scikit-learn-intelex 2023.2.1__py39-none-win_amd64.whl → 2024.0.1__py39-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__init__.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__main__.py +16 -12
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_config.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_device_offload.py +90 -56
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_utils.py +95 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +4 -4
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +187 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +12 -6
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +5 -5
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +5 -4
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/dispatcher.py +102 -72
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/ensemble/__init__.py +12 -4
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1947 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +118 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +31 -16
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +21 -14
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +10 -10
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +2 -2
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/linear_model/linear.py +173 -83
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +23 -7
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +4 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +4 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +5 -5
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +8 -6
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +6 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +9 -5
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +100 -77
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +331 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +307 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +116 -58
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/lof.py +118 -56
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +85 -0
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/decomposition → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview}/__init__.py +18 -20
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +7 -7
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +104 -73
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +4 -1
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +128 -100
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_preview_linear.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +18 -16
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd}/__init__.py +24 -22
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +11 -5
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +50 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +16 -14
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +11 -8
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/_common.py +56 -56
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +110 -55
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +65 -31
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svc.py +136 -78
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svr.py +65 -31
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +102 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +170 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +9 -8
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +63 -69
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +55 -53
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +50 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +8 -7
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +428 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +39 -39
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +3 -3
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/parallel.py +59 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/validation.py +2 -2
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/METADATA +34 -35
- scikit_learn_intelex-2024.0.1.dist-info/RECORD +90 -0
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/_utils.py +0 -82
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -18
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -20
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/forest.py +0 -18
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -46
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -228
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +0 -213
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -57
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/__init__.py +0 -18
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -28
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/extra_trees.py +0 -1261
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/forest.py +0 -1155
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/tests/test_preview_ensemble.py +0 -67
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model/_common.py +0 -66
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -23
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -63
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -159
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -383
- scikit_learn_intelex-2023.2.1.dist-info/RECORD +0 -95
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/top_level.txt +0 -0
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
|
-
|
|
2
|
+
# ===============================================================================
|
|
3
3
|
# Copyright 2021 Intel Corporation
|
|
4
4
|
#
|
|
5
5
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -13,7 +13,7 @@
|
|
|
13
13
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
14
|
# See the License for the specific language governing permissions and
|
|
15
15
|
# limitations under the License.
|
|
16
|
-
|
|
16
|
+
# ===============================================================================
|
|
17
17
|
|
|
18
18
|
import numpy as np
|
|
19
19
|
from numpy.testing import assert_allclose
|
|
@@ -21,18 +21,20 @@ from sklearn.datasets import load_breast_cancer
|
|
|
21
21
|
|
|
22
22
|
|
|
23
23
|
def test_sklearnex_import_roc_auc():
|
|
24
|
-
from sklearnex.metrics import roc_auc_score
|
|
25
24
|
from sklearnex.linear_model import LogisticRegression
|
|
25
|
+
from sklearnex.metrics import roc_auc_score
|
|
26
|
+
|
|
26
27
|
X, y = load_breast_cancer(return_X_y=True)
|
|
27
|
-
clf = LogisticRegression(solver=
|
|
28
|
+
clf = LogisticRegression(solver="liblinear", random_state=0).fit(X, y)
|
|
28
29
|
res = roc_auc_score(y, clf.decision_function(X))
|
|
29
30
|
assert_allclose(res, 0.99, atol=1e-2)
|
|
30
31
|
|
|
31
32
|
|
|
32
33
|
def test_sklearnex_import_pairwise_distances():
|
|
33
34
|
from sklearnex.metrics import pairwise_distances
|
|
35
|
+
|
|
34
36
|
rng = np.random.RandomState(0)
|
|
35
37
|
x = np.abs(rng.rand(4), dtype=np.float64)
|
|
36
38
|
x = np.vstack([x, x])
|
|
37
|
-
res = pairwise_distances(x, metric=
|
|
38
|
-
assert_allclose(res, [[0
|
|
39
|
+
res = pairwise_distances(x, metric="cosine")
|
|
40
|
+
assert_allclose(res, [[0.0, 0.0], [0.0, 0.0]], atol=1e-2)
