rslearn 0.0.1__py3-none-any.whl → 0.0.21__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rslearn/arg_parser.py +31 -0
- rslearn/config/__init__.py +6 -12
- rslearn/config/dataset.py +520 -401
- rslearn/const.py +9 -15
- rslearn/data_sources/__init__.py +8 -23
- rslearn/data_sources/aws_landsat.py +242 -98
- rslearn/data_sources/aws_open_data.py +111 -151
- rslearn/data_sources/aws_sentinel1.py +131 -0
- rslearn/data_sources/climate_data_store.py +471 -0
- rslearn/data_sources/copernicus.py +884 -12
- rslearn/data_sources/data_source.py +43 -12
- rslearn/data_sources/earthdaily.py +484 -0
- rslearn/data_sources/earthdata_srtm.py +282 -0
- rslearn/data_sources/eurocrops.py +242 -0
- rslearn/data_sources/gcp_public_data.py +578 -222
- rslearn/data_sources/google_earth_engine.py +461 -135
- rslearn/data_sources/local_files.py +219 -150
- rslearn/data_sources/openstreetmap.py +51 -89
- rslearn/data_sources/planet.py +24 -60
- rslearn/data_sources/planet_basemap.py +275 -0
- rslearn/data_sources/planetary_computer.py +798 -0
- rslearn/data_sources/usda_cdl.py +195 -0
- rslearn/data_sources/usgs_landsat.py +115 -83
- rslearn/data_sources/utils.py +249 -61
- rslearn/data_sources/vector_source.py +1 -0
- rslearn/data_sources/worldcereal.py +449 -0
- rslearn/data_sources/worldcover.py +144 -0
- rslearn/data_sources/worldpop.py +153 -0
- rslearn/data_sources/xyz_tiles.py +150 -107
- rslearn/dataset/__init__.py +8 -2
- rslearn/dataset/add_windows.py +2 -2
- rslearn/dataset/dataset.py +40 -51
- rslearn/dataset/handler_summaries.py +131 -0
- rslearn/dataset/manage.py +313 -74
- rslearn/dataset/materialize.py +431 -107
- rslearn/dataset/remap.py +29 -4
- rslearn/dataset/storage/__init__.py +1 -0
- rslearn/dataset/storage/file.py +202 -0
- rslearn/dataset/storage/storage.py +140 -0
- rslearn/dataset/window.py +181 -44
- rslearn/lightning_cli.py +454 -0
- rslearn/log_utils.py +24 -0
- rslearn/main.py +384 -181
- rslearn/models/anysat.py +215 -0
- rslearn/models/attention_pooling.py +177 -0
- rslearn/models/clay/clay.py +231 -0
- rslearn/models/clay/configs/metadata.yaml +295 -0
- rslearn/models/clip.py +68 -0
- rslearn/models/component.py +111 -0
- rslearn/models/concatenate_features.py +103 -0
- rslearn/models/conv.py +63 -0
- rslearn/models/croma.py +306 -0
- rslearn/models/detr/__init__.py +5 -0
- rslearn/models/detr/box_ops.py +103 -0
- rslearn/models/detr/detr.py +504 -0
- rslearn/models/detr/matcher.py +107 -0
- rslearn/models/detr/position_encoding.py +114 -0
- rslearn/models/detr/transformer.py +429 -0
- rslearn/models/detr/util.py +24 -0
- rslearn/models/dinov3.py +177 -0
- rslearn/models/faster_rcnn.py +30 -28
- rslearn/models/feature_center_crop.py +53 -0
- rslearn/models/fpn.py +19 -8
- rslearn/models/galileo/__init__.py +5 -0
- rslearn/models/galileo/galileo.py +595 -0
- rslearn/models/galileo/single_file_galileo.py +1678 -0
- rslearn/models/module_wrapper.py +65 -0
- rslearn/models/molmo.py +69 -0
- rslearn/models/multitask.py +384 -28
- rslearn/models/olmoearth_pretrain/__init__.py +1 -0
- rslearn/models/olmoearth_pretrain/model.py +421 -0
- rslearn/models/olmoearth_pretrain/norm.py +86 -0
- rslearn/models/panopticon.py +170 -0
- rslearn/models/panopticon_data/sensors/drone.yaml +32 -0
- rslearn/models/panopticon_data/sensors/enmap.yaml +904 -0
- rslearn/models/panopticon_data/sensors/goes.yaml +9 -0
- rslearn/models/panopticon_data/sensors/himawari.yaml +9 -0
- rslearn/models/panopticon_data/sensors/intuition.yaml +606 -0
- rslearn/models/panopticon_data/sensors/landsat8.yaml +84 -0
- rslearn/models/panopticon_data/sensors/modis_terra.yaml +99 -0
- rslearn/models/panopticon_data/sensors/qb2_ge1.yaml +34 -0
- rslearn/models/panopticon_data/sensors/sentinel1.yaml +85 -0
- rslearn/models/panopticon_data/sensors/sentinel2.yaml +97 -0
- rslearn/models/panopticon_data/sensors/superdove.yaml +60 -0
- rslearn/models/panopticon_data/sensors/wv23.yaml +63 -0
- rslearn/models/pick_features.py +17 -10
- rslearn/models/pooling_decoder.py +60 -7
- rslearn/models/presto/__init__.py +5 -0
- rslearn/models/presto/presto.py +297 -0
- rslearn/models/presto/single_file_presto.py +926 -0
- rslearn/models/prithvi.py +1147 -0
- rslearn/models/resize_features.py +59 -0
- rslearn/models/sam2_enc.py +13 -9
- rslearn/models/satlaspretrain.py +38 -18
- rslearn/models/simple_time_series.py +188 -77
- rslearn/models/singletask.py +24 -13
- rslearn/models/ssl4eo_s12.py +40 -30
- rslearn/models/swin.py +44 -32
- rslearn/models/task_embedding.py +250 -0
- rslearn/models/terramind.py +256 -0
- rslearn/models/trunk.py +139 -0
- rslearn/models/unet.py +68 -22
- rslearn/models/upsample.py +48 -0
- rslearn/models/use_croma.py +508 -0
- rslearn/template_params.py +26 -0
- rslearn/tile_stores/__init__.py +41 -18
- rslearn/tile_stores/default.py +409 -0
- rslearn/tile_stores/tile_store.py +236 -132
- rslearn/train/all_patches_dataset.py +530 -0
- rslearn/train/callbacks/adapters.py +53 -0
- rslearn/train/callbacks/freeze_unfreeze.py +348 -17
- rslearn/train/callbacks/gradients.py +129 -0
- rslearn/train/callbacks/peft.py +116 -0
- rslearn/train/data_module.py +444 -20
- rslearn/train/dataset.py +588 -235
- rslearn/train/lightning_module.py +192 -62
- rslearn/train/model_context.py +88 -0
- rslearn/train/optimizer.py +31 -0
- rslearn/train/prediction_writer.py +319 -84
- rslearn/train/scheduler.py +92 -0
- rslearn/train/tasks/classification.py +55 -28
- rslearn/train/tasks/detection.py +132 -76
- rslearn/train/tasks/embedding.py +120 -0
- rslearn/train/tasks/multi_task.py +28 -14
- rslearn/train/tasks/per_pixel_regression.py +291 -0
- rslearn/train/tasks/regression.py +161 -44
- rslearn/train/tasks/segmentation.py +428 -53
- rslearn/train/tasks/task.py +6 -5
- rslearn/train/transforms/__init__.py +1 -1
- rslearn/train/transforms/concatenate.py +54 -10
- rslearn/train/transforms/crop.py +29 -11
- rslearn/train/transforms/flip.py +18 -6
- rslearn/train/transforms/mask.py +78 -0
- rslearn/train/transforms/normalize.py +101 -17
- rslearn/train/transforms/pad.py +19 -7
- rslearn/train/transforms/resize.py +83 -0
- rslearn/train/transforms/select_bands.py +76 -0
- rslearn/train/transforms/sentinel1.py +75 -0
- rslearn/train/transforms/transform.py +89 -70
- rslearn/utils/__init__.py +2 -6
- rslearn/utils/array.py +8 -6
- rslearn/utils/feature.py +2 -2
- rslearn/utils/fsspec.py +90 -1
- rslearn/utils/geometry.py +347 -7
- rslearn/utils/get_utm_ups_crs.py +2 -3
- rslearn/utils/grid_index.py +5 -5
- rslearn/utils/jsonargparse.py +178 -0
- rslearn/utils/mp.py +4 -3
- rslearn/utils/raster_format.py +268 -116
- rslearn/utils/rtree_index.py +64 -17
- rslearn/utils/sqlite_index.py +7 -1
- rslearn/utils/vector_format.py +252 -97
- {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/METADATA +532 -283
- rslearn-0.0.21.dist-info/RECORD +167 -0
- {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/WHEEL +1 -1
- rslearn-0.0.21.dist-info/licenses/NOTICE +115 -0
- rslearn/data_sources/raster_source.py +0 -309
- rslearn/models/registry.py +0 -5
- rslearn/tile_stores/file.py +0 -242
- rslearn/utils/mgrs.py +0 -24
- rslearn/utils/utils.py +0 -22
- rslearn-0.0.1.dist-info/RECORD +0 -88
- /rslearn/{data_sources/geotiff.py → py.typed} +0 -0
- {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/entry_points.txt +0 -0
- {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info/licenses}/LICENSE +0 -0
- {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,926 @@
|
|
|
1
|
+
"""Single file Presto.
