25 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +153 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/svm.py +556 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +351 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +176 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/test_common.py +57 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +162 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +102 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/__init__.py +49 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +81 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/_dpep_helpers.py +56 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/validation.py +440 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/__init__.py +12 -7
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/_config.py +22 -16
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +126 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/_utils.py +42 -5
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +230 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +1 -2
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +18 -8
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +395 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -7
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +159 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/conftest.py +82 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +398 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -1
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +425 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +26 -6
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +242 -28
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +262 -180
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +39 -22
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +13 -1
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +482 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +425 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +341 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +413 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +24 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +167 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +134 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -1
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +21 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +5 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +3 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +5 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +1 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +236 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +54 -8
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +51 -151
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +46 -146
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +53 -95
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +16 -19
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/decomposition → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview}/__init__.py +1 -3
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/covariance}/__init__.py +19 -20
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +138 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +233 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/__init__.py +19 -18
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/ridge.py +424 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +1 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +21 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition}/__init__.py +3 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +4 -12
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +21 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_config.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +14 -18
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -1
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +339 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +172 -73
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +73 -66
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +171 -73
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +65 -62
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +12 -21
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +390 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +123 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +379 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +276 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +108 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +6 -8
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +385 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +321 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +44 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +371 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +82 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -1
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/METADATA +231 -230
- scikit_learn_intelex-2025.1.0.dist-info/RECORD +257 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/WHEEL +1 -1
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_device_offload.py +0 -223
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -18
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -31
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -18
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -28
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -373
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -18
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +0 -77
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -29
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/lof.py +0 -437
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -84
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -370
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +0 -376
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -188
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -225
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -210
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
- scikit_learn_intelex-2024.0.1.dist-info/RECORD +0 -90
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,767 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2022 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from abc import ABCMeta
|
|
18
|
+
from numbers import Integral
|
|
19
|
+
|
|
20
|
+
import numpy as np
|
|
21
|
+
|
|
22
|
+
from daal4py import (
|
|
23
|
+
bf_knn_classification_model,
|
|
24
|
+
bf_knn_classification_prediction,
|
|
25
|
+
bf_knn_classification_training,
|
|
26
|
+
kdtree_knn_classification_model,
|
|
27
|
+
kdtree_knn_classification_prediction,
|
|
28
|
+
kdtree_knn_classification_training,
|
|
29
|
+
)
|
|
30
|
+
|
|
31
|
+
from ..common._base import BaseEstimator
|
|
32
|
+
from ..common._estimator_checks import _check_is_fitted, _is_classifier, _is_regressor
|
|
33
|
+
from ..common._mixin import ClassifierMixin, RegressorMixin
|
|
34
|
+
from ..datatypes import _convert_to_supported, from_table, to_table
|
|
35
|
+
from ..utils import (
|
|
36
|
+
_check_array,
|
|
37
|
+
_check_classification_targets,
|
|
38
|
+
_check_n_features,
|
|
39
|
+
_check_X_y,
|
|
40
|
+
_column_or_1d,
|
|
41
|
+
_num_samples,
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class NeighborsCommonBase(BaseEstimator, metaclass=ABCMeta):
|
|
46
|
+
def _parse_auto_method(self, method, n_samples, n_features):
|
|
47
|
+
result_method = method
|
|
48
|
+
|
|
49
|
+
if method in ["auto", "ball_tree"]:
|
|
50
|
+
condition = (
|
|
51
|
+
self.n_neighbors is not None and self.n_neighbors >= n_samples // 2
|
|
52
|
+
)
|
|
53
|
+
if self.metric == "precomputed" or n_features > 15 or condition:
|
|
54
|
+
result_method = "brute"
|
|
55
|
+
else:
|
|
56
|
+
if self.metric == "euclidean":
|
|
57
|
+
result_method = "kd_tree"
|
|
58
|
+
else:
|
|
59
|
+
result_method = "brute"
|
|
60
|
+
|
|
61
|
+
return result_method
|
|
62
|
+
|
|
63
|
+
def _validate_data(
|
|
64
|
+
self, X, y=None, reset=True, validate_separately=False, **check_params
|
|
65
|
+
):
|
|
66
|
+
if y is None:
|
|
67
|
+
if self.requires_y:
|
|
68
|
+
raise ValueError(
|
|
69
|
+
f"This {self.__class__.__name__} estimator "
|
|
70
|
+
f"requires y to be passed, but the target y is None."
