scikit-learn-intelex 2023.2.1__py39-none-win_amd64.whl → 2024.0.1__py39-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (109) hide show
  1. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__init__.py +2 -2
  2. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__main__.py +16 -12
  3. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_config.py +2 -2
  4. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_device_offload.py +90 -56
  5. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_utils.py +95 -0
  6. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +3 -3
  7. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +2 -2
  8. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +4 -4
  9. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +187 -0
  10. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +2 -2
  11. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +12 -6
  12. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +5 -5
  13. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +3 -3
  14. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +2 -2
  15. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +5 -4
  16. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/dispatcher.py +102 -72
  17. {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/ensemble/__init__.py +12 -4
  18. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1947 -0
  19. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +118 -0
  20. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +31 -16
  21. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +21 -14
  22. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +10 -10
  23. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +2 -2
  24. {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/linear_model/linear.py +173 -83
  25. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +3 -3
  26. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +2 -2
  27. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +23 -7
  28. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +4 -3
  29. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +3 -3
  30. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +2 -2
  31. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +4 -3
  32. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +5 -5
  33. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +2 -2
  34. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +2 -2
  35. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +8 -6
  36. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +3 -3
  37. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +2 -2
  38. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +6 -3
  39. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +9 -5
  40. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +100 -77
  41. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +331 -0
  42. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +307 -0
  43. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +116 -58
  44. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/lof.py +118 -56
  45. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +85 -0
  46. {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/decomposition → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview}/__init__.py +18 -20
  47. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +3 -3
  48. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +7 -7
  49. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +104 -73
  50. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +4 -1
  51. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +128 -100
  52. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_preview_linear.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +18 -16
  53. {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd}/__init__.py +24 -22
  54. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +3 -3
  55. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +2 -2
  56. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +11 -5
  57. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +50 -0
  58. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +2 -2
  59. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +3 -3
  60. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +2 -2
  61. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +3 -3
  62. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +16 -14
