scikit-learn-intelex 2023.2.1__py39-none-win_amd64.whl → 2024.0.1__py39-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__init__.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__main__.py +16 -12
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_config.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_device_offload.py +90 -56
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_utils.py +95 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +4 -4
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +187 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +12 -6
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +5 -5
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +5 -4
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/dispatcher.py +102 -72
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/ensemble/__init__.py +12 -4
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1947 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +118 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +31 -16
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +21 -14
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +10 -10
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +2 -2
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/linear_model/linear.py +173 -83
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +23 -7
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +4 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +4 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +5 -5
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +8 -6
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +6 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +9 -5
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +100 -77
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +331 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +307 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +116 -58
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/lof.py +118 -56
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +85 -0
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/decomposition → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview}/__init__.py +18 -20
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +7 -7
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +104 -73
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +4 -1
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +128 -100
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_preview_linear.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +18 -16
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd}/__init__.py +24 -22
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +11 -5
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +50 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +16 -14
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +11 -8
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/_common.py +56 -56
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +110 -55
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +65 -31
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svc.py +136 -78
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svr.py +65 -31
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +102 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +170 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +9 -8
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +63 -69
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +55 -53
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +50 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +8 -7
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +428 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +39 -39
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +3 -3
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/parallel.py +59 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/validation.py +2 -2
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/METADATA +34 -35
- scikit_learn_intelex-2024.0.1.dist-info/RECORD +90 -0
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/_utils.py +0 -82
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -18
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -20
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/forest.py +0 -18
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -46
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -228
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +0 -213
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -57
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/__init__.py +0 -18
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -28
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/extra_trees.py +0 -1261
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/forest.py +0 -1155
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/tests/test_preview_ensemble.py +0 -67
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model/_common.py +0 -66
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -23
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -63
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -159
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -383
- scikit_learn_intelex-2023.2.1.dist-info/RECORD +0 -95
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/top_level.txt +0 -0
scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py
DELETED
|
@@ -1,228 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
#===============================================================================
|
|
3
|
-
# Copyright 2021 Intel Corporation
|
|
4
|
-
#
|
|
5
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
-
# you may not use this file except in compliance with the License.
|
|
7
|
-
# You may obtain a copy of the License at
|
|
8
|
-
#
|
|
9
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
-
#
|
|
11
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
-
# See the License for the specific language governing permissions and
|
|
15
|
-
# limitations under the License.
|
|
16
|
-
#===============================================================================
|
|
17
|
-
|
|
18
|
-
from daal4py.sklearn._utils import sklearn_check_version
|
|
19
|
-
import warnings
|
|
20
|
-
|
|
21
|
-
from sklearn.neighbors._base import NeighborsBase as sklearn_NeighborsBase
|
|
22
|
-
from sklearn.neighbors._ball_tree import BallTree
|
|
23
|
-
from sklearn.neighbors._kd_tree import KDTree
|
|
24
|
-
if not sklearn_check_version('1.2'):
|
|
25
|
-
from sklearn.neighbors._base import _check_weights
|
|
26
|
-
from sklearn.neighbors._base import VALID_METRICS
|
|
27
|
-
from sklearn.neighbors._classification import KNeighborsClassifier as \
|
|
28
|
-
sklearn_KNeighborsClassifier
|
|
29
|
-
from sklearn.neighbors._unsupervised import NearestNeighbors as \
|
|
30
|
-
sklearn_NearestNeighbors
|
|
31
|
-
from sklearn.utils.validation import _deprecate_positional_args, check_is_fitted
|
|
32
|
-
|
|
33
|
-
from onedal.datatypes import _check_array, _num_features, _num_samples
|
|
34
|
-
from onedal.neighbors import KNeighborsClassifier as onedal_KNeighborsClassifier
|
|
35
|
-
|
|
36
|
-
from .common import KNeighborsDispatchingBase
|
|
37
|
-
from .._device_offload import dispatch, wrap_output_data
|
|
38
|
-
import numpy as np
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
if sklearn_check_version("0.24"):
|
|
42
|
-
class KNeighborsClassifier_(sklearn_KNeighborsClassifier):
|