|
|
71
|
+
)
|
|
72
|
+
X = _check_array(X, **check_params)
|
|
73
|
+
out = X, y
|
|
74
|
+
else:
|
|
75
|
+
if validate_separately:
|
|
76
|
+
# We need this because some estimators validate X and y
|
|
77
|
+
# separately, and in general, separately calling _check_array()
|
|
78
|
+
# on X and y isn't equivalent to just calling _check_X_y()
|
|
79
|
+
# :(
|
|
80
|
+
check_X_params, check_y_params = validate_separately
|
|
81
|
+
X = _check_array(X, **check_X_params)
|
|
82
|
+
y = _check_array(y, **check_y_params)
|
|
83
|
+
else:
|
|
84
|
+
X, y = _check_X_y(X, y, **check_params)
|
|
85
|
+
out = X, y
|
|
86
|
+
|
|
87
|
+
if check_params.get("ensure_2d", True):
|
|
88
|
+
_check_n_features(self, X, reset=reset)
|
|
89
|
+
|
|
90
|
+
return out
|
|
91
|
+
|
|
92
|
+
def _get_weights(self, dist, weights):
|
|
93
|
+
if weights in (None, "uniform"):
|
|
94
|
+
return None
|
|
95
|
+
if weights == "distance":
|
|
96
|
+
# if user attempts to classify a point that was zero distance from one
|
|
97
|
+
# or more training points, those training points are weighted as 1.0
|
|
98
|
+
# and the other points as 0.0
|
|
99
|
+
if dist.dtype is np.dtype(object):
|
|
100
|
+
for point_dist_i, point_dist in enumerate(dist):
|
|
101
|
+
# check if point_dist is iterable
|
|
102
|
+
# (ex: RadiusNeighborClassifier.predict may set an element of
|
|
103
|
+
# dist to 1e-6 to represent an 'outlier')
|
|
104
|
+
if hasattr(point_dist, "__contains__") and 0.0 in point_dist:
|
|
105
|
+
dist[point_dist_i] = point_dist == 0.0
|
|
106
|
+
else:
|
|
107
|
+
dist[point_dist_i] = 1.0 / point_dist
|
|
108
|
+
else:
|
|
109
|
+
with np.errstate(divide="ignore"):
|
|
110
|
+
dist = 1.0 / dist
|
|
111
|
+
inf_mask = np.isinf(dist)
|
|
112
|
+
inf_row = np.any(inf_mask, axis=1)
|
|
113
|
+
dist[inf_row] = inf_mask[inf_row]
|
|
114
|
+
return dist
|
|
115
|
+
elif callable(weights):
|
|
116
|
+
return weights(dist)
|
|
117
|
+
else:
|
|
118
|
+
raise ValueError(
|
|
119
|
+
"weights not recognized: should be 'uniform', "
|
|
120
|
+
"'distance', or a callable function"
|
|
121
|
+
)
|
|
122
|
+
|
|
123
|
+
def _get_onedal_params(self, X, y=None, n_neighbors=None):
|
|
124
|
+
class_count = 0 if self.classes_ is None else len(self.classes_)
|
|
125
|
+
weights = getattr(self, "weights", "uniform")
|
|
126
|
+
if self.effective_metric_ == "manhattan":
|
|
127
|
+
p = 1.0
|
|
128
|
+
elif self.effective_metric_ == "euclidean":
|
|
129
|
+
p = 2.0
|
|
130
|
+
else:
|
|
131
|
+
p = self.p
|
|
132
|
+
return {
|
|
133
|
+
"fptype": "float" if X.dtype == np.float32 else "double",
|
|
134
|
+
"vote_weights": "uniform" if weights == "uniform" else "distance",
|
|
135
|
+
"method": self._fit_method,
|
|
136
|
+
"radius": self.radius,
|
|
137
|
+
"class_count": class_count,
|
|
138
|
+
"neighbor_count": self.n_neighbors if n_neighbors is None else n_neighbors,
|
|
139
|
+
"metric": self.effective_metric_,
|
|
140
|
+
"p": p,
|
|
141
|
+
"metric_params": self.effective_metric_params_,
|
|
142
|
+
"result_option": "indices|distances" if y is None else "responses",
|
|
143
|
+
}
|
|
144
|
+
|
|
145
|
+
def _get_daal_params(self, data, n_neighbors=None):
|
|
146
|
+
class_count = 0 if self.classes_ is None else len(self.classes_)
|
|
147
|
+
weights = getattr(self, "weights", "uniform")
|
|
148
|
+
params = {
|
|
149
|
+
"fptype": "float" if data.dtype == np.float32 else "double",
|
|
150
|
+
"method": "defaultDense",
|
|
151
|
+
"k": self.n_neighbors if n_neighbors is None else n_neighbors,
|
|
152
|
+
"voteWeights": "voteUniform" if weights == "uniform" else "voteDistance",
|
|
153
|
+
"resultsToCompute": "computeIndicesOfNeighbors|computeDistances",
|
|
154
|
+
"resultsToEvaluate": (
|
|
155
|
+
"none"
|
|
156
|
+
if getattr(self, "_y", None) is None or _is_regressor(self)
|
|
157
|
+
else "computeClassLabels"
|
|
158
|
+
),
|
|
159
|
+
}
|
|
160
|
+
if class_count != 0:
|
|
161
|
+
params["nClasses"] = class_count
|
|
162
|
+
return params