|
|
2
|
+
|
|
3
|
+
Copied from https://github.com/nasaharvest/presto/blob/main/single_file_presto.py
|
|
4
|
+
with modifications.
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
import math
|
|
8
|
+
from collections import OrderedDict
|
|
9
|
+
from copy import deepcopy
|
|
10
|
+
from typing import cast
|
|
11
|
+
|
|
12
|
+
import numpy as np
|
|
13
|
+
import torch
|
|
14
|
+
from einops import repeat
|
|
15
|
+
from torch import nn
|
|
16
|
+
from torch.jit import Final
|
|
17
|
+
from torch.nn import functional as F
|
|
18
|
+
|
|
19
|
+
# naming convention matches helios.data.constants
|
|
20
|
+
PRESTO_S2_BANDS = [
|
|
21
|
+
"B02",
|
|
22
|
+
"B03",
|
|
23
|
+
"B04",
|
|
24
|
+
"B05",
|
|
25
|
+
"B06",
|
|
26
|
+
"B07",
|
|
27
|
+
"B08",
|
|
28
|
+
"B8A",
|
|
29
|
+
"B09",
|
|
30
|
+
"B11",
|
|
31
|
+
"B12",
|
|
32
|
+
]
|
|
33
|
+
PRESTO_S1_BANDS = ["vv", "vh"]
|
|
34
|
+
ERA5_BANDS = ["temperature_2m", "total_precipitation"]
|
|
35
|
+
SRTM_BANDS = ["elevation", "slope"]
|
|
36
|
+
PRESTO_BANDS = PRESTO_S1_BANDS + PRESTO_S2_BANDS + ERA5_BANDS + SRTM_BANDS + ["NDVI"]
|
|
37
|
+
|
|
38
|
+
# used in normalization
|
|
39
|
+
PRESTO_ADD_BY = torch.Tensor(
|
|
40
|
+
[
|
|
41
|
+
25.0,
|
|
42
|
+
25.0,
|
|
43
|
+
0.0,
|
|
44
|
+
0.0,
|
|
45
|
+
0.0,
|
|
46
|
+
0.0,
|
|
47
|
+
0.0,
|
|
48
|
+
0.0,
|
|
49
|
+
0.0,
|
|
50
|
+
0.0,
|
|
51
|
+
0.0,
|
|
52
|
+
0.0,
|
|
53
|
+
-272.15,
|
|
54
|
+
0.0,
|
|
55
|
+
0.0,
|
|
56
|
+
0.0,
|
|
57
|
+
0.0,
|
|
58
|
+
]
|
|
59
|
+
)
|
|
60
|
+
PRESTO_DIV_BY = torch.Tensor(
|
|
61
|
+
[
|
|
62
|
+
25.0,
|
|
63
|
+
25.0,
|
|
64
|
+
1e4,
|
|
65
|
+
1e4,
|
|
66
|
+
1e4,
|
|
67
|
+
1e4,
|
|
68
|
+
1e4,
|
|
69
|
+
1e4,
|
|
70
|
+
1e4,
|
|
71
|
+
1e4,
|
|
72
|
+
1e4,
|
|
73
|
+
1e4,
|
|
74
|
+
35.0,
|
|
75
|
+
0.03,
|
|
76
|
+
2000.0,
|
|
77
|
+
50.0,
|
|
78
|
+
1.0,
|
|
79
|
+
]
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
BANDS_GROUPS_IDX = OrderedDict(
|
|
84
|
+
[
|
|
85
|
+
("S1", [0, 1]),
|
|
86
|
+
("S2_RGB", [2, 3, 4]),
|
|
87
|
+
("S2_Red_Edge", [5, 6, 7]),
|
|
88
|
+
("S2_NIR_10m", [8]),
|
|
89
|
+
("S2_NIR_20m", [9]),
|
|
90
|
+
("S2_SWIR", [10, 11]),
|
|
91
|
+
("ERA5", [12, 13]),
|
|
92
|
+
("SRTM", [14, 15]),
|
|
93
|
+
("NDVI", [16]),
|
|
94
|
+
]
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
NUM_DYNAMIC_WORLD_CLASSES = 9
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
class Attention(nn.Module):
|
|
101
|
+
"""Attention."""
|
|
102
|
+
|
|
103
|
+
# https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
|
|
104
|
+
fast_attn: Final[bool]
|
|
105
|
+
|
|
106
|
+
def __init__(
|
|
107
|
+
self,
|
|
108
|
+
dim: int,
|
|
109
|
+
num_heads: int = 8,
|
|
110
|
+
qkv_bias: bool = False,
|
|
111
|
+
qk_norm: bool = False,
|
|
112
|
+
attn_drop: float = 0.0,
|
|
113
|
+
proj_drop: float = 0.0,
|
|
114
|
+
norm_layer: nn.Module = nn.LayerNorm,
|
|
115
|
+
) -> None:
|
|
116
|
+
"""Init."""