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
|
-
|
|
2
|
+
# ===============================================================================
|
|
3
3
|
# Copyright 2021 Intel Corporation
|
|
4
4
|
#
|
|
5
5
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -13,10 +13,10 @@
|
|
|
13
13
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
14
|
# See the License for the specific language governing permissions and
|
|
15
15
|
# limitations under the License.
|
|
16
|
-
|
|
16
|
+
# ===============================================================================
|
|
17
17
|
|
|
18
18
|
from .split import train_test_split
|
|
19
19
|
|
|
20
20
|
__all__ = [
|
|
21
|
-
|
|
21
|
+
"train_test_split",
|
|
22
22
|
]
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
|
-
|
|
2
|
+
# ===============================================================================
|
|
3
3
|
# Copyright 2021 Intel Corporation
|
|
4
4
|
#
|
|
5
5
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -13,6 +13,6 @@
|
|
|
13
13
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
14
|
# See the License for the specific language governing permissions and
|
|
15
15
|
# limitations under the License.
|
|
16
|
-
|
|
16
|
+
# ===============================================================================
|
|
17
17
|
|
|
18
18
|
from daal4py.sklearn.model_selection import train_test_split
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
|
-
|
|
2
|
+
# ===============================================================================
|
|
3
3
|
# Copyright 2021 Intel Corporation
|
|
4
4
|
#
|
|
5
5
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -13,18 +13,21 @@
|
|
|
13
13
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
14
|
# See the License for the specific language governing permissions and
|
|
15
15
|
# limitations under the License.
|
|
16
|
-
|
|
16
|
+
# ===============================================================================
|
|
17
17
|
|
|
18
18
|
import numpy as np
|
|
19
19
|
from numpy.testing import assert_allclose
|
|
20
20
|
|
|
21
21
|
|
|
22
|
+
# TODO:
|
|
23
|
+
# add pytest params for checking different dataframe inputs/outputs.
|
|
22
24
|
def test_sklearnex_import_train_test_split():
|
|
23
25
|
from sklearnex.model_selection import train_test_split
|
|
26
|
+
|
|
24
27
|
X = np.arange(100).reshape((10, 10))
|
|
25
28
|
y = np.arange(10)
|
|
26
29
|
|
|
27
|
-
split = train_test_split(X, y, test_size=None, train_size
|
|
30
|
+
split = train_test_split(X, y, test_size=None, train_size=0.5)
|
|
28
31
|
X_train, X_test, y_train, y_test = split
|
|
29
32
|
assert len(y_test) == len(y_train)
|
|
30
33
|
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
|
-
|
|
2
|
+
# ===============================================================================
|
|
3
3
|
# Copyright 2021 Intel Corporation
|
|
4
4
|
#
|
|
5
5
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -13,12 +13,16 @@
|
|
|
13
13
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
14
|
# See the License for the specific language governing permissions and
|
|
15
15
|
# limitations under the License.
|
|
16
|
-
|
|
16
|
+
# ===============================================================================
|
|
17
17
|
|
|
18
18
|
from .knn_classification import KNeighborsClassifier
|
|
19
|
-
from .knn_unsupervised import NearestNeighbors
|
|
20
19
|
from .knn_regression import KNeighborsRegressor
|
|
20
|
+
from .knn_unsupervised import NearestNeighbors
|
|
21
21
|
from .lof import LocalOutlierFactor
|
|
22
22
|
|
|
23
|
-
__all__ = [
|
|
24
|
-
|
|
23
|
+
__all__ = [
|
|
24
|
+
"KNeighborsClassifier",
|
|
25
|
+
"KNeighborsRegressor",
|
|
26
|
+
"LocalOutlierFactor",
|
|
27
|
+
"NearestNeighbors",
|
|
28
|
+
]