|
43
|
-
if sklearn_check_version('1.2'):
|
|
44
|
-
_parameter_constraints: dict = {
|
|
45
|
-
**sklearn_KNeighborsClassifier._parameter_constraints}
|
|
46
|
-
|
|
47
|
-
@_deprecate_positional_args
|
|
48
|
-
def __init__(self, n_neighbors=5, *,
|
|
49
|
-
weights='uniform', algorithm='auto', leaf_size=30,
|
|
50
|
-
p=2, metric='minkowski', metric_params=None, n_jobs=None,
|
|
51
|
-
**kwargs):
|
|
52
|
-
super().__init__(
|
|
53
|
-
n_neighbors=n_neighbors,
|
|
54
|
-
algorithm=algorithm,
|
|
55
|
-
leaf_size=leaf_size, metric=metric, p=p,
|
|
56
|
-
metric_params=metric_params,
|
|
57
|
-
n_jobs=n_jobs, **kwargs)
|
|
58
|
-
self.weights = \
|
|
59
|
-
weights if sklearn_check_version("1.0") \
|
|
60
|
-
else _check_weights(weights)
|
|
61
|
-
elif sklearn_check_version("0.22"):
|
|
62
|
-
from sklearn.neighbors._base import SupervisedIntegerMixin as \
|
|
63
|
-
BaseSupervisedIntegerMixin
|
|
64
|
-
|
|
65
|
-
class KNeighborsClassifier_(sklearn_KNeighborsClassifier,
|
|
66
|
-
BaseSupervisedIntegerMixin):
|
|
67
|
-
@_deprecate_positional_args
|
|
68
|
-
def __init__(self, n_neighbors=5, *,
|
|
69
|
-
weights='uniform', algorithm='auto', leaf_size=30,
|
|
70
|
-
p=2, metric='minkowski', metric_params=None, n_jobs=None,
|
|
71
|
-
**kwargs):
|
|
72
|
-
super().__init__(
|
|
73
|
-
n_neighbors=n_neighbors,
|
|
74
|
-
algorithm=algorithm,
|
|
75
|
-
leaf_size=leaf_size, metric=metric, p=p,
|
|
76
|
-
metric_params=metric_params,
|
|
77
|
-
n_jobs=n_jobs, **kwargs)
|
|
78
|
-
self.weights = _check_weights(weights)
|
|
79
|
-
else:
|
|
80
|
-
from sklearn.neighbors.base import SupervisedIntegerMixin as \
|
|
81
|
-
BaseSupervisedIntegerMixin
|
|
82
|
-
|
|
83
|
-
class KNeighborsClassifier_(sklearn_KNeighborsClassifier,
|
|
84
|
-
BaseSupervisedIntegerMixin):
|
|
85
|
-
@_deprecate_positional_args
|
|
86
|
-
def __init__(self, n_neighbors=5, *,
|
|
87
|
-
weights='uniform', algorithm='auto', leaf_size=30,
|
|
88
|
-
p=2, metric='minkowski', metric_params=None, n_jobs=None,
|
|
89
|
-
**kwargs):
|
|
90
|
-
super().__init__(
|
|
91
|
-
n_neighbors=n_neighbors,
|
|
92
|
-
algorithm=algorithm,
|
|
93
|
-
leaf_size=leaf_size, metric=metric, p=p,
|
|
94
|
-
metric_params=metric_params,
|
|
95
|
-
n_jobs=n_jobs, **kwargs)
|
|
96
|
-
self.weights = _check_weights(weights)
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
class KNeighborsClassifier(KNeighborsClassifier_, KNeighborsDispatchingBase):
|
|
100
|
-
if sklearn_check_version('1.2'):
|
|
101
|
-
_parameter_constraints: dict = {
|
|
102
|
-
**KNeighborsClassifier_._parameter_constraints}
|
|
103
|
-
|
|
104
|
-
if sklearn_check_version('1.0'):
|
|
105
|
-
def __init__(self, n_neighbors=5, *,
|
|
106
|
-
weights='uniform', algorithm='auto', leaf_size=30,
|
|
107
|
-
p=2, metric='minkowski', metric_params=None, n_jobs=None):
|
|
108
|
-
super().__init__(
|
|
109
|
-
n_neighbors=n_neighbors,
|
|
110
|
-
weights=weights,
|
|
111
|
-
algorithm=algorithm,
|
|
112
|
-
leaf_size=leaf_size, metric=metric, p=p,
|
|
113
|
-
metric_params=metric_params,
|
|
114
|
-
n_jobs=n_jobs)
|
|
115
|
-
else:
|
|
116
|
-
@_deprecate_positional_args
|
|
117
|
-
def __init__(self, n_neighbors=5, *,
|
|
118
|
-
weights='uniform', algorithm='auto', leaf_size=30,
|
|
119
|
-
p=2, metric='minkowski', metric_params=None, n_jobs=None,
|
|
120
|
-
**kwargs):
|
|
121
|
-
super().__init__(
|
|
122
|
-
n_neighbors=n_neighbors,
|
|
123
|
-
weights=weights,
|
|
124
|
-
algorithm=algorithm,
|
|
125
|
-
leaf_size=leaf_size, metric=metric, p=p,
|
|
126
|
-
metric_params=metric_params,
|
|
127
|
-
n_jobs=n_jobs, **kwargs)
|
|
128
|
-
|
|
129
|
-
def fit(self, X, y):
|
|
130
|
-
self._fit_validation(X, y)
|
|
131
|
-
dispatch(self, 'fit', {
|
|
132
|
-
'onedal': self.__class__._onedal_fit,