|
|
117
|
+
super().__init__()
|
|
118
|
+
assert dim % num_heads == 0, "dim should be divisible by num_heads"
|
|
119
|
+
self.num_heads = num_heads
|
|
120
|
+
self.head_dim = dim // num_heads
|
|
121
|
+
self.scale = self.head_dim**-0.5
|
|
122
|
+
self.fast_attn = hasattr(
|
|
123
|
+
torch.nn.functional, "scaled_dot_product_attention"
|
|
124
|
+
) # FIXME
|
|
125
|
+
|
|
126
|
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
127
|
+
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
|
128
|
+
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
|
129
|
+
self.attn_drop = nn.Dropout(attn_drop)
|
|
130
|
+
self.proj = nn.Linear(dim, dim)
|
|
131
|
+
self.proj_drop = nn.Dropout(proj_drop)
|
|
132
|
+
|
|
133
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
134
|
+
"""Forward."""
|
|
135
|
+
B, N, C = x.shape
|
|
136
|
+
qkv = (
|
|
137
|
+
self.qkv(x)
|
|
138
|
+
.reshape(B, N, 3, self.num_heads, self.head_dim)
|
|
139
|
+
.permute(2, 0, 3, 1, 4)
|
|
140
|
+
)
|
|
141
|
+
q, k, v = qkv.unbind(0)
|
|
142
|
+
q, k = self.q_norm(q), self.k_norm(k)
|
|
143
|
+
|
|
144
|
+
if self.fast_attn:
|
|
145
|
+
x = F.scaled_dot_product_attention(
|
|
146
|
+
q,
|
|
147
|
+
k,
|
|
148
|
+
v,
|
|
149
|
+
dropout_p=self.attn_drop.p,
|
|
150
|
+
)
|
|
151
|
+
else:
|
|
152
|
+
q = q * self.scale
|
|
153
|
+
attn = q @ k.transpose(-2, -1)
|
|
154
|
+
attn = attn.softmax(dim=-1)
|
|
155
|
+
attn = self.attn_drop(attn)
|
|
156
|
+
x = attn @ v
|
|
157
|
+
|
|
158
|
+
x = x.transpose(1, 2).reshape(B, N, C)
|
|
159
|
+
x = self.proj(x)
|
|
160
|
+
x = self.proj_drop(x)
|
|
161
|
+
return x
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
class Mlp(nn.Module):
|
|
165
|
+
"""MLP as used in Vision Transformer, MLP-Mixer and related networks."""
|
|
166
|
+
|
|
167
|
+
def __init__(
|
|
168
|
+
self,
|
|
169
|
+
in_features: int,
|
|
170
|
+
hidden_features: int | None = None,
|
|
171
|
+
out_features: int | None = None,
|
|
172
|
+
act_layer: nn.Module = nn.GELU,
|
|
173
|
+
bias: bool = True,
|
|
174
|
+
drop: float = 0.0,
|
|
175
|
+
) -> None:
|
|
176
|
+
"""Init."""
|
|
177
|
+
super().__init__()
|
|
178
|
+
out_features = out_features or in_features
|
|
179
|
+
hidden_features = hidden_features or in_features
|
|
180
|
+
|
|
181
|
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
|
182
|
+
self.act = act_layer()
|
|
183
|
+
self.drop1 = nn.Dropout(drop)
|
|
184
|
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
|
185
|
+
self.drop2 = nn.Dropout(drop)
|
|
186
|
+
|
|
187
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
188
|
+
"""Forward."""
|
|
189
|
+
x = self.fc1(x)
|
|
190
|
+
x = self.act(x)
|
|
191
|
+
x = self.drop1(x)
|
|
192
|
+
x = self.fc2(x)
|
|
193
|
+
x = self.drop2(x)
|
|
194
|
+
return x
|
|
195
|
+
|
|
196
|
+
|
|
197
|
+
class LayerScale(nn.Module):
|
|
198
|
+
"""LayerScale."""
|
|
199
|
+
|
|
200
|
+
def __init__(
|
|
201
|
+
self, dim: int, init_values: float = 1e-5, inplace: bool = False
|
|
202
|
+
) -> None:
|
|
203
|
+
"""__init__."""
|
|
204
|
+
super().__init__()
|
|
205
|
+
self.inplace = inplace
|
|
206
|
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
|
207
|
+
|
|
208
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
209
|
+
"""Forward."""
|
|
210
|
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
class Block(nn.Module):
|
|
214
|
+
"""Block."""
|
|
215
|
+
|
|
216
|
+
def __init__(
|
|
217
|
+
self,
|
|
218
|
+
dim: int,
|
|
219
|
+
num_heads: int,
|
|
220
|
+
mlp_ratio: float = 4.0,
|
|
221
|
+
qkv_bias: bool = False,
|
|
222
|
+
qk_norm: bool = False,
|
|
223
|
+
drop: float = 0.0,
|
|
224
|
+
attn_drop: float = 0.0,
|
|
225
|
+
init_values: float | None = None,
|
|
226
|
+
act_layer: nn.Module = nn.GELU,
|
|
227
|
+
norm_layer: nn.Module = nn.LayerNorm,
|
|
228
|
+
) -> None:
|
|
229
|
+
"""Init."""
|
|
230
|
+
super().__init__()
|
|
231
|
+
self.norm1 = norm_layer(dim)
|
|
232
|
+
self.attn = Attention(
|
|
233
|
+
dim,
|
|
234
|
+
num_heads=num_heads,
|
|
235
|
+
qkv_bias=qkv_bias,
|
|
236
|
+
qk_norm=qk_norm,
|
|
237
|
+
attn_drop=attn_drop,
|
|
238
|
+
proj_drop=drop,
|
|
239
|
+
norm_layer=norm_layer,
|
|
240
|
+
)
|
|
241
|
+
self.ls1 = (
|
|
242
|
+
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
|
243
|
+
)
|
|
244
|
+
|
|
245
|
+
self.norm2 = norm_layer(dim)
|
|
246
|
+
self.mlp = Mlp(
|
|
247
|
+
in_features=dim,
|
|
248
|
+
hidden_features=int(dim * mlp_ratio),
|
|
249
|
+
act_layer=act_layer,
|
|
250
|
+
drop=drop,
|
|
251
|
+
)
|
|
252
|
+
self.ls2 = (
|
|
253
|
+
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
|
254
|
+
)
|
|
255
|
+
|
|
256
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
257
|
+
"""Forward."""
|
|
258
|
+
x = x + self.ls1(self.attn(self.norm1(x)))
|
|
259
|
+
x = x + self.ls2(self.mlp(self.norm2(x)))
|
|
260
|
+
return x
|
|
261
|
+
|
|
262
|
+
|
|
263
|
+
def get_sinusoid_encoding_table(
|
|
264
|
+
positions: int | list[int], d_hid: int, T: int = 1000
|
|
265
|
+
) -> torch.Tensor:
|
|
266
|
+
"""Sinusoid position encoding table.
|
|
267
|
+
|
|
268
|
+
positions: int or list of integer, if int range(positions)
|
|
269
|
+
"""
|
|
270
|
+
if isinstance(positions, int):
|
|
271
|
+
positions = list(range(positions))
|
|
272
|
+
|
|
273
|
+
def cal_angle(position: int, hid_idx: int) -> float:
|
|
274
|
+
return position / np.power(T, 2 * (hid_idx // 2) / d_hid)
|
|
275
|
+
|
|
276
|
+
def get_posi_angle_vec(position: int) -> list[float]:
|
|
277
|
+
return [cal_angle(position, hid_j) for hid_j in range(d_hid)]
|
|
278
|
+
|
|
279
|
+
sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in positions])
|
|
280
|
+
|
|
281
|
+
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
|
282
|
+
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
|
283
|
+
|
|
284
|
+
return torch.FloatTensor(sinusoid_table)
|
|
285
|
+
|
|
286
|
+
|
|
287
|
+
def get_month_encoding_table(d_hid: int) -> torch.Tensor:
|
|
288
|
+
"""Sinusoid month encoding table, for 12 months indexed from 0-11."""