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
|
-
|
|
2
|
+
# ==============================================================================
|
|
3
3
|
# Copyright 2023 Intel Corporation
|
|
4
4
|
#
|
|
5
5
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -13,20 +13,22 @@
|
|
|
13
13
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
14
|
# See the License for the specific language governing permissions and
|
|
15
15
|
# limitations under the License.
|
|
16
|
-
|
|
16
|
+
# ==============================================================================
|
|
17
17
|
|
|
18
|
-
|
|
19
|
-
from onedal.datatypes import _check_array, _num_features, _num_samples
|
|
18
|
+
import warnings
|
|
20
19
|
|
|
21
20
|
import numpy as np
|
|
22
21
|
from scipy import sparse as sp
|
|
23
|
-
import
|
|
24
|
-
|
|
22
|
+
from sklearn.neighbors._ball_tree import BallTree
|
|
25
23
|
from sklearn.neighbors._base import VALID_METRICS
|
|
26
24
|
from sklearn.neighbors._base import NeighborsBase as sklearn_NeighborsBase
|
|
27
|
-
from sklearn.neighbors._ball_tree import BallTree
|
|
28
25
|
from sklearn.neighbors._kd_tree import KDTree
|
|
29
26
|
|
|
27
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
28
|
+
from onedal.utils import _check_array, _num_features, _num_samples
|
|
29
|
+
|
|
30
|
+
from .._utils import PatchingConditionsChain
|
|
31
|
+
|
|
30
32
|
|
|
31
33
|
class KNeighborsDispatchingBase:
|
|
32
34
|
def _fit_validation(self, X, y=None):
|
|
@@ -34,11 +36,15 @@ class KNeighborsDispatchingBase:
|
|
|
34
36
|
self._validate_params()
|
|
35
37
|
if sklearn_check_version("1.0"):
|
|
36
38
|
self._check_feature_names(X, reset=True)
|
|
37
|
-
if self.metric_params is not None and
|
|
39
|
+
if self.metric_params is not None and "p" in self.metric_params:
|
|
38
40
|
if self.p is not None:
|
|
39
|
-
warnings.warn(
|
|
40
|
-
|
|
41
|
-
|
|
41
|
+
warnings.warn(
|
|
42
|
+
"Parameter p is found in metric_params. "
|
|
43
|
+
"The corresponding parameter from __init__ "
|
|
44
|
+
"is ignored.",
|
|
45
|
+
SyntaxWarning,
|
|
46
|
+
stacklevel=2,
|
|
47
|
+
)
|
|
42
48
|
self.effective_metric_params_ = self.metric_params.copy()
|
|
43
49
|
effective_p = self.metric_params["p"]
|
|
44
50
|
else:
|
|
@@ -59,31 +65,35 @@ class KNeighborsDispatchingBase:
|
|
|
59
65
|
|
|
60
66
|
if not isinstance(X, (KDTree, BallTree, sklearn_NeighborsBase)):
|
|
61
67
|
self._fit_X = _check_array(
|
|
62
|
-
X, dtype=[np.float64, np.float32], accept_sparse=True
|
|
68
|
+
X, dtype=[np.float64, np.float32], accept_sparse=True
|
|
69
|
+
)
|
|
63
70
|
self.n_samples_fit_ = _num_samples(self._fit_X)
|
|
64
71
|
self.n_features_in_ = _num_features(self._fit_X)
|
|
65
72
|
|
|
66
73
|
if self.algorithm == "auto":
|
|
67
74
|
# A tree approach is better for small number of neighbors or small
|
|
68
75
|
# number of features, with KDTree generally faster when available
|
|
69
|
-
is_n_neighbors_valid_for_brute =
|
|
70
|
-