|
|
133
|
-
'sklearn': sklearn_KNeighborsClassifier.fit,
|
|
134
|
-
}, X, y)
|
|
135
|
-
return self
|
|
136
|
-
|
|
137
|
-
@wrap_output_data
|
|
138
|
-
def predict(self, X):
|
|
139
|
-
check_is_fitted(self)
|
|
140
|
-
if sklearn_check_version("1.0"):
|
|
141
|
-
self._check_feature_names(X, reset=False)
|
|
142
|
-
return dispatch(self, 'predict', {
|
|
143
|
-
'onedal': self.__class__._onedal_predict,
|
|
144
|
-
'sklearn': sklearn_KNeighborsClassifier.predict,
|
|
145
|
-
}, X)
|
|
146
|
-
|
|
147
|
-
@wrap_output_data
|
|
148
|
-
def predict_proba(self, X):
|
|
149
|
-
check_is_fitted(self)
|
|
150
|
-
if sklearn_check_version("1.0"):
|
|
151
|
-
self._check_feature_names(X, reset=False)
|
|
152
|
-
return dispatch(self, 'predict_proba', {
|
|
153
|
-
'onedal': self.__class__._onedal_predict_proba,
|
|
154
|
-
'sklearn': sklearn_KNeighborsClassifier.predict_proba,
|
|
155
|
-
}, X)
|
|
156
|
-
|
|
157
|
-
@wrap_output_data
|
|
158
|
-
def kneighbors(self, X=None, n_neighbors=None, return_distance=True):
|
|
159
|
-
check_is_fitted(self)
|
|
160
|
-
if sklearn_check_version("1.0"):
|
|
161
|
-
self._check_feature_names(X, reset=False)
|
|
162
|
-
return dispatch(self, 'kneighbors', {
|
|
163
|
-
'onedal': self.__class__._onedal_kneighbors,
|
|
164
|
-
'sklearn': sklearn_KNeighborsClassifier.kneighbors,
|
|
165
|
-
}, X, n_neighbors, return_distance)
|
|
166
|
-
|
|
167
|
-
@wrap_output_data
|
|
168
|
-
def radius_neighbors(self, X=None, radius=None, return_distance=True,
|
|
169
|
-
sort_results=False):
|
|
170
|
-
_onedal_estimator = getattr(self, '_onedal_estimator', None)
|
|
171
|
-
|
|
172
|
-
if _onedal_estimator is not None or getattr(self, '_tree', 0) is None and \
|
|
173
|
-
self._fit_method == 'kd_tree':
|
|
174
|
-
if sklearn_check_version("0.24"):
|
|
175
|
-
sklearn_NearestNeighbors.fit(self, self._fit_X, getattr(self, '_y', None))
|
|
176
|
-
else:
|
|
177
|
-
sklearn_NearestNeighbors.fit(self, self._fit_X)
|
|
178
|
-
if sklearn_check_version("0.22"):
|
|
179
|
-
result = sklearn_NearestNeighbors.radius_neighbors(
|
|
180
|
-
self, X, radius, return_distance, sort_results)
|
|
181
|
-
else:
|
|
182
|
-
result = sklearn_NearestNeighbors.radius_neighbors(
|
|
183
|
-
self, X, radius, return_distance)
|
|
184
|
-
|
|
185
|
-
return result
|
|
186
|
-
|
|
187
|
-
def _onedal_fit(self, X, y, queue=None):
|
|
188
|
-
onedal_params = {
|
|
189
|
-
'n_neighbors': self.n_neighbors,
|
|
190
|
-
'weights': self.weights,
|
|
191
|
-
'algorithm': self.algorithm,
|
|
192
|
-
'metric': self.effective_metric_,
|
|
193
|
-
'p': self.effective_metric_params_['p'],
|
|
194
|
-
}
|
|
195
|
-
|
|
196
|
-
try:
|
|
197
|
-
requires_y = self._get_tags()["requires_y"]
|
|
198
|
-
except KeyError:
|
|
199
|
-
requires_y = False
|
|
200
|
-
|
|
201
|
-
self._onedal_estimator = onedal_KNeighborsClassifier(**onedal_params)
|
|
202
|
-
self._onedal_estimator.requires_y = requires_y
|
|
203
|
-
self._onedal_estimator.effective_metric_ = self.effective_metric_
|
|
204
|
-
self._onedal_estimator.effective_metric_params_ = self.effective_metric_params_
|
|
205
|
-
self._onedal_estimator.fit(X, y, queue=queue)
|
|
206
|
-
|
|
207
|
-
self._save_attributes()
|
|
208
|
-
|
|
209
|
-
def _onedal_predict(self, X, queue=None):
|
|
210
|
-
return self._onedal_estimator.predict(X, queue=queue)
|
|
211
|
-
|
|
212
|
-
def _onedal_predict_proba(self, X, queue=None):
|
|
213
|
-
return self._onedal_estimator.predict_proba(X, queue=queue)
|
|
214
|
-
|
|
215
|
-
def _onedal_kneighbors(self, X=None, n_neighbors=None,
|
|
216
|
-
return_distance=True, queue=None):
|
|
217
|
-
return self._onedal_estimator.kneighbors(
|
|
218
|
-
X, n_neighbors, return_distance, queue=queue)
|
|
219
|
-
|
|
220
|
-
def _save_attributes(self):