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
class NeighborsBase(NeighborsCommonBase, metaclass=ABCMeta):
|
|
166
|
+
def __init__(
|
|
167
|
+
self,
|
|
168
|
+
n_neighbors=None,
|
|
169
|
+
radius=None,
|
|
170
|
+
algorithm="auto",
|
|
171
|
+
metric="minkowski",
|
|
172
|
+
p=2,
|
|
173
|
+
metric_params=None,
|
|
174
|
+
):
|
|
175
|
+
self.n_neighbors = n_neighbors
|
|
176
|
+
self.radius = radius
|
|
177
|
+
self.algorithm = algorithm
|
|
178
|
+
self.metric = metric
|
|
179
|
+
self.p = p
|
|
180
|
+
self.metric_params = metric_params
|
|
181
|
+
|
|
182
|
+
def _validate_targets(self, y, dtype):
|
|
183
|
+
arr = _column_or_1d(y, warn=True)
|
|
184
|
+
|
|
185
|
+
try:
|
|
186
|
+
return arr.astype(dtype, copy=False)
|
|
187
|
+
except ValueError:
|
|
188
|
+
return arr
|
|
189
|
+
|
|
190
|
+
def _validate_n_classes(self):
|
|
191
|
+
if len(self.classes_) < 2:
|
|
192
|
+
raise ValueError(
|
|
193
|
+
"The number of classes has to be greater than one; got %d"
|
|
194
|
+
" class" % len(self.classes_)
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
def _fit(self, X, y, queue):
|
|
198
|
+
self._onedal_model = None
|
|
199
|
+
self._tree = None
|
|
200
|
+
self._shape = None
|
|
201
|
+
self.classes_ = None
|
|
202
|
+
self.effective_metric_ = getattr(self, "effective_metric_", self.metric)
|
|
203
|
+
self.effective_metric_params_ = getattr(
|
|
204
|
+
self, "effective_metric_params_", self.metric_params
|
|
205
|
+
)
|
|
206
|
+
|
|
207
|
+
if y is not None or self.requires_y:
|
|
208
|
+
shape = getattr(y, "shape", None)
|
|
209
|
+
X, y = super()._validate_data(
|
|
210
|
+
X, y, dtype=[np.float64, np.float32], accept_sparse="csr"
|
|
211
|
+
)
|
|
212
|
+
self._shape = shape if shape is not None else y.shape
|
|
213
|
+
|
|
214
|
+
if _is_classifier(self):
|
|
215
|
+
if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1:
|
|
216
|
+
self.outputs_2d_ = False
|
|
217
|
+
y = y.reshape((-1, 1))
|
|
218
|
+
else:
|
|
219
|
+
self.outputs_2d_ = True
|
|
220
|
+
|
|
221
|
+
_check_classification_targets(y)
|
|
222
|
+
self.classes_ = []
|
|
223
|
+
self._y = np.empty(y.shape, dtype=int)
|
|
224
|
+
for k in range(self._y.shape[1]):
|
|
225
|
+
classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True)
|
|
226
|
+
self.classes_.append(classes)
|
|
227
|
+
|
|
228
|
+
if not self.outputs_2d_:
|
|
229
|
+
self.classes_ = self.classes_[0]
|
|
230
|
+
self._y = self._y.ravel()
|
|
231
|
+
|
|
232
|
+
self._validate_n_classes()
|
|
233
|
+
else:
|
|
234
|
+
self._y = y
|
|
235
|
+
else:
|
|
236
|
+
X, _ = super()._validate_data(X, dtype=[np.float64, np.float32])
|
|
237
|
+
|
|
238
|
+
self.n_samples_fit_ = X.shape[0]
|
|
239
|
+
self.n_features_in_ = X.shape[1]
|
|
240
|
+
self._fit_X = X
|
|
241
|
+
|
|
242
|
+
if self.n_neighbors is not None:
|
|
243
|
+
if self.n_neighbors <= 0:
|
|
244
|
+
raise ValueError("Expected n_neighbors > 0. Got %d" % self.n_neighbors)
|
|
245
|
+
if not isinstance(self.n_neighbors, Integral):
|
|
246
|
+
raise TypeError(
|
|
247
|
+
"n_neighbors does not take %s value, "
|
|
248
|
+
"enter integer value" % type(self.n_neighbors)
|
|
249
|
+
)
|
|
250
|
+
|
|
251
|
+
self._fit_method = super()._parse_auto_method(
|
|
252
|
+
self.algorithm, self.n_samples_fit_, self.n_features_in_
|
|
253
|
+
)
|
|
254
|
+
|
|
255
|
+
_fit_y = None
|
|
256
|
+
gpu_device = queue is not None and queue.sycl_device.is_gpu
|
|
257
|
+
|
|
258
|
+
if _is_classifier(self) or (_is_regressor(self) and gpu_device):
|
|
259
|
+
_fit_y = self._validate_targets(self._y, X.dtype).reshape((-1, 1))
|
|
260
|
+
result = self._onedal_fit(X, _fit_y, queue)
|
|
261
|
+
|
|
262
|
+
if y is not None and _is_regressor(self):
|
|
263
|
+
self._y = y if self._shape is None else y.reshape(self._shape)
|
|
264
|
+
|
|
265
|
+
self._onedal_model = result
|
|
266
|
+
result = self
|
|
267
|
+
|
|
268
|
+
return result
|
|
269
|
+
|
|
270
|
+
def _kneighbors(self, X=None, n_neighbors=None, return_distance=True, queue=None):
|
|
271
|
+