  63. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +3 -3
  64. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +2 -2
  65. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +3 -3
  66. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +3 -3
  67. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +11 -8
  68. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/_common.py +56 -56
  69. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +110 -55
  70. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +65 -31
  71. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svc.py +136 -78
  72. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svr.py +65 -31
  73. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +102 -0
  74. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +170 -0
  75. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +9 -8
  76. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +63 -69
  77. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +55 -53
  78. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +50 -0
  79. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +8 -7
  80. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +428 -0
  81. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +39 -39
  82. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +3 -3
  83. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/parallel.py +59 -0
  84. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/validation.py +2 -2
  85. {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/METADATA +34 -35
  86. scikit_learn_intelex-2024.0.1.dist-info/RECORD +90 -0
  87. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/_utils.py +0 -82
  88. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -18
  89. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -20
  90. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/forest.py +0 -18
  91. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -46
  92. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -228
  93. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +0 -213
  94. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -57
  95. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/__init__.py +0 -18
  96. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -28
  97. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/extra_trees.py +0 -1261
  98. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/forest.py +0 -1155
  99. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/tests/test_preview_ensemble.py +0 -67
  100. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model/_common.py +0 -66
  101. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -23
  102. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -63
  103. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -159
  104. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -383
  105. scikit_learn_intelex-2023.2.1.dist-info/RECORD +0 -95
  106. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  107. {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/LICENSE.txt +0 -0
  108. {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/WHEEL +0 -0
  109. {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/top_level.txt +0 -0
@@ -1,228 +0,0 @@
1
- #!/usr/bin/env python
2
- #===============================================================================
3
- # Copyright 2021 Intel Corporation
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- #===============================================================================
17
-
18
- from daal4py.sklearn._utils import sklearn_check_version
19
- import warnings
20
-
21
- from sklearn.neighbors._base import NeighborsBase as sklearn_NeighborsBase
22
- from sklearn.neighbors._ball_tree import BallTree
23
- from sklearn.neighbors._kd_tree import KDTree
24
- if not sklearn_check_version('1.2'):
25
- from sklearn.neighbors._base import _check_weights
26
- from sklearn.neighbors._base import VALID_METRICS
27
- from sklearn.neighbors._classification import KNeighborsClassifier as \
28
- sklearn_KNeighborsClassifier
29
- from sklearn.neighbors._unsupervised import NearestNeighbors as \
30
- sklearn_NearestNeighbors
31
- from sklearn.utils.validation import _deprecate_positional_args, check_is_fitted
32
-
33
- from onedal.datatypes import _check_array, _num_features, _num_samples
34
- from onedal.neighbors import KNeighborsClassifier as onedal_KNeighborsClassifier