|
|
289
|
+
assert d_hid % 2 == 0
|
|
290
|
+
angles = np.arange(0, 13) / (12 / (2 * np.pi))
|
|
291
|
+
|
|
292
|
+
sin_table = np.sin(np.stack([angles for _ in range(d_hid // 2)], axis=-1))
|
|
293
|
+
cos_table = np.cos(np.stack([angles for _ in range(d_hid // 2)], axis=-1))
|
|
294
|
+
month_table = np.concatenate([sin_table[:-1], cos_table[:-1]], axis=-1)
|
|
295
|
+
|
|
296
|
+
return torch.FloatTensor(month_table)
|
|
297
|
+
|
|
298
|
+
|
|
299
|
+
def month_to_tensor(
|
|
300
|
+
month: torch.Tensor | int, batch_size: int, seq_len: int, device: torch.device
|
|
301
|
+
) -> torch.Tensor:
|
|
302
|
+
"""month_to_tensor."""
|
|
303
|
+
if isinstance(month, int):
|
|
304
|
+
assert cast(int, month) < 12
|
|
305
|
+
else:
|
|
306
|
+
assert max(cast(torch.Tensor, month.flatten())) < 12
|
|
307
|
+
|
|
308
|
+
if isinstance(month, int):
|
|
309
|
+
# >>> torch.fmod(torch.tensor([9., 10, 11, 12, 13, 14]), 12)
|
|
310
|
+
# tensor([ 9., 10., 11., 0., 1., 2.])
|
|
311
|
+
month = (
|
|
312
|
+
torch.fmod(torch.arange(month, month + seq_len, dtype=torch.long), 12)
|
|
313
|
+
.expand(batch_size, seq_len)
|
|
314
|
+
.to(device)
|
|
315
|
+
)
|
|
316
|
+
elif len(month.shape) == 1:
|
|
317
|
+
month = torch.stack(
|
|
318
|
+
[
|
|
319
|
+
torch.fmod(torch.arange(m, m + seq_len, dtype=torch.long), 12)
|
|
320
|
+
for m in month
|
|
321
|
+
]
|
|
322
|
+
).to(device)
|
|
323
|
+
return month
|
|
324
|
+
|
|
325
|
+
|
|
326
|
+
class Encoder(nn.Module):
|
|
327
|
+
"""Encoder."""
|
|
328
|
+
|
|
329
|
+
def __init__(
|
|
330
|
+
self,
|
|
331
|
+
embedding_size: int = 128,
|
|
332
|
+
channel_embed_ratio: float = 0.25,
|
|
333
|
+
month_embed_ratio: float = 0.25,
|
|
334
|
+
depth: int = 2,
|
|
335
|
+
mlp_ratio: float = 2,
|
|
336
|
+
num_heads: int = 8,
|
|
337
|
+
max_sequence_length: int = 24,
|
|
338
|
+
) -> None:
|
|
339
|
+
"""Init."""
|
|
340
|
+
super().__init__()
|
|
341
|
+
|
|
342
|
+
self.band_groups = BANDS_GROUPS_IDX
|
|
343
|
+
self.embedding_size = embedding_size
|
|
344
|
+
|
|
345
|
+
# this is used for the channel embedding
|
|
346
|
+
self.band_group_to_idx = {
|
|
347
|
+
group_name: idx
|
|
348
|
+
for idx, (group_name, _) in enumerate(self.band_groups.items())
|
|
349
|
+
}
|
|
350
|
+
self.band_group_to_idx["dynamic_world"] = (
|
|
351
|
+
max(self.band_group_to_idx.values()) + 1
|
|
352
|
+
)
|
|
353
|
+
|
|
354
|
+
self.eo_patch_embed = nn.ModuleDict(
|
|
355
|
+
{
|
|
356
|
+
group_name: nn.Linear(len(group), embedding_size)
|
|
357
|
+
for group_name, group in self.band_groups.items()
|
|
358
|
+
}
|
|
359
|
+
)
|
|
360
|
+
self.dw_embed = nn.Embedding(
|
|
361
|
+
num_embeddings=NUM_DYNAMIC_WORLD_CLASSES + 1, embedding_dim=embedding_size
|
|
362
|
+
)
|
|
363
|
+
self.latlon_embed = nn.Linear(3, embedding_size)
|
|
364
|
+
|
|
365
|
+
self.blocks = nn.ModuleList(
|
|
366
|
+
[
|
|
367
|
+
Block(
|
|
368
|
+
embedding_size,
|
|
369
|
+
num_heads,
|
|
370
|
+
mlp_ratio,
|
|
371
|
+
qkv_bias=True,
|
|
372
|
+
norm_layer=nn.LayerNorm,
|
|
373
|
+
)
|
|
374
|
+
for _ in range(depth)
|
|
375
|
+
]
|
|
376
|
+
)
|
|
377
|
+
self.norm = nn.LayerNorm(embedding_size)
|
|
378
|
+
|
|
379
|
+
# the positional + monthly + channel embedding
|
|
380
|
+
self.max_sequence_length = max_sequence_length
|
|
381
|
+
pos_embedding_size = int(
|
|
382
|
+
embedding_size * (1 - (channel_embed_ratio + month_embed_ratio))
|
|
383
|
+
)
|
|
384
|
+
channel_embedding_size = int(embedding_size * channel_embed_ratio)
|
|
385
|
+
month_embedding_size = int(embedding_size * month_embed_ratio)
|
|
386
|
+
self.pos_embed = nn.Parameter(
|
|
387
|
+
torch.zeros(1, max_sequence_length, pos_embedding_size), requires_grad=False
|
|
388
|
+
)
|
|
389
|
+
month_tab = get_month_encoding_table(month_embedding_size)
|
|
390
|
+
self.month_embed = nn.Embedding.from_pretrained(month_tab, freeze=True)
|
|
391
|
+
self.channel_embed = nn.Embedding(
|
|
392
|
+
num_embeddings=len(self.band_groups) + 1,
|
|
393
|
+
embedding_dim=channel_embedding_size,
|
|
394
|
+
)
|
|
395
|
+
|
|
396
|
+
self.initialize_weights()
|
|
397
|
+
|
|
398
|
+
def initialize_weights(self) -> None:
|
|
399
|
+
"""initialize_weights."""