n_features = getattr(self, "n_features_in_", None)
|
|
272
|
+
shape = getattr(X, "shape", None)
|
|
273
|
+
if n_features and shape and len(shape) > 1 and shape[1] != n_features:
|
|
274
|
+
raise ValueError(
|
|
275
|
+
(
|
|
276
|
+
f"X has {X.shape[1]} features, "
|
|
277
|
+
f"but kneighbors is expecting "
|
|
278
|
+
f"{n_features} features as input"
|
|
279
|
+
)
|
|
280
|
+
)
|
|
281
|
+
|
|
282
|
+
_check_is_fitted(self)
|
|
283
|
+
|
|
284
|
+
if n_neighbors is None:
|
|
285
|
+
n_neighbors = self.n_neighbors
|
|
286
|
+
elif n_neighbors <= 0:
|
|
287
|
+
raise ValueError("Expected n_neighbors > 0. Got %d" % n_neighbors)
|
|
288
|
+
else:
|
|
289
|
+
if not isinstance(n_neighbors, Integral):
|
|
290
|
+
raise TypeError(
|
|
291
|
+
"n_neighbors does not take %s value, "
|
|
292
|
+
"enter integer value" % type(n_neighbors)
|
|
293
|
+
)
|
|
294
|
+
|
|
295
|
+
if X is not None:
|
|
296
|
+
query_is_train = False
|
|
297
|
+
X = _check_array(X, accept_sparse="csr", dtype=[np.float64, np.float32])
|
|
298
|
+
else:
|
|
299
|
+
query_is_train = True
|
|
300
|
+
X = self._fit_X
|
|
301
|
+
# Include an extra neighbor to account for the sample itself being
|
|
302
|
+
# returned, which is removed later
|
|
303
|
+
n_neighbors += 1
|
|
304
|
+
|
|
305
|
+
n_samples_fit = self.n_samples_fit_
|
|
306
|
+
if n_neighbors > n_samples_fit:
|
|
307
|
+
if query_is_train:
|
|
308
|
+
n_neighbors -= 1 # ok to modify inplace because an error is raised
|
|
309
|
+
inequality_str = "n_neighbors < n_samples_fit"
|
|
310
|
+
else:
|
|
311
|
+
inequality_str = "n_neighbors <= n_samples_fit"
|
|
312
|
+
raise ValueError(
|
|
313
|
+
f"Expected {inequality_str}, but "
|
|
314
|
+
f"n_neighbors = {n_neighbors}, n_samples_fit = {n_samples_fit}, "
|
|
315
|
+
f"n_samples = {X.shape[0]}" # include n_samples for common tests
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
chunked_results = None
|
|
319
|
+
method = super()._parse_auto_method(
|
|
320
|
+
self._fit_method, self.n_samples_fit_, n_features
|
|
321
|
+
)
|
|
322
|
+
|
|
323
|
+
if (
|
|
324
|
+
type(self._onedal_model) is kdtree_knn_classification_model
|
|
325
|
+
or type(self._onedal_model) is bf_knn_classification_model
|
|
326
|
+
):
|
|
327
|
+
params = super()._get_daal_params(X, n_neighbors=n_neighbors)
|
|
328
|
+
prediction_results = self._onedal_predict(
|
|
329
|
+
self._onedal_model, X, params, queue=queue
|
|
330
|
+
)
|
|
331
|
+
distances = prediction_results.distances
|
|
332
|
+
indices = prediction_results.indices
|
|
333
|
+
else:
|
|
334
|
+
params = super()._get_onedal_params(X, n_neighbors=n_neighbors)
|
|
335
|
+
prediction_results = self._onedal_predict(
|
|
336
|
+
self._onedal_model, X, params, queue=queue
|
|
337
|
+
)
|
|
338
|
+
distances = from_table(prediction_results.distances)
|
|
339
|
+
indices = from_table(prediction_results.indices)
|
|
340
|
+
|
|
341
|
+
if method == "kd_tree":
|
|
342
|
+
for i in range(distances.shape[0]):
|
|
343
|
+
seq = distances[i].argsort()
|
|
344
|
+
indices[i] = indices[i][seq]
|
|
345
|
+
distances[i] = distances[i][seq]
|
|
346
|
+
|
|
347
|
+
if return_distance:
|
|
348
|
+
results = distances, indices
|
|
349
|
+
else:
|
|
350
|
+
results = indices
|
|
351
|
+
|
|
352
|
+
if chunked_results is not None:
|
|
353
|
+
if return_distance:
|
|
354
|
+
neigh_dist, neigh_ind = zip(*chunked_results)
|
|
355
|
+
results = np.vstack(neigh_dist), np.vstack(neigh_ind)
|
|
356
|
+
else:
|
|
357
|
+
results = np.vstack(chunked_results)
|
|
358
|
+
|
|
359
|
+
if not query_is_train:
|
|
360
|
+
return results
|
|
361
|
+
|
|
362
|
+
# If the query data is the same as the indexed data, we would like
|
|
363
|
+
# to ignore the first nearest neighbor of every sample, i.e
|
|
364
|
+
# the sample itself.
|
|
365
|
+
if return_distance:
|
|
366
|
+
neigh_dist, neigh_ind = results
|
|
367
|
+
else:
|
|
368
|
+
neigh_ind = results
|
|
369
|
+
|
|
370
|
+
n_queries, _ = X.shape
|
|
371
|
+
sample_range = np.arange(n_queries)[:, None]