35
-
36
- from .common import KNeighborsDispatchingBase
37
- from .._device_offload import dispatch, wrap_output_data
38
- import numpy as np
39
-
40
-
41
- if sklearn_check_version("0.24"):
42
- class KNeighborsClassifier_(sklearn_KNeighborsClassifier):
43
- if sklearn_check_version('1.2'):
44
- _parameter_constraints: dict = {
45
- **sklearn_KNeighborsClassifier._parameter_constraints}
46
-
47
- @_deprecate_positional_args
48
- def __init__(self, n_neighbors=5, *,
49
- weights='uniform', algorithm='auto', leaf_size=30,
50
- p=2, metric='minkowski', metric_params=None, n_jobs=None,
51
- **kwargs):
52
- super().__init__(
53
- n_neighbors=n_neighbors,
54
- algorithm=algorithm,
55
- leaf_size=leaf_size, metric=metric, p=p,
56
- metric_params=metric_params,
57
- n_jobs=n_jobs, **kwargs)
58
- self.weights = \
59
- weights if sklearn_check_version("1.0") \
60
- else _check_weights(weights)
61
- elif sklearn_check_version("0.22"):
62
- from sklearn.neighbors._base import SupervisedIntegerMixin as \
63
- BaseSupervisedIntegerMixin
64
-
65
- class KNeighborsClassifier_(sklearn_KNeighborsClassifier,
66
- BaseSupervisedIntegerMixin):
67
- @_deprecate_positional_args
68
- def __init__(self, n_neighbors=5, *,
69
- weights='uniform', algorithm='auto', leaf_size=30,
70
- p=2, metric='minkowski', metric_params=None, n_jobs=None,
71
- **kwargs):
72
- super().__init__(
73
- n_neighbors=n_neighbors,
74
- algorithm=algorithm,
75
- leaf_size=leaf_size, metric=metric, p=p,
76
- metric_params=metric_params,
77
- n_jobs=n_jobs, **kwargs)
78
- self.weights = _check_weights(weights)
79
- else:
80
- from sklearn.neighbors.base import SupervisedIntegerMixin as \
81
- BaseSupervisedIntegerMixin
82
-
83
- class KNeighborsClassifier_(sklearn_KNeighborsClassifier,
84
- BaseSupervisedIntegerMixin):
85
- @_deprecate_positional_args
86
- def __init__(self, n_neighbors=5, *,
87
- weights='uniform', algorithm='auto', leaf_size=30,
88
- p=2, metric='minkowski', metric_params=None, n_jobs=None,
89
- **kwargs):
90
- super().__init__(
91
- n_neighbors=n_neighbors,
92
- algorithm=algorithm,
93
- leaf_size=leaf_size, metric=metric, p=p,
94
- metric_params=metric_params,
95
- n_jobs=n_jobs, **kwargs)
96
- self.weights = _check_weights(weights)
97
-
98
-
99
- class KNeighborsClassifier(KNeighborsClassifier_, KNeighborsDispatchingBase):
100
- if sklearn_check_version('1.2'):
101
- _parameter_constraints: dict = {
102
- **KNeighborsClassifier_._parameter_constraints}
103
-
104
- if sklearn_check_version('1.0'):
105
- def __init__(self, n_neighbors=5, *,
106
- weights='uniform', algorithm='auto', leaf_size=30,
107
- p=2, metric='minkowski', metric_params=None, n_jobs=None):
108
- super().__init__(
109
- n_neighbors=n_neighbors,
110
- weights=weights,
111
- algorithm=algorithm,
112
- leaf_size=leaf_size, metric=metric, p=p,
113
- metric_params=metric_params,
114
- n_jobs=n_jobs)
115
- else:
116
- @_deprecate_positional_args
117
- def __init__(self, n_neighbors=5, *,
118
- weights='uniform', algorithm='auto', leaf_size=30,
119
- p=2, metric='minkowski', metric_params=None, n_jobs=None,
120
- **kwargs):
121
- super().__init__(
122
- n_neighbors=n_neighbors,
123
- weights=weights,
124
- algorithm=algorithm,
125
- leaf_size=leaf_size, metric=metric, p=p,
126
- metric_params=metric_params,
127
- n_jobs=n_jobs, **kwargs)
128
-
129
- def fit(self, X, y):
130
- self._fit_validation(X, y)
131
- dispatch(self, 'fit', {
132
- 'onedal': self.__class__._onedal_fit,
133
- 'sklearn': sklearn_KNeighborsClassifier.fit,
134
- }, X, y)
135
- return self
136
-
137
- @wrap_output_data
138
- def predict(self, X):
139
- check_is_fitted(self)
140
- if sklearn_check_version("1.0"):
141
- self._check_feature_names(X, reset=False)
142
- return dispatch(self, 'predict', {
143
- 'onedal': self.__class__._onedal_predict,
144
- 'sklearn': sklearn_KNeighborsClassifier.predict,
145
- }, X)
146
-
147
- @wrap_output_data
148
- def predict_proba(self, X):
149
- check_is_fitted(self)
150
- if sklearn_check_version("1.0"):
151
- self._check_feature_names(X, reset=False)
152
- return dispatch(self, 'predict_proba', {
153
- 'onedal': self.__class__._onedal_predict_proba,
154
- 'sklearn': sklearn_KNeighborsClassifier.predict_proba,
155
- }, X)
156
-
157
- @wrap_output_data
158
- def kneighbors(self, X=None, n_neighbors=None, return_distance=True):
159
- check_is_fitted(self)
160
- if sklearn_check_version("1.0"):
161
- self._check_feature_names(X, reset=False)