|
|
400
|
+
pos_embed = get_sinusoid_encoding_table(
|
|
401
|
+
self.pos_embed.shape[1], self.pos_embed.shape[-1]
|
|
402
|
+
).to(device=self.pos_embed.device)
|
|
403
|
+
self.pos_embed.data.copy_(pos_embed)
|
|
404
|
+
|
|
405
|
+
# initialize nn.Linear and nn.LayerNorm
|
|
406
|
+
self.apply(self._init_weights)
|
|
407
|
+
|
|
408
|
+
def _init_weights(self, m: nn.Module) -> None:
|
|
409
|
+
if isinstance(m, nn.Linear):
|
|
410
|
+
# we use xavier_uniform following official JAX ViT:
|
|
411
|
+
torch.nn.init.xavier_uniform_(m.weight)
|
|
412
|
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
413
|
+
nn.init.constant_(m.bias, 0)
|
|
414
|
+
elif isinstance(m, nn.LayerNorm):
|
|
415
|
+
nn.init.constant_(m.bias, 0)
|
|
416
|
+
nn.init.constant_(m.weight, 1.0)
|
|
417
|
+
|
|
418
|
+
@staticmethod
|
|
419
|
+
def cartesian(latlons: torch.Tensor) -> torch.Tensor:
|
|
420
|
+
"""Cartesian."""
|
|
421
|
+
with torch.no_grad():
|
|
422
|
+
# an embedding is calculated for all timesteps. This is then expanded
|
|
423
|
+
# for each timestep in the sequence
|
|
424
|
+
latlon_radians = latlons * math.pi / 180
|
|
425
|
+
lats, lons = latlon_radians[:, 0], latlon_radians[:, 1]
|
|
426
|
+
x = torch.cos(lats) * torch.cos(lons)
|
|
427
|
+
y = torch.cos(lats) * torch.sin(lons)
|
|
428
|
+
z = torch.sin(lats)
|
|
429
|
+
return torch.stack([x, y, z], dim=-1)
|
|
430
|
+
|
|
431
|
+
@staticmethod
|
|
432
|
+
def mask_tokens(x: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
|
|
433
|
+
"""mask_tokens."""
|
|
434
|
+
summed = mask.sum(
|
|
435
|
+
dim=(1, 2)
|
|
436
|
+
) # summed tells me the number of masked elements per batch idx
|
|
437
|
+
assert summed.max() == summed.min(), f"{summed.max()}, {summed.min()}"
|
|
438
|
+
|
|
439
|
+
batch_size = x.shape[0]
|
|
440
|
+
removed_elements_per_batch = int(summed.max() / mask.shape[2])
|
|
441
|
+
kept_elements_per_batch = x.shape[1] - removed_elements_per_batch
|
|
442
|
+
embedding_dim = x.shape[-1]
|
|
443
|
+
|
|
444
|
+
# we want the mask to just be the indices of the masked tokens
|
|
445
|
+
indices = repeat(
|
|
446
|
+
torch.arange(0, x.shape[1]).long().to(x.device), "d -> b d", b=x.shape[0]
|
|
447
|
+
)
|
|
448
|
+
|
|
449
|
+
x = x[~mask.bool()].view(batch_size, kept_elements_per_batch, embedding_dim)
|
|
450
|
+
|
|
451
|
+
mask = mask[:, :, 0]
|
|
452
|
+
kept_indices = indices[~mask.bool()].view(batch_size, kept_elements_per_batch)
|
|
453
|
+
removed_indices = indices[mask.bool()].view(
|
|
454
|
+
batch_size, removed_elements_per_batch
|
|
455
|
+
)
|
|
456
|
+
|
|
457
|
+
return x, kept_indices, removed_indices
|
|
458
|
+
|
|
459
|
+
def forward(
|
|
460
|
+
self,
|
|
461
|
+
x: torch.Tensor,
|
|
462
|
+
dynamic_world: torch.Tensor,
|
|
463
|
+
# different from the original
|
|
464
|
+
# presto - latlons can be optionally ignored
|
|
465
|
+
latlons: torch.Tensor | None = None,
|
|
466
|
+
mask: torch.Tensor | None = None,
|
|
467
|
+
month: torch.Tensor | int = 0,
|
|
468
|
+
eval_task: bool = True,
|
|
469
|
+
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
470
|
+
"""Forward."""
|
|
471
|
+
device = x.device
|
|
472
|
+
|
|
473
|
+
if mask is None:
|
|
474
|
+
mask = torch.zeros_like(x, device=x.device).float()
|
|
475
|
+
|
|
476
|
+
months = month_to_tensor(month, x.shape[0], x.shape[1], device)
|
|
477
|
+
month_embedding = self.month_embed(months)
|
|
478
|
+
positional_embedding = repeat(
|
|
479
|
+
self.pos_embed[:, : x.shape[1], :],
|
|
480
|
+
"b t d -> (repeat b) t d",
|
|
481
|
+
repeat=x.shape[0],
|
|
482
|
+
)
|
|
483
|
+
|
|
484
|
+
# we assume the number of masked patches is the same
|
|
485
|
+
# for all items in the batch. Otherwise things become a headache
|
|
486
|
+
all_tokens, all_masks = [], []
|
|
487
|
+
|
|
488
|
+
for channel_group, channel_idxs in self.band_groups.items():
|
|
489
|
+
tokens = self.eo_patch_embed[channel_group](x[:, :, channel_idxs])
|
|
490
|
+
channel_embedding = self.channel_embed(
|
|
491
|
+
torch.tensor(self.band_group_to_idx[channel_group]).long().to(device)
|
|
492
|
+
)
|
|
493
|
+
channel_embedding = repeat(
|
|
494
|
+
channel_embedding, "d -> b t d", b=x.shape[0], t=x.shape[1]
|
|
495
|
+
)
|
|
496
|
+
if channel_group == "SRTM":
|
|
497
|
+
# for SRTM, we reduce it to a single token instead of
|
|
498
|
+
# a token per timestep
|
|
499
|
+
channel_wise_positional_embedding = torch.cat(
|
|
500
|
+
(
|
|
501
|
+
torch.zeros_like(month_embedding[:, 0:1]),
|
|
502
|
+
channel_embedding[:, 0:1],
|
|
503
|
+
torch.zeros_like(positional_embedding[:, 0:1]),
|
|
504
|
+
),
|
|
505
|
+
dim=-1,
|
|
506
|
+
)
|
|
507
|
+
indices = slice(0, 1)
|
|
508
|
+
else:
|
|
509
|
+
channel_wise_positional_embedding = torch.cat(
|
|
510
|
+
(month_embedding, channel_embedding, positional_embedding), dim=-1
|
|
511
|
+
)
|
|
512
|
+
indices = slice(None)
|
|
513
|
+
|
|
514
|
+
tokens = tokens[:, indices]
|
|
515
|
+
tokens += channel_wise_positional_embedding
|
|
516
|
+
all_tokens.append(tokens)
|
|
517
|
+
group_mask = repeat(
|
|
518
|
+
torch.max(mask[:, indices, channel_idxs], dim=-1)[0],
|
|
519
|
+
"b t -> b t d",
|
|
520
|
+
d=tokens.shape[-1],
|
|
521
|
+
)
|
|
522
|
+
all_masks.append(group_mask)
|
|
523
|
+
|
|
524
|
+
# then, dynamic world
|
|
525
|
+
tokens = self.dw_embed(dynamic_world)
|
|
526
|
+
channel_embedding = self.channel_embed(
|
|
527
|
+
torch.tensor(self.band_group_to_idx["dynamic_world"]).long().to(device)
|
|
528
|
+
)
|
|
529
|
+
channel_embedding = repeat(
|
|
530
|
+
channel_embedding, "d -> b t d", b=x.shape[0], t=x.shape[1]
|
|
531
|
+
)
|
|
532
|
+
positional_embedding = torch.cat(
|
|
533
|
+
(month_embedding, channel_embedding, positional_embedding), dim=-1
|
|
534
|
+
)
|
|
535
|
+
tokens += positional_embedding
|
|
536
|
+
all_tokens.append(tokens)
|
|
537
|
+
|
|
538
|
+
# now we calculate the mask for these [b, t] tokens
|
|
539
|
+
group_mask = repeat(
|
|
540
|
+
dynamic_world == NUM_DYNAMIC_WORLD_CLASSES,
|
|
541
|
+
"b t -> b t d",
|
|
542
|
+
d=tokens.shape[-1],
|
|
543
|
+
)
|
|
544
|
+
all_masks.append(group_mask)
|
|
545
|
+
|
|
546
|
+
x = torch.cat(all_tokens, dim=1) # [batch, timesteps, embedding_dim]
|
|
547
|
+
mask = torch.cat(all_masks, dim=1) # [batch, timesteps, embedding_dim]
|
|
548
|
+
x, kept_indices, removed_indices = self.mask_tokens(x, mask)
|
|
549
|
+
|
|
550
|
+
# append latlon tokens
|
|
551
|
+
if latlons is not None:
|
|
552
|
+
latlon_tokens = self.latlon_embed(self.cartesian(latlons)).unsqueeze(1)
|
|
553
|
+
x = torch.cat((latlon_tokens, x), dim=1)
|
|
554
|
+
|
|
555
|
+
# apply Transformer blocks
|
|
556
|
+
for blk in self.blocks:
|
|
557
|
+
x = blk(x)
|
|
558
|
+
|
|
559
|
+
# mask will be a boolean of shape [batch, total_num_tokens]
|
|
560
|
+
if eval_task:
|
|
561
|
+
return self.norm(x.mean(dim=1))
|
|
562
|
+
return self.norm(x), kept_indices, removed_indices
|
|
563
|
+
|
|
564
|
+
|
|
565
|
+
class Decoder(nn.Module):
|
|
566
|
+
"""Decoder."""