self.n_neighbors
|
|
76
|
+
is_n_neighbors_valid_for_brute = (
|
|
77
|
+
self.n_neighbors is not None
|
|
78
|
+
and self.n_neighbors >= self._fit_X.shape[0] // 2
|
|
79
|
+
)
|
|
71
80
|
if self._fit_X.shape[1] > 15 or is_n_neighbors_valid_for_brute:
|
|
72
81
|
self._fit_method = "brute"
|
|
73
82
|
else:
|
|
74
83
|
if self.effective_metric_ in VALID_METRICS["kd_tree"]:
|
|
75
84
|
self._fit_method = "kd_tree"
|
|
76
|
-
elif
|
|
77
|
-
self.effective_metric_
|
|
78
|
-
|
|
85
|
+
elif (
|
|
86
|
+
callable(self.effective_metric_)
|
|
87
|
+
or self.effective_metric_ in VALID_METRICS["ball_tree"]
|
|
88
|
+
):
|
|
79
89
|
self._fit_method = "ball_tree"
|
|
80
90
|
else:
|
|
81
91
|
self._fit_method = "brute"
|
|
82
92
|
else:
|
|
83
93
|
self._fit_method = self.algorithm
|
|
84
94
|
|
|
85
|
-
if hasattr(self,
|
|
86
|
-
delattr(self,
|
|
95
|
+
if hasattr(self, "_onedal_estimator"):
|
|
96
|
+
delattr(self, "_onedal_estimator")
|
|
87
97
|
# To cover test case when we pass patched
|
|
88
98
|
# estimator as an input for other estimator
|
|
89
99
|
if isinstance(X, sklearn_NeighborsBase):
|
|
@@ -92,8 +102,8 @@ class KNeighborsDispatchingBase:
|
|
|
92
102
|
self._fit_method = X._fit_method
|
|
93
103
|
self.n_samples_fit_ = X.n_samples_fit_
|
|
94
104
|
self.n_features_in_ = X.n_features_in_
|
|
95
|
-
if hasattr(X,
|
|
96
|
-
self.effective_metric_params_.pop(
|
|
105
|
+
if hasattr(X, "_onedal_estimator"):
|
|
106
|
+
self.effective_metric_params_.pop("p")
|
|
97
107
|
if self._fit_method == "ball_tree":
|
|
98
108
|
X._tree = BallTree(
|
|
99
109
|
X._fit_X,
|
|
@@ -116,58 +126,63 @@ class KNeighborsDispatchingBase:
|
|
|
116
126
|
elif isinstance(X, BallTree):
|
|
117
127
|
self._fit_X = X.data
|
|
118
128
|
self._tree = X
|
|
119
|
-
self._fit_method =
|
|
129
|
+
self._fit_method = "ball_tree"
|
|
120
130
|
self.n_samples_fit_ = X.data.shape[0]
|
|
121
131
|
self.n_features_in_ = X.data.shape[1]
|
|
122
132
|
|
|
123
133
|
elif isinstance(X, KDTree):
|
|
124
134
|
self._fit_X = X.data
|
|
125
135
|
self._tree = X
|
|
126
|
-
self._fit_method =
|
|
136
|
+
self._fit_method = "kd_tree"
|
|
127
137
|
self.n_samples_fit_ = X.data.shape[0]
|
|
128
138
|
self.n_features_in_ = X.data.shape[1]
|
|
129
139
|
|
|
130
140
|
def _onedal_supported(self, device, method_name, *data):
|
|
131
141
|
class_name = self.__class__.__name__
|
|
132
|
-
is_classifier =
|
|
133
|
-
is_regressor =
|
|
142
|
+
is_classifier = "Classifier" in class_name
|
|
143
|
+
is_regressor = "Regressor" in class_name
|
|
134
144
|
is_unsupervised = not (is_classifier or is_regressor)
|
|
135
145
|
patching_status = PatchingConditionsChain(
|
|
136
|
-
f
|
|
146
|
+
f"sklearn.neighbors.{class_name}.{method_name}"
|
|
147
|
+
)
|
|
137
148
|
|
|
138
149
|
if not patching_status.and_condition(
|
|
139
150
|
not isinstance(data[0], (KDTree, BallTree, sklearn_NeighborsBase)),
|
|
140
|
-
f
|
|
151
|
+
f"Input type {type(data[0])} is not supported.",