|
|
221
|
-
self.classes_ = self._onedal_estimator.classes_
|
|
222
|
-
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
223
|
-
self.n_samples_fit_ = self._onedal_estimator.n_samples_fit_
|
|
224
|
-
self._fit_X = self._onedal_estimator._fit_X
|
|
225
|
-
self._y = self._onedal_estimator._y
|
|
226
|
-
self._fit_method = self._onedal_estimator._fit_method
|
|
227
|
-
self.outputs_2d_ = self._onedal_estimator.outputs_2d_
|
|
228
|
-
self._tree = self._onedal_estimator._tree
|
scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py
DELETED
|
@@ -1,213 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
#===============================================================================
|
|
3
|
-
# Copyright 2021 Intel Corporation
|
|
4
|
-
#
|
|
5
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
-
# you may not use this file except in compliance with the License.
|
|
7
|
-
# You may obtain a copy of the License at
|
|
8
|
-
#
|
|
9
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
-
#
|
|
11
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
-
# See the License for the specific language governing permissions and
|
|
15
|
-
# limitations under the License.
|
|
16
|
-
#===============================================================================
|
|
17
|
-
|
|
18
|
-
from daal4py.sklearn._utils import sklearn_check_version
|
|
19
|
-
import warnings
|
|
20
|
-
|
|
21
|
-
from sklearn.neighbors._base import NeighborsBase as sklearn_NeighborsBase
|
|
22
|
-
from sklearn.neighbors._ball_tree import BallTree
|
|
23
|
-
from sklearn.neighbors._kd_tree import KDTree
|
|
24
|
-
if not sklearn_check_version('1.2'):
|
|
25
|
-
from sklearn.neighbors._base import _check_weights
|
|
26
|
-
from sklearn.neighbors._base import VALID_METRICS
|
|
27
|
-
from sklearn.neighbors._regression import KNeighborsRegressor as \
|
|
28
|
-
sklearn_KNeighborsRegressor
|
|
29
|
-
from sklearn.neighbors._unsupervised import NearestNeighbors as \
|
|
30
|
-
sklearn_NearestNeighbors
|
|
31
|
-
from sklearn.utils.validation import _deprecate_positional_args, check_is_fitted
|
|
32
|
-
|
|
33
|
-
from onedal.datatypes import _check_array, _num_features, _num_samples
|
|
34
|
-
from onedal.neighbors import KNeighborsRegressor as onedal_KNeighborsRegressor
|
|
35
|
-
|
|
36
|
-
from .common import KNeighborsDispatchingBase
|
|
37
|
-
from .._device_offload import dispatch, wrap_output_data
|
|
38
|
-
import numpy as np
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
if sklearn_check_version("0.24"):
|
|
42
|
-
class KNeighborsRegressor_(sklearn_KNeighborsRegressor):
|
|
43
|
-
if sklearn_check_version('1.2'):
|
|
44
|
-
_parameter_constraints: dict = {
|
|
45
|
-
**sklearn_KNeighborsRegressor._parameter_constraints}
|
|
46
|
-
|
|
47
|
-
@_deprecate_positional_args
|
|
48
|
-
def __init__(self, n_neighbors=5, *,
|
|
49
|
-
weights='uniform', algorithm='auto', leaf_size=30,
|
|
50
|
-
p=2, metric='minkowski', metric_params=None, n_jobs=None,
|
|
51
|
-
**kwargs):
|
|
52
|
-
super().__init__(
|
|
53
|
-
n_neighbors=n_neighbors,
|
|
54
|
-
algorithm=algorithm,
|
|
55
|
-
leaf_size=leaf_size, metric=metric, p=p,
|
|
56
|
-
metric_params=metric_params,