162
- return dispatch(self, 'kneighbors', {
163
- 'onedal': self.__class__._onedal_kneighbors,
164
- 'sklearn': sklearn_KNeighborsClassifier.kneighbors,
165
- }, X, n_neighbors, return_distance)
166
-
167
- @wrap_output_data
168
- def radius_neighbors(self, X=None, radius=None, return_distance=True,
169
- sort_results=False):
170
- _onedal_estimator = getattr(self, '_onedal_estimator', None)
171
-
172
- if _onedal_estimator is not None or getattr(self, '_tree', 0) is None and \
173
- self._fit_method == 'kd_tree':
174
- if sklearn_check_version("0.24"):
175
- sklearn_NearestNeighbors.fit(self, self._fit_X, getattr(self, '_y', None))
176
- else:
177
- sklearn_NearestNeighbors.fit(self, self._fit_X)
178
- if sklearn_check_version("0.22"):
179
- result = sklearn_NearestNeighbors.radius_neighbors(
180
- self, X, radius, return_distance, sort_results)
181
- else:
182
- result = sklearn_NearestNeighbors.radius_neighbors(
183
- self, X, radius, return_distance)
184
-
185
- return result
186
-
187
- def _onedal_fit(self, X, y, queue=None):
188
- onedal_params = {
189
- 'n_neighbors': self.n_neighbors,
190
- 'weights': self.weights,
191
- 'algorithm': self.algorithm,
192
- 'metric': self.effective_metric_,
193
- 'p': self.effective_metric_params_['p'],
194
- }
195
-
196
- try:
197
- requires_y = self._get_tags()["requires_y"]
198
- except KeyError:
199
- requires_y = False
200
-
201
- self._onedal_estimator = onedal_KNeighborsClassifier(**onedal_params)
202
- self._onedal_estimator.requires_y = requires_y
203
- self._onedal_estimator.effective_metric_ = self.effective_metric_
204
- self._onedal_estimator.effective_metric_params_ = self.effective_metric_params_
205
- self._onedal_estimator.fit(X, y, queue=queue)
206
-
207
- self._save_attributes()
208
-
209
- def _onedal_predict(self, X, queue=None):
210
- return self._onedal_estimator.predict(X, queue=queue)
211
-
212
- def _onedal_predict_proba(self, X, queue=None):
213
- return self._onedal_estimator.predict_proba(X, queue=queue)
214
-
215
- def _onedal_kneighbors(self, X=None, n_neighbors=None,
216
- return_distance=True, queue=None):
217
- return self._onedal_estimator.kneighbors(
218
- X, n_neighbors, return_distance, queue=queue)
219
-
220
- def _save_attributes(self):
221
- self.classes_ = self._onedal_estimator.classes_
222
- self.n_features_in_ = self._onedal_estimator.n_features_in_
223
- self.n_samples_fit_ = self._onedal_estimator.n_samples_fit_
224
- self._fit_X = self._onedal_estimator._fit_X
225
- self._y = self._onedal_estimator._y
226
- self._fit_method = self._onedal_estimator._fit_method
227
- self.outputs_2d_ = self._onedal_estimator.outputs_2d_
228
- self._tree = self._onedal_estimator._tree
@@ -1,213 +0,0 @@
1
- #!/usr/bin/env python
2
- #===============================================================================
3
- # Copyright 2021 Intel Corporation
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- #===============================================================================
17
-
18
- from daal4py.sklearn._utils import sklearn_check_version
19
- import warnings
20
-
21
- from sklearn.neighbors._base import NeighborsBase as sklearn_NeighborsBase
22
- from sklearn.neighbors._ball_tree import BallTree
23
- from sklearn.neighbors._kd_tree import KDTree
24
- if not sklearn_check_version('1.2'):
25
- from sklearn.neighbors._base import _check_weights
26
- from sklearn.neighbors._base import VALID_METRICS
27
- from sklearn.neighbors._regression import KNeighborsRegressor as \
28
- sklearn_KNeighborsRegressor
29
- from sklearn.neighbors._unsupervised import NearestNeighbors as \
30
- sklearn_NearestNeighbors
31
- from sklearn.utils.validation import _deprecate_positional_args, check_is_fitted
32
-
33
- from onedal.datatypes import _check_array, _num_features, _num_samples
34
- from onedal.neighbors import KNeighborsRegressor as onedal_KNeighborsRegressor
35
-
36
- from .common import KNeighborsDispatchingBase
37
- from .._device_offload import dispatch, wrap_output_data
38
- import numpy as np
39
-
40
-
41
- if sklearn_check_version("0.24"):
42
- class KNeighborsRegressor_(sklearn_KNeighborsRegressor):
43
- if sklearn_check_version('1.2'):
44
- _parameter_constraints: dict = {
45
- **sklearn_KNeighborsRegressor._parameter_constraints}
46
-
47
- @_deprecate_positional_args
48
- def __init__(self, n_neighbors=5, *,
49
- weights='uniform', algorithm='auto', leaf_size=30,
50