|
|
372
|
+
sample_mask = neigh_ind != sample_range
|
|
373
|
+
|
|
374
|
+
# Corner case: When the number of duplicates are more
|
|
375
|
+
# than the number of neighbors, the first NN will not
|
|
376
|
+
# be the sample, but a duplicate.
|
|
377
|
+
# In that case mask the first duplicate.
|
|
378
|
+
dup_gr_nbrs = np.all(sample_mask, axis=1)
|
|
379
|
+
sample_mask[:, 0][dup_gr_nbrs] = False
|
|
380
|
+
|
|
381
|
+
neigh_ind = np.reshape(neigh_ind[sample_mask], (n_queries, n_neighbors - 1))
|
|
382
|
+
|
|
383
|
+
if return_distance:
|
|
384
|
+
neigh_dist = np.reshape(neigh_dist[sample_mask], (n_queries, n_neighbors - 1))
|
|
385
|
+
return neigh_dist, neigh_ind
|
|
386
|
+
return neigh_ind
|
|
387
|
+
|
|
388
|
+
|
|
389
|
+
class KNeighborsClassifier(NeighborsBase, ClassifierMixin):
|
|
390
|
+
def __init__(
|
|
391
|
+
self,
|
|
392
|
+
n_neighbors=5,
|
|
393
|
+
*,
|
|
394
|
+
weights="uniform",
|
|
395
|
+
algorithm="auto",
|
|
396
|
+
p=2,
|
|
397
|
+
metric="minkowski",
|
|
398
|
+
metric_params=None,
|
|
399
|
+
**kwargs,
|
|
400
|
+
):
|
|
401
|
+
super().__init__(
|
|
402
|
+
n_neighbors=n_neighbors,
|
|
403
|
+
algorithm=algorithm,
|
|
404
|
+
metric=metric,
|
|
405
|
+
p=p,
|
|
406
|
+
metric_params=metric_params,
|
|
407
|
+
**kwargs,
|
|
408
|
+
)
|
|
409
|
+
self.weights = weights
|
|
410
|
+
|
|
411
|
+
def _get_daal_params(self, data):
|
|
412
|
+
params = super()._get_daal_params(data)
|
|
413
|
+
params["resultsToEvaluate"] = "computeClassLabels"
|
|
414
|
+
params["resultsToCompute"] = ""
|
|
415
|
+
return params
|
|
416
|
+
|
|
417
|
+
def _onedal_fit(self, X, y, queue):
|
|
418
|
+
gpu_device = queue is not None and queue.sycl_device.is_gpu
|
|
419
|
+
if self.effective_metric_ == "euclidean" and not gpu_device:
|
|
420
|
+
params = self._get_daal_params(X)
|
|
421
|
+
if self._fit_method == "brute":
|
|
422
|
+
train_alg = bf_knn_classification_training
|
|
423
|
+
|
|
424
|
+
else:
|
|
425
|
+
train_alg = kdtree_knn_classification_training
|
|
426
|
+
|
|
427
|
+
return train_alg(**params).compute(X, y).model
|
|
428
|
+
|
|
429
|
+
policy = self._get_policy(queue, X, y)
|
|
430
|
+
X, y = _convert_to_supported(policy, X, y)
|
|
431
|
+
params = self._get_onedal_params(X, y)
|
|
432
|
+
train_alg = self._get_backend(
|
|
433
|
+
"neighbors", "classification", "train", policy, params, *to_table(X, y)
|
|
434
|
+
)
|
|
435
|
+
|
|
436
|
+
return train_alg.model
|
|
437
|
+
|
|
438
|
+
def _onedal_predict(self, model, X, params, queue):
|
|
439
|
+
if type(self._onedal_model) is kdtree_knn_classification_model:
|
|
440
|
+
return kdtree_knn_classification_prediction(**params).compute(X, model)
|
|
441
|
+
elif type(self._onedal_model) is bf_knn_classification_model:
|
|
442
|
+
return bf_knn_classification_prediction(**params).compute(X, model)
|
|
443
|
+
|
|
444
|
+
policy = self._get_policy(queue, X)
|
|
445
|
+
X = _convert_to_supported(policy, X)
|
|
446
|
+
if hasattr(self, "_onedal_model"):
|
|
447
|
+
model = self._onedal_model
|
|
448
|
+
else:
|
|
449
|
+
model = self._create_model(
|
|
450
|
+
self._get_backend("neighbors", "classification", None)
|
|
451
|
+
)
|
|
452
|
+
if "responses" not in params["result_option"]:
|
|
453
|
+
params["result_option"] += "|responses"
|
|
454
|
+
params["fptype"] = "float" if X.dtype == np.float32 else "double"
|
|
455
|
+
result = self._get_backend(
|
|
456
|
+
"neighbors", "classification", "infer", policy, params, model, to_table(X)
|
|
457
|
+
)
|
|
458
|
+
|
|
459
|
+
return result
|
|
460
|
+
|
|
461
|
+
def fit(self, X, y, queue=None):
|
|
462
|
+
return super()._fit(X, y, queue=queue)
|
|
463
|
+
|
|
464
|
+
def predict(self, X, queue=None):
|
|
465
|
+
X = _check_array(X, accept_sparse="csr", dtype=[np.float64, np.float32])
|
|
466
|
+
onedal_model = getattr(self, "_onedal_model", None)
|
|
467
|
+
n_features = getattr(self, "n_features_in_", None)
|
|
468
|
+
n_samples_fit_ = getattr(self, "n_samples_fit_", None)