|
|
567
|
+
|
|
568
|
+
def __init__(
|
|
569
|
+
self,
|
|
570
|
+
channel_embeddings: nn.Embedding,
|
|
571
|
+
encoder_embed_dim: int = 128,
|
|
572
|
+
decoder_embed_dim: int = 128,
|
|
573
|
+
decoder_depth: int = 2,
|
|
574
|
+
decoder_num_heads: int = 8,
|
|
575
|
+
mlp_ratio: float = 2,
|
|
576
|
+
max_sequence_length: int = 24,
|
|
577
|
+
) -> None:
|
|
578
|
+
"""Init."""
|
|
579
|
+
super().__init__()
|
|
580
|
+
|
|
581
|
+
self.band_groups = BANDS_GROUPS_IDX
|
|
582
|
+
|
|
583
|
+
# this is used for the channel embedding
|
|
584
|
+
self.band_group_to_idx = {
|
|
585
|
+
group_name: idx
|
|
586
|
+
for idx, (group_name, _) in enumerate(self.band_groups.items())
|
|
587
|
+
}
|
|
588
|
+
self.band_group_to_idx["dynamic_world"] = (
|
|
589
|
+
max(self.band_group_to_idx.values()) + 1
|
|
590
|
+
)
|
|
591
|
+
|
|
592
|
+
self.decoder_embed = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=True)
|
|
593
|
+
|
|
594
|
+
self.mask_token = nn.Parameter(torch.zeros(decoder_embed_dim))
|
|
595
|
+
|
|
596
|
+
self.decoder_blocks = nn.ModuleList(
|
|
597
|
+
[
|
|
598
|
+
Block(
|
|
599
|
+
decoder_embed_dim,
|
|
600
|
+
decoder_num_heads,
|
|
601
|
+
mlp_ratio,
|
|
602
|
+
qkv_bias=True,
|
|
603
|
+
norm_layer=nn.LayerNorm,
|
|
604
|
+
)
|
|
605
|
+
for _ in range(decoder_depth)
|
|
606
|
+
]
|
|
607
|
+
)
|
|
608
|
+
|
|
609
|
+
self.decoder_norm = nn.LayerNorm(decoder_embed_dim)
|
|
610
|
+
|
|
611
|
+
self.eo_decoder_pred = nn.ModuleDict(
|
|
612
|
+
{
|
|
613
|
+
group_name: nn.Linear(decoder_embed_dim, len(group))
|
|
614
|
+
for group_name, group in self.band_groups.items()
|
|
615
|
+
}
|
|
616
|
+
)
|
|
617
|
+
self.dw_decoder_pred = nn.Linear(decoder_embed_dim, NUM_DYNAMIC_WORLD_CLASSES)
|
|
618
|
+
|
|
619
|
+
self.channel_embeddings = channel_embeddings
|
|
620
|
+
channel_embedding_dims = channel_embeddings.weight.shape[-1]
|
|
621
|
+
remaining_embeddings = decoder_embed_dim - channel_embedding_dims
|
|
622
|
+
# the positional + monthly + channel embedding
|
|
623
|
+
self.max_sequence_length = max_sequence_length
|
|
624
|
+
self.pos_embed = nn.Parameter(
|
|
625
|
+
torch.zeros(1, max_sequence_length, int(remaining_embeddings) // 2),
|
|
626
|
+
requires_grad=False,
|
|
627
|
+
)
|
|
628
|
+
month_tab = get_month_encoding_table(int(remaining_embeddings) // 2)
|
|
629
|
+
self.month_embed = nn.Embedding.from_pretrained(month_tab, freeze=True)
|
|
630
|
+
|
|
631
|
+
self.initialize_weights()
|
|
632
|
+
|
|
633
|
+
def initialize_weights(self) -> None:
|
|
634
|
+
"""initialize_weights."""
|
|
635
|
+
pos_embed = get_sinusoid_encoding_table(
|
|
636
|
+
self.pos_embed.shape[1], self.pos_embed.shape[-1]
|
|
637
|
+
).to(device=self.pos_embed.device)
|
|
638
|
+
self.pos_embed.data.copy_(pos_embed)
|
|
639
|
+
|
|
640
|
+
# initialize nn.Linear and nn.LayerNorm
|
|
641
|
+
self.apply(self._init_weights)
|
|
642
|
+
|
|
643
|
+
def _init_weights(self, m: nn.Module) -> None:
|
|
644
|
+
if isinstance(m, nn.Linear):
|
|
645
|
+
# we use xavier_uniform following official JAX ViT:
|
|
646
|
+
torch.nn.init.xavier_uniform_(m.weight)
|
|
647
|
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
648
|
+
nn.init.constant_(m.bias, 0)
|
|
649
|
+
elif isinstance(m, nn.LayerNorm):
|
|
650
|
+
nn.init.constant_(m.bias, 0)
|
|
651
|
+
nn.init.constant_(m.weight, 1.0)
|
|
652
|
+
|
|
653
|
+
def add_masked_tokens(
|
|
654
|
+
self, x: torch.Tensor, kept_indices: torch.Tensor, removed_indices: torch.Tensor
|
|
655
|
+
) -> torch.Tensor:
|
|
656
|
+
"""add_masked_tokens."""