- p=2, metric='minkowski', metric_params=None, n_jobs=None,
51
- **kwargs):
52
- super().__init__(
53
- n_neighbors=n_neighbors,
54
- algorithm=algorithm,
55
- leaf_size=leaf_size, metric=metric, p=p,
56
- metric_params=metric_params,
57
- n_jobs=n_jobs, **kwargs)
58
- self.weights = \
59
- weights if sklearn_check_version("1.0") \
60
- else _check_weights(weights)
61
- elif sklearn_check_version("0.22"):
62
- from sklearn.neighbors._base import SupervisedFloatMixin as \
63
- BaseSupervisedFloatMixin
64
-
65
- class KNeighborsRegressor_(sklearn_KNeighborsRegressor,
66
- BaseSupervisedFloatMixin):
67
- @_deprecate_positional_args
68
- def __init__(self, n_neighbors=5, *,
69
- weights='uniform', algorithm='auto', leaf_size=30,
70
- p=2, metric='minkowski', metric_params=None, n_jobs=None,
71
- **kwargs):
72
- super().__init__(
73
- n_neighbors=n_neighbors,
74
- algorithm=algorithm,
75
- leaf_size=leaf_size, metric=metric, p=p,
76
- metric_params=metric_params,
77
- n_jobs=n_jobs, **kwargs)
78
- self.weights = _check_weights(weights)
79
- else:
80
- from sklearn.neighbors.base import SupervisedFloatMixin as \
81
- BaseSupervisedFloatMixin
82
-
83
- class KNeighborsRegressor_(sklearn_KNeighborsRegressor,
84
- BaseSupervisedFloatMixin):
85
- @_deprecate_positional_args
86
- def __init__(self, n_neighbors=5, *,
87
- weights='uniform', algorithm='auto', leaf_size=30,
88
- p=2, metric='minkowski', metric_params=None, n_jobs=None,
89
- **kwargs):
90
- super().__init__(
91
- n_neighbors=n_neighbors,
92
- algorithm=algorithm,
93
- leaf_size=leaf_size, metric=metric, p=p,
94
- metric_params=metric_params,
95
- n_jobs=n_jobs, **kwargs)
96
- self.weights = _check_weights(weights)
97
-
98
-
99
- class KNeighborsRegressor(KNeighborsRegressor_, KNeighborsDispatchingBase):
100
- if sklearn_check_version('1.2'):
101
- _parameter_constraints: dict = {
102
- **KNeighborsRegressor_._parameter_constraints}
103
-
104
- if sklearn_check_version('1.0'):
105
- def __init__(self, n_neighbors=5, *,
106
- weights='uniform', algorithm='auto', leaf_size=30,
107
- p=2, metric='minkowski', metric_params=None, n_jobs=None):
108
- super().__init__(
109
- n_neighbors=n_neighbors,
110
- weights=weights,
111
- algorithm=algorithm,
112
- leaf_size=leaf_size, metric=metric, p=p,
113
- metric_params=metric_params,
114
- n_jobs=n_jobs)
115
- else:
116
- @_deprecate_positional_args
117
- def __init__(self, n_neighbors=5, *,
118
- weights='uniform', algorithm='auto', leaf_size=30,
119
- p=2, metric='minkowski', metric_params=None, n_jobs=None,
120
- **kwargs):
121
- super().__init__(
122
- n_neighbors=n_neighbors,
123
- weights=weights,
124
- algorithm=algorithm,
125
- leaf_size=leaf_size, metric=metric, p=p,
126
- metric_params=metric_params,
127
- n_jobs=n_jobs, **kwargs)
128
-
129
- def fit(self, X, y):
130
- self._fit_validation(X, y)
131
- dispatch(self, 'fit', {
132
- 'onedal': self.__class__._onedal_fit,
133
- 'sklearn': sklearn_KNeighborsRegressor.fit,
134
- }, X, y)
135
- return self
136
-
137
- @wrap_output_data
138
- def predict(self, X):
139
- check_is_fitted(self)
140
- if sklearn_check_version("1.0"):
141
- self._check_feature_names(X, reset=False)
142
- return dispatch(self, 'predict', {
143
- 'onedal': self.__class__._onedal_predict,
144
- 'sklearn': sklearn_KNeighborsRegressor.predict,
145
- }, X)
146
-
147
- @wrap_output_data
148
- def kneighbors(self, X=None, n_neighbors=None, return_distance=True):
149
- check_is_fitted(self)
150
- if sklearn_check_version("1.0"):
151
- self._check_feature_names(X, reset=False)
152
- return dispatch(self, 'kneighbors', {
153
- 'onedal': self.__class__._onedal_kneighbors,
154
- 'sklearn': sklearn_KNeighborsRegressor.kneighbors,
155
- }, X, n_neighbors, return_distance)
156
-
157
- @wrap_output_data
158
- def radius_neighbors(self, X=None, radius=None, return_distance=True,
159
- sort_results=False):
160
- _onedal_estimator = getattr(self, '_onedal_estimator', None)
161
-
162
- if _onedal_estimator is not None or getattr(self, '_tree', 0) is None and \
163
- self._fit_method == 'kd_tree':
164
- if sklearn_check_version("0.24"):
165
- sklearn_NearestNeighbors.fit(self, self._fit_X, getattr(self, '_y', None))
166
- else:
167
- sklearn_NearestNeighbors.fit(self, self._fit_X)
168
- if sklearn_check_version("0.22"):
169
- result = sklearn_NearestNeighbors.radius_neighbors(
170
- self, X, radius, return_distance, sort_results)
171
- else:
172
- result = sklearn_NearestNeighbors.radius_neighbors(