|
|
469
|
+
shape = getattr(X, "shape", None)
|
|
470
|
+
if n_features and shape and len(shape) > 1 and shape[1] != n_features:
|
|
471
|
+
raise ValueError(
|
|
472
|
+
(
|
|
473
|
+
f"X has {X.shape[1]} features, "
|
|
474
|
+
f"but KNNClassifier is expecting "
|
|
475
|
+
f"{n_features} features as input"
|
|
476
|
+
)
|
|
477
|
+
)
|
|
478
|
+
|
|
479
|
+
_check_is_fitted(self)
|
|
480
|
+
|
|
481
|
+
self._fit_method = super()._parse_auto_method(
|
|
482
|
+
self.algorithm, n_samples_fit_, n_features
|
|
483
|
+
)
|
|
484
|
+
|
|
485
|
+
self._validate_n_classes()
|
|
486
|
+
|
|
487
|
+
if (
|
|
488
|
+
type(onedal_model) is kdtree_knn_classification_model
|
|
489
|
+
or type(onedal_model) is bf_knn_classification_model
|
|
490
|
+
):
|
|
491
|
+
params = self._get_daal_params(X)
|
|
492
|
+
prediction_result = self._onedal_predict(onedal_model, X, params, queue=queue)
|
|
493
|
+
responses = prediction_result.prediction
|
|
494
|
+
else:
|
|
495
|
+
params = self._get_onedal_params(X)
|
|
496
|
+
prediction_result = self._onedal_predict(onedal_model, X, params, queue=queue)
|
|
497
|
+
responses = from_table(prediction_result.responses)
|
|
498
|
+
|
|
499
|
+
result = self.classes_.take(np.asarray(responses.ravel(), dtype=np.intp))
|
|
500
|
+
return result
|
|
501
|
+
|
|
502
|
+
def predict_proba(self, X, queue=None):
|
|
503
|
+
neigh_dist, neigh_ind = self.kneighbors(X, queue=queue)
|
|
504
|
+
|
|
505
|
+
classes_ = self.classes_
|
|
506
|
+
_y = self._y
|
|
507
|
+
if not self.outputs_2d_:
|
|
508
|
+
_y = self._y.reshape((-1, 1))
|
|
509
|
+
classes_ = [self.classes_]
|
|
510
|
+
|
|
511
|
+
n_queries = _num_samples(X)
|
|
512
|
+
|
|
513
|
+
weights = self._get_weights(neigh_dist, self.weights)
|
|
514
|
+
if weights is None:
|
|
515
|
+
weights = np.ones_like(neigh_ind)
|
|
516
|
+
|
|
517
|
+
all_rows = np.arange(n_queries)
|
|
518
|
+
probabilities = []
|
|
519
|
+
for k, classes_k in enumerate(classes_):
|
|
520
|
+
pred_labels = _y[:, k][neigh_ind]
|
|
521
|
+
proba_k = np.zeros((n_queries, classes_k.size))
|
|
522
|
+
|
|
523
|
+
# a simple ':' index doesn't work right
|
|
524
|
+
for i, idx in enumerate(pred_labels.T): # loop is O(n_neighbors)
|
|
525
|
+
proba_k[all_rows, idx] += weights[:, i]
|
|
526
|
+
|
|
527
|
+
# normalize 'votes' into real [0,1] probabilities
|
|
528
|
+
normalizer = proba_k.sum(axis=1)[:, np.newaxis]
|
|
529
|
+
normalizer[normalizer == 0.0] = 1.0
|
|
530
|
+
proba_k /= normalizer
|
|
531
|
+
|
|
532
|
+
probabilities.append(proba_k)
|
|
533
|
+
|
|
534
|
+
if not self.outputs_2d_:
|
|
535
|
+
probabilities = probabilities[0]
|
|
536
|
+
|
|
537
|
+
return probabilities
|
|
538
|
+
|
|
539
|
+
def kneighbors(self, X=None, n_neighbors=None, return_distance=True, queue=None):
|
|
540
|
+
return super()._kneighbors(X, n_neighbors, return_distance, queue=queue)
|
|
541
|
+
|
|
542
|
+
|
|
543
|
+
class KNeighborsRegressor(NeighborsBase, RegressorMixin):
|
|
544
|
+
def __init__(
|
|
545
|
+
self,
|
|
546
|
+
n_neighbors=5,
|
|
547
|
+
*,
|
|
548
|
+
weights="uniform",
|
|
549
|
+
algorithm="auto",
|
|
550
|
+
p=2,
|
|
551
|
+
metric="minkowski",
|
|
552
|
+
metric_params=None,
|
|
553
|
+
**kwargs,
|
|
554
|
+
):
|
|
555
|
+
super().__init__(
|
|
556
|
+
n_neighbors=n_neighbors,
|
|
557
|
+
algorithm=algorithm,
|
|
558
|
+
metric=metric,
|
|
559
|
+
p=p,
|
|
560
|
+
metric_params=metric_params,
|
|
561
|
+
**kwargs,
|
|
562
|
+
)
|
|
563
|
+
self.weights = weights
|
|
564
|
+
|
|
565
|
+
def _get_onedal_params(self, X, y=None):
|
|
566
|
+
params = super()._get_onedal_params(X, y)
|
|
567
|
+
return params
|
|
568
|
+
|
|
569
|
+
def _get_daal_params(self, data):
|
|
570
|
+
params = super()._get_daal_params(data)
|
|
571
|
+
params["resultsToCompute"] = "computeIndicesOfNeighbors|computeDistances"
|
|
572
|
+
params["resultsToEvaluate"] = "none"
|
|
573
|
+
return params
|
|
574
|
+
|
|
575
|
+
def _onedal_fit(self, X, y, queue):
|
|