|
|
141
152
|
):
|
|
142
|
-
return patching_status
|
|
153
|
+
return patching_status
|
|
143
154
|
|
|
144
|
-
if self._fit_method in [
|
|
145
|
-
condition =
|
|
146
|
-
self.n_neighbors
|
|
155
|
+
if self._fit_method in ["auto", "ball_tree"]:
|
|
156
|
+
condition = (
|
|
157
|
+
self.n_neighbors is not None
|
|
158
|
+
and self.n_neighbors >= self.n_samples_fit_ // 2
|
|
159
|
+
)
|
|
147
160
|
if self.n_features_in_ > 15 or condition:
|
|
148
|
-
result_method =
|
|
161
|
+
result_method = "brute"
|
|
149
162
|
else:
|
|
150
|
-
if self.effective_metric_ in [
|
|
151
|
-
result_method =
|
|
163
|
+
if self.effective_metric_ in ["euclidean"]:
|
|
164
|
+
result_method = "kd_tree"
|
|
152
165
|
else:
|
|
153
|
-
result_method =
|
|
166
|
+
result_method = "brute"
|
|
154
167
|
else:
|
|
155
168
|
result_method = self._fit_method
|
|
156
169
|
|
|
157
|
-
p_less_than_one =
|
|
158
|
-
|
|
170
|
+
p_less_than_one = (
|
|
171
|
+
"p" in self.effective_metric_params_.keys()
|
|
172
|
+
and self.effective_metric_params_["p"] < 1
|
|
173
|
+
)
|
|
159
174
|
if not patching_status.and_condition(
|
|
160
175
|
not p_less_than_one, '"p" metric parameter is less than 1'
|
|
161
176
|
):
|
|
162
|
-
return patching_status
|
|
177
|
+
return patching_status
|
|
163
178
|
|
|
164
179
|
if not patching_status.and_condition(
|
|
165
|
-
not sp.isspmatrix(data[0]),
|
|
180
|
+
not sp.isspmatrix(data[0]), "Sparse input is not supported."
|
|
166
181
|
):
|
|
167
|
-
return patching_status
|
|
182
|
+
return patching_status
|
|
168
183
|
|
|
169
184
|
if not is_unsupervised:
|
|
170
|
-
is_valid_weights = self.weights in [
|
|
185
|
+
is_valid_weights = self.weights in ["uniform", "distance"]
|
|
171
186
|
if is_classifier:
|
|
172
187
|
class_count = 1
|
|
173
188
|
is_single_output = False
|
|
@@ -177,65 +192,73 @@ class KNeighborsDispatchingBase:
|
|
|
177
192
|
y = np.asarray(data[1])
|
|
178
193
|
if is_classifier:
|
|
179
194
|
class_count = len(np.unique(y))
|
|
180
|
-
if hasattr(self,
|
|
195
|
+
if hasattr(self, "_onedal_estimator"):
|
|
181
196
|
y = self._onedal_estimator._y
|
|
182
|
-
if y is not None and hasattr(y,
|
|
197
|
+
if y is not None and hasattr(y, "ndim") and hasattr(y, "shape"):
|
|
183
198
|
is_single_output = y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1
|
|
184
199
|
|
|
185
200
|
# TODO: add native support for these metric names
|
|
186
|
-
metrics_map = {
|
|
187
|
-
'manhattan': ['l1', 'cityblock'],
|
|
188
|
-
'euclidean': ['l2']
|
|
189
|
-
}
|
|
201
|
+
metrics_map = {"manhattan": ["l1", "cityblock"], "euclidean": ["l2"]}
|
|
190
202
|
for origin, aliases in metrics_map.items():
|
|
191
203
|
if self.effective_metric_ in aliases:
|
|
192
204
|
self.effective_metric_ = origin
|
|
193
205
|
break
|
|
194
|
-
if self.effective_metric_ ==
|
|
195
|
-
self.effective_metric_params_[
|
|
196
|
-
elif self.effective_metric_ ==
|
|
197
|
-
self.effective_metric_params_[
|
|
206