173
- self, X, radius, return_distance)
174
-
175
- return result
176
-
177
- def _onedal_fit(self, X, y, queue=None):
178
- onedal_params = {
179
- 'n_neighbors': self.n_neighbors,
180
- 'weights': self.weights,
181
- 'algorithm': self.algorithm,
182
- 'metric': self.effective_metric_,
183
- 'p': self.effective_metric_params_['p'],
184
- }
185
-
186
- try:
187
- requires_y = self._get_tags()["requires_y"]
188
- except KeyError:
189
- requires_y = False
190
-
191
- self._onedal_estimator = onedal_KNeighborsRegressor(**onedal_params)
192
- self._onedal_estimator.requires_y = requires_y
193
- self._onedal_estimator.effective_metric_ = self.effective_metric_
194
- self._onedal_estimator.effective_metric_params_ = self.effective_metric_params_
195
- self._onedal_estimator.fit(X, y, queue=queue)
196
-
197
- self._save_attributes()
198
-
199
- def _onedal_predict(self, X, queue=None):
200
- return self._onedal_estimator.predict(X, queue=queue)
201
-
202
- def _onedal_kneighbors(self, X=None, n_neighbors=None,
203
- return_distance=True, queue=None):
204
- return self._onedal_estimator.kneighbors(
205
- X, n_neighbors, return_distance, queue=queue)
206
-
207
- def _save_attributes(self):
208
- self.n_features_in_ = self._onedal_estimator.n_features_in_
209
- self.n_samples_fit_ = self._onedal_estimator.n_samples_fit_
210
- self._fit_X = self._onedal_estimator._fit_X
211
- self._y = self._onedal_estimator._y
212
- self._fit_method = self._onedal_estimator._fit_method
213
- self._tree = self._onedal_estimator._tree
@@ -1,57 +0,0 @@
1
- #!/usr/bin/env python
2
- #===============================================================================
3
- # Copyright 2021 Intel Corporation
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- #===============================================================================
17
-
18
- import numpy as np
19
- from numpy.testing import assert_allclose
20
-
21
-
22
- def test_sklearnex_import_knn_classifier():
23
- from sklearnex.neighbors import KNeighborsClassifier
24
- X = [[0], [1], [2], [3]]
25
- y = [0, 0, 1, 1]
26
- neigh = KNeighborsClassifier(n_neighbors=3).fit(X, y)
27
- assert 'sklearnex' in neigh.__module__
28
- assert_allclose(neigh.predict([[1.1]]), [0])
29
-
30
-
31
- def test_sklearnex_import_knn_regression():
32
- from sklearnex.neighbors import KNeighborsRegressor
33
- X = [[0], [1], [2], [3]]
34
- y = [0, 0, 1, 1]
35
- neigh = KNeighborsRegressor(n_neighbors=2).fit(X, y)
36
- assert 'sklearnex' in neigh.__module__
37
- assert_allclose(neigh.predict([[1.5]]), [0.5])
38
-
39
-
40
- def test_sklearnex_import_nn():
41
- from sklearnex.neighbors import NearestNeighbors
42
- X = [[0, 0, 2], [1, 0, 0], [0, 0, 1]]
43
- neigh = NearestNeighbors(n_neighbors=2).fit(X)
44
- assert 'sklearnex' in neigh.__module__
45
- result = neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False)
46
- assert_allclose(result, [[2, 0]])
47
-
48
-
49
- def test_sklearnex_import_lof():
50
- from sklearnex.neighbors import LocalOutlierFactor
51
- X = [[7, 7, 7], [1, 0, 0], [0, 0, 1], [0, 0, 1]]
52
- lof = LocalOutlierFactor(n_neighbors=2)
53
- result = lof.fit_predict(X)
54
- assert hasattr(lof, '_knn')
55
- assert 'sklearnex' in lof.__module__
56
- assert 'sklearnex' in lof._knn.__module__
57
- assert_allclose(result, [-1, 1, 1, 1])
@@ -1,18 +0,0 @@
1
- #!/usr/bin/env python
2
- #===============================================================================
3
- # Copyright 2023 Intel Corporation
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- #===============================================================================
17
-
18
- __all__ = ['cluster', 'decomposition', 'linear_model', 'ensemble']
@@ -1,28 +0,0 @@
1
- #!/usr/bin/env python
2
- #===============================================================================
3
- # Copyright 2023 Intel Corporation
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- #===============================================================================
17
-
18
- import numpy as np
19
- from numpy.testing import assert_allclose
20
-
21
-
22
- def test_sklearnex_import():
23
- from sklearnex.preview.decomposition import PCA
24
- X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
25
- pca = PCA(n_components=2, svd_solver='full').fit(X)
26
- assert 'sklearnex' in pca.__module__
27
- assert hasattr(pca, '_onedal_estimator')
28
- assert_allclose(pca.singular_values_, [6.30061232, 0.54980396])