576
|
+
gpu_device = queue is not None and queue.sycl_device.is_gpu
|
|
577
|
+
if self.effective_metric_ == "euclidean" and not gpu_device:
|
|
578
|
+
params = self._get_daal_params(X)
|
|
579
|
+
if self._fit_method == "brute":
|
|
580
|
+
train_alg = bf_knn_classification_training
|
|
581
|
+
|
|
582
|
+
else:
|
|
583
|
+
train_alg = kdtree_knn_classification_training
|
|
584
|
+
|
|
585
|
+
return train_alg(**params).compute(X, y).model
|
|
586
|
+
|
|
587
|
+
policy = self._get_policy(queue, X, y)
|
|
588
|
+
X, y = _convert_to_supported(policy, X, y)
|
|
589
|
+
params = self._get_onedal_params(X, y)
|
|
590
|
+
train_alg_regr = self._get_backend("neighbors", "regression", None)
|
|
591
|
+
train_alg_srch = self._get_backend("neighbors", "search", None)
|
|
592
|
+
|
|
593
|
+
if gpu_device:
|
|
594
|
+
return train_alg_regr.train(policy, params, *to_table(X, y)).model
|
|
595
|
+
return train_alg_srch.train(policy, params, to_table(X)).model
|
|
596
|
+
|
|
597
|
+
def _onedal_predict(self, model, X, params, queue):
|
|
598
|
+
if type(model) is kdtree_knn_classification_model:
|
|
599
|
+
return kdtree_knn_classification_prediction(**params).compute(X, model)
|
|
600
|
+
elif type(model) is bf_knn_classification_model:
|
|
601
|
+
return bf_knn_classification_prediction(**params).compute(X, model)
|
|
602
|
+
|
|
603
|
+
gpu_device = queue is not None and queue.sycl_device.is_gpu
|
|
604
|
+
policy = self._get_policy(queue, X)
|
|
605
|
+
X = _convert_to_supported(policy, X)
|
|
606
|
+
backend = (
|
|
607
|
+
self._get_backend("neighbors", "regression", None)
|
|
608
|
+
if gpu_device
|
|
609
|
+
else self._get_backend("neighbors", "search", None)
|
|
610
|
+
)
|
|
611
|
+
|
|
612
|
+
if hasattr(self, "_onedal_model"):
|
|
613
|
+
model = self._onedal_model
|
|
614
|
+
else:
|
|
615
|
+
model = self._create_model(backend)
|
|
616
|
+
if "responses" not in params["result_option"] and gpu_device:
|
|
617
|
+
params["result_option"] += "|responses"
|
|
618
|
+
params["fptype"] = "float" if X.dtype == np.float32 else "double"
|
|
619
|
+
result = backend.infer(policy, params, model, to_table(X))
|
|
620
|
+
|
|
621
|
+
return result
|
|
622
|
+
|
|
623
|
+
def fit(self, X, y, queue=None):
|
|
624
|
+
return super()._fit(X, y, queue=queue)
|
|
625
|
+
|
|
626
|
+
def kneighbors(self, X=None, n_neighbors=None, return_distance=True, queue=None):
|
|
627
|
+
return super()._kneighbors(X, n_neighbors, return_distance, queue=queue)
|
|
628
|
+
|
|
629
|
+
def _predict_gpu(self, X, queue=None):
|
|
630
|
+
X = _check_array(X, accept_sparse="csr", dtype=[np.float64, np.float32])
|
|
631
|
+
onedal_model = getattr(self, "_onedal_model", None)
|
|
632
|
+
n_features = getattr(self, "n_features_in_", None)
|
|
633
|
+
n_samples_fit_ = getattr(self, "n_samples_fit_", None)
|
|
634
|
+
shape = getattr(X, "shape", None)
|
|
635
|
+
if n_features and shape and len(shape) > 1 and shape[1] != n_features:
|
|
636
|
+
raise ValueError(
|
|
637
|
+
(
|
|
638
|
+
f"X has {X.shape[1]} features, "
|
|
639
|
+
f"but KNNClassifier is expecting "
|
|
640
|
+
f"{n_features} features as input"
|
|
641
|
+
)
|
|
642
|
+
)
|
|
643
|
+
|
|
644
|
+
_check_is_fitted(self)
|
|
645
|
+
|
|
646
|
+
self._fit_method = super()._parse_auto_method(
|
|
647
|
+
self.algorithm, n_samples_fit_, n_features
|
|
648
|
+
)
|
|
649
|
+
|
|
650
|
+
params = self._get_onedal_params(X)
|
|
651
|
+
|
|
652
|
+
prediction_result = self._onedal_predict(onedal_model, X, params, queue=queue)
|
|
653
|
+
responses = from_table(prediction_result.responses)
|
|
654
|
+
result = responses.ravel()
|
|
655
|
+
|
|
656
|
+
return result
|
|
657
|
+
|
|
658
|
+
def _predict_skl(self, X, queue=None):
|
|
659
|
+
neigh_dist, neigh_ind = self.kneighbors(X, queue=queue)
|
|
660
|
+
|
|
661
|
+
weights = self._get_weights(neigh_dist, self.weights)
|
|
662
|
+
|
|
663
|
+
_y = self._y
|
|
664
|
+
if _y.ndim == 1:
|
|
665
|
+
_y = _y.reshape((-1, 1))
|