|
|
57
|
-
n_jobs=n_jobs, **kwargs)
|
|
58
|
-
self.weights = \
|
|
59
|
-
weights if sklearn_check_version("1.0") \
|
|
60
|
-
else _check_weights(weights)
|
|
61
|
-
elif sklearn_check_version("0.22"):
|
|
62
|
-
from sklearn.neighbors._base import SupervisedFloatMixin as \
|
|
63
|
-
BaseSupervisedFloatMixin
|
|
64
|
-
|
|
65
|
-
class KNeighborsRegressor_(sklearn_KNeighborsRegressor,
|
|
66
|
-
BaseSupervisedFloatMixin):
|
|
67
|
-
@_deprecate_positional_args
|
|
68
|
-
def __init__(self, n_neighbors=5, *,
|
|
69
|
-
weights='uniform', algorithm='auto', leaf_size=30,
|
|
70
|
-
p=2, metric='minkowski', metric_params=None, n_jobs=None,
|
|
71
|
-
**kwargs):
|
|
72
|
-
super().__init__(
|
|
73
|
-
n_neighbors=n_neighbors,
|
|
74
|
-
algorithm=algorithm,
|
|
75
|
-
leaf_size=leaf_size, metric=metric, p=p,
|
|
76
|
-
metric_params=metric_params,
|
|
77
|
-
n_jobs=n_jobs, **kwargs)
|
|
78
|
-
self.weights = _check_weights(weights)
|
|
79
|
-
else:
|
|
80
|
-
from sklearn.neighbors.base import SupervisedFloatMixin as \
|
|
81
|
-
BaseSupervisedFloatMixin
|
|
82
|
-
|
|
83
|
-
class KNeighborsRegressor_(sklearn_KNeighborsRegressor,
|
|
84
|
-
BaseSupervisedFloatMixin):
|
|
85
|
-
@_deprecate_positional_args
|
|
86
|
-
def __init__(self, n_neighbors=5, *,
|
|
87
|
-
weights='uniform', algorithm='auto', leaf_size=30,
|
|
88
|
-
p=2, metric='minkowski', metric_params=None, n_jobs=None,
|
|
89
|
-
**kwargs):
|
|
90
|
-
super().__init__(
|
|
91
|
-
n_neighbors=n_neighbors,
|
|
92
|
-
algorithm=algorithm,
|
|
93
|
-
leaf_size=leaf_size, metric=metric, p=p,
|
|
94
|
-
metric_params=metric_params,
|
|
95
|
-
n_jobs=n_jobs, **kwargs)
|
|
96
|
-
self.weights = _check_weights(weights)
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
class KNeighborsRegressor(KNeighborsRegressor_, KNeighborsDispatchingBase):
|
|
100
|
-
if sklearn_check_version('1.2'):
|
|
101
|
-
_parameter_constraints: dict = {
|
|
102
|
-
**KNeighborsRegressor_._parameter_constraints}
|
|
103
|
-
|
|
104
|
-
if sklearn_check_version('1.0'):
|
|
105
|
-
def __init__(self, n_neighbors=5, *,
|
|
106
|
-
weights='uniform', algorithm='auto', leaf_size=30,
|
|
107
|
-
p=2, metric='minkowski', metric_params=None, n_jobs=None):
|
|
108
|
-
super().__init__(
|
|
109
|
-
n_neighbors=n_neighbors,
|
|
110
|
-
weights=weights,
|
|
111
|
-
algorithm=algorithm,
|
|
112
|
-
leaf_size=leaf_size, metric=metric, p=p,
|
|
113
|
-
metric_params=metric_params,
|
|
114
|
-
n_jobs=n_jobs)
|
|
115
|
-
else:
|
|
116
|
-
@_deprecate_positional_args
|
|
117
|
-
def __init__(self, n_neighbors=5, *,
|
|
118
|
-
weights='uniform', algorithm='auto', leaf_size=30,
|
|
119
|
-
p=2, metric='minkowski', metric_params=None, n_jobs=None,
|
|
120
|
-
**kwargs):
|
|
121
|
-
super().__init__(
|
|
122
|
-
n_neighbors=n_neighbors,
|
|
123
|
-
weights=weights,
|
|
124
|
-
algorithm=algorithm,
|
|
125
|
-
leaf_size=leaf_size, metric=metric, p=p,
|
|
126
|
-
metric_params=metric_params,
|
|
127
|
-
n_jobs=n_jobs, **kwargs)
|
|
128
|
-
|
|
129
|
-
def fit(self, X, y):
|
|
130
|
-
self._fit_validation(X, y)
|
|
131
|
-
dispatch(self, 'fit', {
|
|
132
|
-
'onedal': self.__class__._onedal_fit,
|
|
133
|
-