|
+
if self.effective_metric_ == "manhattan":
|
|
207
|
+
self.effective_metric_params_["p"] = 1
|
|
208
|
+
elif self.effective_metric_ == "euclidean":
|
|
209
|
+
self.effective_metric_params_["p"] = 2
|
|
198
210
|
|
|
199
211
|
onedal_brute_metrics = [
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
212
|
+
"manhattan",
|
|
213
|
+
"minkowski",
|
|
214
|
+
"euclidean",
|
|
215
|
+
"chebyshev",
|
|
216
|
+
"cosine",
|
|
217
|
+
]
|
|
218
|
+
onedal_kdtree_metrics = ["euclidean"]
|
|
219
|
+
is_valid_for_brute = (
|
|
220
|
+
result_method == "brute" and self.effective_metric_ in onedal_brute_metrics
|
|
221
|
+
)
|
|
222
|
+
is_valid_for_kd_tree = (
|
|
223
|
+
result_method == "kd_tree" and self.effective_metric_ in onedal_kdtree_metrics
|
|
224
|
+
)
|
|
225
|
+
if result_method == "kd_tree":
|
|
207
226
|
if not patching_status.and_condition(
|
|
208
|
-
device !=
|
|
227
|
+
device != "gpu", '"kd_tree" method is not supported on GPU.'
|
|
209
228
|
):
|
|
210
|
-
return patching_status
|
|
229
|
+
return patching_status
|
|
211
230
|
|
|
212
231
|
if not patching_status.and_condition(
|
|
213
232
|
is_valid_for_kd_tree or is_valid_for_brute,
|
|
214
|
-
f
|
|
233
|
+
f"{result_method} with {self.effective_metric_} metric is not supported.",
|
|
215
234
|
):
|
|
216
|
-
return patching_status
|
|
235
|
+
return patching_status
|
|
217
236
|
if not is_unsupervised:
|
|
218
|
-
if not patching_status.and_conditions(
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
237
|
+
if not patching_status.and_conditions(
|
|
238
|
+
[
|
|
239
|
+
(is_single_output, "Only single output is supported."),
|
|
240
|
+
(
|
|
241
|
+
is_valid_weights,
|
|
242
|
+
f'"{type(self.weights)}" weights type is not supported.',
|
|
243
|
+
),
|
|
244
|
+
]
|
|
245
|
+
):
|
|
246
|
+
return patching_status
|
|
247
|
+
if method_name == "fit":
|
|
225
248
|
if is_classifier:
|
|
226
249
|
patching_status.and_condition(
|
|
227
|
-
class_count >= 2,
|
|
250
|
+
class_count >= 2, "One-class case is not supported."
|
|
228
251
|
)
|
|
229
|
-
return patching_status
|
|
230
|
-
if method_name in [
|
|
252
|
+
return patching_status
|
|
253
|
+
if method_name in ["predict", "predict_proba", "kneighbors"]:
|
|
231
254
|
patching_status.and_condition(
|
|
232
|
-
hasattr(self,
|
|
255
|
+
hasattr(self, "_onedal_estimator"), "oneDAL model was not trained."
|
|
233
256
|
)
|
|
234
|
-
return patching_status
|
|
235
|
-
raise RuntimeError(f
|
|
257
|
+
return patching_status
|
|
258
|
+
raise RuntimeError(f"Unknown method {method_name} in {class_name}")
|
|
236
259
|
|
|
237
260
|
def _onedal_gpu_supported(self, method_name, *data):
|
|
238
|
-
return self._onedal_supported(
|
|
261
|
+
return self._onedal_supported("gpu", method_name, *data)
|
|
239
262
|
|
|
240
263
|
def _onedal_cpu_supported(self, method_name, *data):
|
|
241
|
-
return self._onedal_supported(
|
|
264
|
+
return self._onedal_supported("cpu", method_name, *data)
|