|
|
657
|
+
mask_tokens = repeat(
|
|
658
|
+
self.mask_token, "d -> b t d", b=x.shape[0], t=removed_indices.shape[1]
|
|
659
|
+
)
|
|
660
|
+
|
|
661
|
+
x = torch.cat([x, mask_tokens], dim=1)
|
|
662
|
+
|
|
663
|
+
# sort according to their indices. Shape is [batch, index]
|
|
664
|
+
combined_indices = torch.cat([kept_indices, removed_indices], dim=1) + 1
|
|
665
|
+
# 0 for latlon index
|
|
666
|
+
combined_indices = torch.sort(
|
|
667
|
+
torch.cat(
|
|
668
|
+
[torch.zeros_like(combined_indices[:, 0:1]), combined_indices], dim=1
|
|
669
|
+
)
|
|
670
|
+
)[1]
|
|
671
|
+
# and then tile for each dimension
|
|
672
|
+
combined_indices = repeat(combined_indices, "b t -> b t d", d=x.shape[-1])
|
|
673
|
+
x = torch.gather(x, 1, combined_indices)
|
|
674
|
+
return x
|
|
675
|
+
|
|
676
|
+
def add_embeddings(
|
|
677
|
+
self, x: torch.Tensor, month: torch.Tensor | int
|
|
678
|
+
) -> torch.Tensor:
|
|
679
|
+
"""add_embeddings."""
|
|
680
|
+
num_channel_groups = len(self.band_group_to_idx)
|
|
681
|
+
# -2 since we remove srtm and latlon, and -1 since the srtm
|
|
682
|
+
# channel group doesn't have timesteps
|
|
683
|
+
num_timesteps = int((x.shape[1] - 2) / (num_channel_groups - 1))
|
|
684
|
+
srtm_index = self.band_group_to_idx["SRTM"] * num_timesteps
|
|
685
|
+
months = month_to_tensor(month, x.shape[0], num_timesteps, x.device)
|
|
686
|
+
|
|
687
|
+
# when we expand the encodings, each channel_group gets num_timesteps
|
|
688
|
+
# encodings. However, there is only one SRTM token so we remove the
|
|
689
|
+
# excess SRTM encodings
|
|
690
|
+
remove_mask = torch.full(
|
|
691
|
+
size=(num_timesteps * num_channel_groups,), fill_value=False
|
|
692
|
+
)
|
|
693
|
+
remove_mask[torch.arange(num_timesteps - 1) + srtm_index] = True
|
|
694
|
+
|
|
695
|
+
month_embedding = repeat(
|
|
696
|
+
self.month_embed(months),
|
|
697
|
+
"b t d -> b (repeat t) d",
|
|
698
|
+
repeat=num_channel_groups,
|
|
699
|
+
)
|
|
700
|
+
month_embedding = month_embedding[:, ~remove_mask]
|
|
701
|
+
month_embedding[:, srtm_index] = 0
|
|
702
|
+
|
|
703
|
+
positional_embedding = repeat(
|
|
704
|
+
self.pos_embed[:, :num_timesteps, :],
|
|
705
|
+
"b t d -> (b2 b) (t2 t) d",
|
|
706
|
+
b2=x.shape[0],
|
|
707
|
+
t2=num_channel_groups,
|
|
708
|
+
)
|
|
709
|
+
positional_embedding = positional_embedding[:, ~remove_mask]
|
|
710
|
+
positional_embedding[:, srtm_index] = 0
|
|
711
|
+
|
|
712
|
+
channel_embeddings = torch.repeat_interleave(
|
|
713
|
+
self.channel_embeddings.weight, repeats=num_timesteps, dim=0
|
|
714
|
+
)
|
|
715
|
+
channel_embeddings = repeat(channel_embeddings, "c d -> b c d", b=x.shape[0])
|
|
716
|
+
channel_embeddings = channel_embeddings[:, ~remove_mask]
|
|
717
|
+
|
|
718
|
+
positional_embedding = torch.cat(
|
|
719
|
+
(month_embedding, channel_embeddings, positional_embedding), dim=-1
|
|
720
|
+
)
|
|
721
|
+
|
|
722
|
+
# add the zero embedding for the latlon token
|
|
723
|
+
positional_embedding = torch.cat(
|
|
724
|
+
[torch.zeros_like(positional_embedding[:, 0:1, :]), positional_embedding],
|
|
725
|
+
dim=1,
|
|
726
|
+
)
|
|
727
|
+
|
|
728
|
+
x += positional_embedding
|
|
729
|
+
return x
|
|
730
|
+
|
|
731
|
+
def reconstruct_inputs(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
|
732
|
+
"""reconstruct_inputs."""
|
|
733
|
+
# remove the latlon token
|
|
734
|
+
x = x[:, 1:, :]
|
|
735
|
+
|
|
736
|
+
# split into channel groups
|
|
737
|
+
num_channel_groups = len(self.band_group_to_idx) - 1
|
|
738
|
+
num_timesteps = int((x.shape[1] - 1) / num_channel_groups)
|
|
739
|
+
srtm_index = self.band_group_to_idx["SRTM"] * num_timesteps
|
|
740
|
+
srtm_token = x[:, srtm_index : srtm_index + 1, :]
|
|
741
|
+
|
|
742
|
+
mask = torch.full((x.shape[1],), True, device=x.device)
|
|
743
|
+
mask[torch.tensor(srtm_index)] = False
|
|
744
|
+
x = x[:, mask]
|
|
745
|
+
|
|
746
|
+
x = x.view(x.shape[0], num_channel_groups, num_timesteps, x.shape[-1])
|
|
747
|
+
|
|
748
|
+
eo_output, dw_output = [], None
|
|
749
|
+
for group_name, idx in self.band_group_to_idx.items():
|
|
750
|
+
if group_name == "SRTM":
|
|
751
|
+
eo_output.append(
|
|
752
|
+
repeat(
|
|
753
|
+
self.eo_decoder_pred[group_name](srtm_token),
|
|
754
|
+
"b t d -> b (t2 t) d",
|
|
755
|
+
t2=num_timesteps,
|
|
756
|
+
)
|
|
757
|
+
)
|
|
758
|
+
else:
|
|
759
|
+
if idx > self.band_group_to_idx["SRTM"]:
|
|
760
|
+
idx -= 1
|
|
761
|
+
group_tokens = x[:, idx]
|
|
762
|
+
if group_name == "dynamic_world":
|
|
763
|
+
dw_output = self.dw_decoder_pred(group_tokens)
|
|
764
|
+
else:
|
|
765
|
+
eo_output.append(self.eo_decoder_pred[group_name](group_tokens))
|
|
766
|
+
|
|
767
|
+
# we can just do this concatenation because the BANDS_GROUP_IDX
|
|
768
|
+
# is ordered
|
|
769
|
+
return torch.cat(eo_output, dim=-1), cast(torch.Tensor, dw_output)
|
|
770
|
+
|
|
771
|
+
def forward(
|
|
772
|
+
self,
|
|
773
|
+
x: torch.Tensor,
|
|
774
|
+
kept_indices: torch.Tensor,
|
|
775
|
+
removed_indices: torch.Tensor,
|
|
776
|
+
month: torch.Tensor | int,
|
|
777
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
778
|
+
"""Forward."""
|
|
779
|
+
x = self.decoder_embed(x)
|
|
780
|
+
x = self.add_masked_tokens(x, kept_indices, removed_indices)
|
|
781
|
+
x = self.add_embeddings(x, month)
|
|
782
|
+
|
|
783
|
+
# apply Transformer blocks
|
|
784
|
+
for blk in self.decoder_blocks:
|
|
785
|
+
x = blk(x)
|
|
786
|
+
x = self.decoder_norm(x)
|
|
787
|
+
return self.reconstruct_inputs(x)
|
|
788
|
+
|
|
789
|
+
|
|
790
|
+
class PrestoFineTuningModel(nn.Module):
|
|
791
|
+
"""PrestoFineTuningModel."""