'sklearn': sklearn_KNeighborsRegressor.fit,
|
|
134
|
-
}, X, y)
|
|
135
|
-
return self
|
|
136
|
-
|
|
137
|
-
@wrap_output_data
|
|
138
|
-
def predict(self, X):
|
|
139
|
-
check_is_fitted(self)
|
|
140
|
-
if sklearn_check_version("1.0"):
|
|
141
|
-
self._check_feature_names(X, reset=False)
|
|
142
|
-
return dispatch(self, 'predict', {
|
|
143
|
-
'onedal': self.__class__._onedal_predict,
|
|
144
|
-
'sklearn': sklearn_KNeighborsRegressor.predict,
|
|
145
|
-
}, X)
|
|
146
|
-
|
|
147
|
-
@wrap_output_data
|
|
148
|
-
def kneighbors(self, X=None, n_neighbors=None, return_distance=True):
|
|
149
|
-
check_is_fitted(self)
|
|
150
|
-
if sklearn_check_version("1.0"):
|
|
151
|
-
self._check_feature_names(X, reset=False)
|
|
152
|
-
return dispatch(self, 'kneighbors', {
|
|
153
|
-
'onedal': self.__class__._onedal_kneighbors,
|
|
154
|
-
'sklearn': sklearn_KNeighborsRegressor.kneighbors,
|
|
155
|
-
}, X, n_neighbors, return_distance)
|
|
156
|
-
|
|
157
|
-
@wrap_output_data
|
|
158
|
-
def radius_neighbors(self, X=None, radius=None, return_distance=True,
|
|
159
|
-
sort_results=False):
|
|
160
|
-
_onedal_estimator = getattr(self, '_onedal_estimator', None)
|
|
161
|
-
|
|
162
|
-
if _onedal_estimator is not None or getattr(self, '_tree', 0) is None and \
|
|
163
|
-
self._fit_method == 'kd_tree':
|
|
164
|
-
if sklearn_check_version("0.24"):
|
|
165
|
-
sklearn_NearestNeighbors.fit(self, self._fit_X, getattr(self, '_y', None))
|
|
166
|
-
else:
|
|
167
|
-
sklearn_NearestNeighbors.fit(self, self._fit_X)
|
|
168
|
-
if sklearn_check_version("0.22"):
|
|
169
|
-
result = sklearn_NearestNeighbors.radius_neighbors(
|
|
170
|
-
self, X, radius, return_distance, sort_results)
|
|
171
|
-
else:
|
|
172
|
-
result = sklearn_NearestNeighbors.radius_neighbors(
|
|
173
|
-
self, X, radius, return_distance)
|
|
174
|
-
|
|
175
|
-
return result
|
|
176
|
-
|
|
177
|
-
def _onedal_fit(self, X, y, queue=None):
|
|
178
|
-
onedal_params = {
|
|
179
|
-
'n_neighbors': self.n_neighbors,
|
|
180
|
-
'weights': self.weights,
|
|
181
|
-
'algorithm': self.algorithm,
|
|
182
|
-
'metric': self.effective_metric_,
|
|
183
|
-
'p': self.effective_metric_params_['p'],
|
|
184
|
-
}
|
|
185
|
-
|
|
186
|
-
try:
|
|
187
|
-
requires_y = self._get_tags()["requires_y"]
|
|
188
|
-
except KeyError:
|
|
189
|
-
requires_y = False
|
|
190
|
-
|
|
191
|
-
self._onedal_estimator = onedal_KNeighborsRegressor(**onedal_params)
|
|
192
|
-
self._onedal_estimator.requires_y = requires_y
|
|
193
|
-
self._onedal_estimator.effective_metric_ = self.effective_metric_
|
|
194
|
-
self._onedal_estimator.effective_metric_params_ = self.effective_metric_params_
|
|
195
|
-
self._onedal_estimator.fit(X, y, queue=queue)
|
|
196
|
-
|
|
197
|
-
self._save_attributes()
|
|
198
|
-
|
|
199
|
-
def _onedal_predict(self, X, queue=None):
|
|
200
|
-
return self._onedal_estimator.predict(X, queue=queue)
|
|
201
|
-
|
|
202
|
-
def _onedal_kneighbors(self, X=None, n_neighbors=None,
|
|
203
|
-
return_distance=True, queue=None):
|
|
204
|
-
return self._onedal_estimator.kneighbors(
|
|
205
|
-
X, n_neighbors, return_distance, queue=queue)
|
|
206
|
-
|
|
207
|
-
def _save_attributes(self):