|
666
|
+
|
|
667
|
+
if weights is None:
|
|
668
|
+
y_pred = np.mean(_y[neigh_ind], axis=1)
|
|
669
|
+
else:
|
|
670
|
+
y_pred = np.empty((X.shape[0], _y.shape[1]), dtype=np.float64)
|
|
671
|
+
denom = np.sum(weights, axis=1)
|
|
672
|
+
|
|
673
|
+
for j in range(_y.shape[1]):
|
|
674
|
+
num = np.sum(_y[neigh_ind, j] * weights, axis=1)
|
|
675
|
+
y_pred[:, j] = num / denom
|
|
676
|
+
|
|
677
|
+
if self._y.ndim == 1:
|
|
678
|
+
y_pred = y_pred.ravel()
|
|
679
|
+
|
|
680
|
+
return y_pred
|
|
681
|
+
|
|
682
|
+
def predict(self, X, queue=None):
|
|
683
|
+
gpu_device = queue is not None and queue.sycl_device.is_gpu
|
|
684
|
+
is_uniform_weights = getattr(self, "weights", "uniform") == "uniform"
|
|
685
|
+
return (
|
|
686
|
+
self._predict_gpu(X, queue=queue)
|
|
687
|
+
if gpu_device and is_uniform_weights
|
|
688
|
+
else self._predict_skl(X, queue=queue)
|
|
689
|
+
)
|
|
690
|
+
|
|
691
|
+
|
|
692
|
+
class NearestNeighbors(NeighborsBase):
|
|
693
|
+
def __init__(
|
|
694
|
+
self,
|
|
695
|
+
n_neighbors=5,
|
|
696
|
+
*,
|
|
697
|
+
weights="uniform",
|
|
698
|
+
algorithm="auto",
|
|
699
|
+
p=2,
|
|
700
|
+
metric="minkowski",
|
|
701
|
+
metric_params=None,
|
|
702
|
+
**kwargs,
|
|
703
|
+
):
|
|
704
|
+
super().__init__(
|
|
705
|
+
n_neighbors=n_neighbors,
|
|
706
|
+
algorithm=algorithm,
|
|
707
|
+
metric=metric,
|
|
708
|
+
p=p,
|
|
709
|
+
metric_params=metric_params,
|
|
710
|
+
**kwargs,
|
|
711
|
+
)
|
|
712
|
+
self.weights = weights
|
|
713
|
+
|
|
714
|
+
def _get_daal_params(self, data):
|
|
715
|
+
params = super()._get_daal_params(data)
|
|
716
|
+
params["resultsToCompute"] = "computeIndicesOfNeighbors|computeDistances"
|
|
717
|
+
params["resultsToEvaluate"] = (
|
|
718
|
+
"none" if getattr(self, "_y", None) is None else "computeClassLabels"
|
|
719
|
+
)
|
|
720
|
+
return params
|
|
721
|
+
|
|
722
|
+
def _onedal_fit(self, X, y, queue):
|
|
723
|
+
gpu_device = queue is not None and queue.sycl_device.is_gpu
|
|
724
|
+
if self.effective_metric_ == "euclidean" and not gpu_device:
|
|
725
|
+
params = self._get_daal_params(X)
|
|
726
|
+
if self._fit_method == "brute":
|
|
727
|
+
train_alg = bf_knn_classification_training
|
|
728
|
+
|
|
729
|
+
else:
|
|
730
|
+
train_alg = kdtree_knn_classification_training
|
|
731
|
+
|
|
732
|
+
return train_alg(**params).compute(X, y).model
|
|
733
|
+
|
|
734
|
+
policy = self._get_policy(queue, X, y)
|
|
735
|
+
X, y = _convert_to_supported(policy, X, y)
|
|
736
|
+
params = self._get_onedal_params(X, y)
|
|
737
|
+
train_alg = self._get_backend(
|
|
738
|
+
"neighbors", "search", "train", policy, params, to_table(X)
|
|
739
|
+
)
|
|
740
|
+
|
|
741
|
+
return train_alg.model
|
|
742
|
+
|
|
743
|
+
def _onedal_predict(self, model, X, params, queue):
|
|
744
|
+
if type(self._onedal_model) is kdtree_knn_classification_model:
|
|
745
|
+
return kdtree_knn_classification_prediction(**params).compute(X, model)
|
|
746
|
+
elif type(self._onedal_model) is bf_knn_classification_model:
|
|
747
|
+
return bf_knn_classification_prediction(**params).compute(X, model)
|
|
748
|
+
|
|
749
|
+
policy = self._get_policy(queue, X)
|
|
750
|
+
X = _convert_to_supported(policy, X)
|
|
751
|
+
if hasattr(self, "_onedal_model"):
|
|
752
|
+
model = self._onedal_model
|
|
753
|
+
else:
|
|
754
|
+
model = self._create_model(self._get_backend("neighbors", "search", None))
|
|
755
|
+
|
|
756
|
+
params["fptype"] = "float" if X.dtype == np.float32 else "double"
|
|
757
|
+
result = self._get_backend(
|
|
758
|
+
"neighbors", "search", "infer", policy, params, model, to_table(X)
|
|
759
|
+
)
|
|
760
|
+
|
|
761
|
+
return result
|
|
762
|
+
|
|
763
|
+
def fit(self, X, y, queue=None):
|
|
764
|
+
return super()._fit(X, y, queue=queue)
|
|
765
|
+
|
|
766
|
+
def kneighbors(self, X=None, n_neighbors=None, return_distance=True, queue=None):
|
|
767
|
+
return super()._kneighbors(X, n_neighbors, return_distance, queue=queue)
|