|
|
792
|
+
|
|
793
|
+
def __init__(self, encoder: Encoder, head: nn.Module) -> None:
|
|
794
|
+
"""Init."""
|
|
795
|
+
super().__init__()
|
|
796
|
+
self.encoder: Encoder = deepcopy(encoder)
|
|
797
|
+
# make sure the model is trainable, since we can call
|
|
798
|
+
# this having called requires_grad_(False)
|
|
799
|
+
self.encoder.requires_grad_(True)
|
|
800
|
+
# but don't unfreeze the position encoder, which
|
|
801
|
+
# shouldn't be trainable
|
|
802
|
+
self.encoder.pos_embed.requires_grad_(False)
|
|
803
|
+
self.encoder.month_embed.requires_grad_(False)
|
|
804
|
+
self.head = head
|
|
805
|
+
|
|
806
|
+
def forward(
|
|
807
|
+
self,
|
|
808
|
+
x: torch.Tensor,
|
|
809
|
+
dynamic_world: torch.Tensor,
|
|
810
|
+
latlons: torch.Tensor,
|
|
811
|
+
mask: torch.Tensor | None = None,
|
|
812
|
+
month: torch.Tensor | int = 0,
|
|
813
|
+
) -> torch.Tensor:
|
|
814
|
+
"""Forward."""
|
|
815
|
+
return self.head(
|
|
816
|
+
self.encoder(
|
|
817
|
+
x=x,
|
|
818
|
+
dynamic_world=dynamic_world,
|
|
819
|
+
latlons=latlons,
|
|
820
|
+
mask=mask,
|
|
821
|
+
month=month,
|
|
822
|
+
eval_task=True,
|
|
823
|
+
)
|
|
824
|
+
)
|
|
825
|
+
|
|
826
|
+
|
|
827
|
+
class FinetuningHead(nn.Module):
|
|
828
|
+
"""FinetuningHead."""
|
|
829
|
+
|
|
830
|
+
def __init__(self, hidden_size: int, num_outputs: int, regression: bool) -> None:
|
|
831
|
+
"""__init__."""
|
|
832
|
+
super().__init__()
|
|
833
|
+
|
|
834
|
+
self.hidden_size = hidden_size
|
|
835
|
+
self.num_outputs = num_outputs
|
|
836
|
+
self.regression = regression
|
|
837
|
+
self.linear = nn.Linear(hidden_size, num_outputs)
|
|
838
|
+
|
|
839
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
840
|
+
"""Forward."""
|
|
841
|
+
x = self.linear(x)
|
|
842
|
+
if (not self.regression) & (self.num_outputs == 1):
|
|
843
|
+
x = torch.sigmoid(x)
|
|
844
|
+
return x
|
|
845
|
+
|
|
846
|
+
|
|
847
|
+
class Presto(nn.Module):
|
|
848
|
+
"""Presto."""
|
|
849
|
+
|
|
850
|
+
def __init__(self, encoder: Encoder, decoder: Decoder):
|
|
851
|
+
"""Init."""
|
|
852
|
+
super().__init__()
|
|
853
|
+
self.encoder: Encoder = encoder
|
|
854
|
+
self.decoder: Decoder = decoder
|
|
855
|
+
|
|
856
|
+
def forward(
|
|
857
|
+
self,
|
|
858
|
+
x: torch.Tensor,
|
|
859
|
+
dynamic_world: torch.Tensor,
|
|
860
|
+
latlons: torch.Tensor,
|
|
861
|
+
mask: torch.Tensor | None = None,
|
|
862
|
+
month: torch.Tensor | int = 0,
|
|
863
|
+
) -> torch.Tensor:
|
|
864
|
+
"""Forward."""
|
|
865
|
+
x, kept_indices, removed_indices = self.encoder(
|
|
866
|
+
x=x,
|
|
867
|
+
dynamic_world=dynamic_world,
|
|
868
|
+
latlons=latlons,
|
|
869
|
+
mask=mask,
|
|
870
|
+
month=month,
|
|
871
|
+
eval_task=False,
|
|
872
|
+
)
|
|
873
|
+
|
|
874
|
+
return self.decoder(x, kept_indices, removed_indices, month)
|
|
875
|
+
|
|
876
|
+
@classmethod
|
|
877
|
+
def construct(
|
|
878
|
+
cls,
|
|
879
|
+
encoder_embedding_size: int = 128,
|
|
880
|
+
channel_embed_ratio: float = 0.25,
|
|
881
|
+
month_embed_ratio: float = 0.25,
|
|
882
|
+
encoder_depth: int = 2,
|
|
883
|
+
mlp_ratio: float = 4,
|
|
884
|
+
encoder_num_heads: int = 8,
|
|
885
|
+
decoder_embedding_size: int = 128,
|
|
886
|
+
decoder_depth: int = 2,
|
|
887
|
+
decoder_num_heads: int = 8,
|
|
888
|
+
max_sequence_length: int = 24,
|
|
889
|
+
) -> "Presto":
|
|
890
|
+
"""Construct."""
|
|
891
|
+
encoder = Encoder(
|
|
892
|
+
embedding_size=encoder_embedding_size,
|
|
893
|
+
channel_embed_ratio=channel_embed_ratio,
|
|
894
|
+
month_embed_ratio=month_embed_ratio,
|
|
895
|
+
depth=encoder_depth,
|
|
896
|
+
mlp_ratio=mlp_ratio,
|
|
897
|
+
num_heads=encoder_num_heads,
|
|
898
|
+
max_sequence_length=max_sequence_length,
|
|
899
|
+
)
|
|
900
|
+
decoder = Decoder(
|
|
901
|
+
channel_embeddings=encoder.channel_embed,
|
|
902
|
+
encoder_embed_dim=encoder_embedding_size,
|
|
903
|
+
decoder_embed_dim=decoder_embedding_size,
|
|
904
|
+
decoder_depth=decoder_depth,
|
|
905
|
+
decoder_num_heads=decoder_num_heads,
|
|
906
|
+
mlp_ratio=mlp_ratio,
|
|
907
|
+
max_sequence_length=max_sequence_length,
|
|
908
|
+
)
|
|
909
|
+
return cls(encoder, decoder)
|
|
910
|
+
|
|
911
|
+
def construct_finetuning_model(
|
|
912
|
+
self,
|
|
913
|
+
num_outputs: int,
|
|
914
|
+
regression: bool = False,
|
|
915
|
+
) -> PrestoFineTuningModel:
|
|
916
|
+
"""construct_finetuning_model."""
|
|
917
|
+
head = FinetuningHead(
|
|
918
|
+
num_outputs=num_outputs,
|
|
919
|
+
hidden_size=self.encoder.embedding_size,
|
|
920
|
+
regression=regression,
|
|
921
|
+
)
|
|
922
|
+
model = PrestoFineTuningModel(self.encoder, head).to(
|
|
923
|
+
self.encoder.pos_embed.device
|
|
924
|
+
)
|
|
925
|
+
model.train()
|
|
926
|
+
return model
|