|
|
208
|
-
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
209
|
-
self.n_samples_fit_ = self._onedal_estimator.n_samples_fit_
|
|
210
|
-
self._fit_X = self._onedal_estimator._fit_X
|
|
211
|
-
self._y = self._onedal_estimator._y
|
|
212
|
-
self._fit_method = self._onedal_estimator._fit_method
|
|
213
|
-
self._tree = self._onedal_estimator._tree
|
|
@@ -1,57 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
#===============================================================================
|
|
3
|
-
# Copyright 2021 Intel Corporation
|
|
4
|
-
#
|
|
5
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
-
# you may not use this file except in compliance with the License.
|
|
7
|
-
# You may obtain a copy of the License at
|
|
8
|
-
#
|
|
9
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
-
#
|
|
11
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
-
# See the License for the specific language governing permissions and
|
|
15
|
-
# limitations under the License.
|
|
16
|
-
#===============================================================================
|
|
17
|
-
|
|
18
|
-
import numpy as np
|
|
19
|
-
from numpy.testing import assert_allclose
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
def test_sklearnex_import_knn_classifier():
|
|
23
|
-
from sklearnex.neighbors import KNeighborsClassifier
|
|
24
|
-
X = [[0], [1], [2], [3]]
|
|
25
|
-
y = [0, 0, 1, 1]
|
|
26
|
-
neigh = KNeighborsClassifier(n_neighbors=3).fit(X, y)
|
|
27
|
-
assert 'sklearnex' in neigh.__module__
|
|
28
|
-
assert_allclose(neigh.predict([[1.1]]), [0])
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
def test_sklearnex_import_knn_regression():
|
|
32
|
-
from sklearnex.neighbors import KNeighborsRegressor
|
|
33
|
-
X = [[0], [1], [2], [3]]
|
|
34
|
-
y = [0, 0, 1, 1]
|
|
35
|
-
neigh = KNeighborsRegressor(n_neighbors=2).fit(X, y)
|
|
36
|
-
assert 'sklearnex' in neigh.__module__
|
|
37
|
-
assert_allclose(neigh.predict([[1.5]]), [0.5])
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def test_sklearnex_import_nn():
|
|
41
|
-
from sklearnex.neighbors import NearestNeighbors
|
|
42
|
-
X = [[0, 0, 2], [1, 0, 0], [0, 0, 1]]
|
|
43
|
-
neigh = NearestNeighbors(n_neighbors=2).fit(X)
|
|
44
|
-
assert 'sklearnex' in neigh.__module__
|
|
45
|
-
result = neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False)
|
|
46
|
-
assert_allclose(result, [[2, 0]])
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
def test_sklearnex_import_lof():
|
|
50
|
-
from sklearnex.neighbors import LocalOutlierFactor
|
|
51
|
-
X = [[7, 7, 7], [1, 0, 0], [0, 0, 1], [0, 0, 1]]
|
|
52
|
-
lof = LocalOutlierFactor(n_neighbors=2)
|
|
53
|
-
result = lof.fit_predict(X)
|
|
54
|
-
assert hasattr(lof, '_knn')
|
|
55
|
-
assert 'sklearnex' in lof.__module__
|
|
56
|
-
assert 'sklearnex' in lof._knn.__module__
|
|
57
|
-
assert_allclose(result, [-1, 1, 1, 1])
|
|
@@ -1,18 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
#===============================================================================
|
|
3
|
-
# Copyright 2023 Intel Corporation
|
|
4
|
-
#
|
|
5
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
-
# you may not use this file except in compliance with the License.
|
|
7
|
-
# You may obtain a copy of the License at
|
|
8
|
-
#
|
|
9
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
-
#
|
|
11
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
-
# See the License for the specific language governing permissions and
|
|
15
|
-
# limitations under the License.
|
|
16
|
-
#===============================================================================
|
|
17
|
-
|
|
18
|
-
__all__ = ['cluster', 'decomposition', 'linear_model', 'ensemble']
|
|
@@ -1,28 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
#===============================================================================
|
|
3
|
-
# Copyright 2023 Intel Corporation
|
|
4
|
-
#
|
|
5
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
-
# you may not use this file except in compliance with the License.
|
|
7
|
-
# You may obtain a copy of the License at
|
|
8
|
-
#
|
|
9
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
-
#
|
|
11
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
-
# See the License for the specific language governing permissions and
|
|
15
|
-
# limitations under the License.
|
|
16
|
-
#===============================================================================
|
|
17
|
-
|
|
18
|
-
import numpy as np
|
|
19
|
-
from numpy.testing import assert_allclose
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
def test_sklearnex_import():
|
|
23
|
-
from sklearnex.preview.decomposition import PCA
|
|
24
|
-
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
|
25
|
-
pca = PCA(n_components=2, svd_solver='full').fit(X)
|
|
26
|
-
assert 'sklearnex' in pca.__module__
|
|
27
|
-
assert hasattr(pca, '_onedal_estimator')
|
|
28
|
-
assert_allclose(pca.singular_values_, [6.30061232, 0.54980396])
|