rslearn 0.0.1__py3-none-any.whl → 0.0.21__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rslearn/arg_parser.py +31 -0
- rslearn/config/__init__.py +6 -12
- rslearn/config/dataset.py +520 -401
- rslearn/const.py +9 -15
- rslearn/data_sources/__init__.py +8 -23
- rslearn/data_sources/aws_landsat.py +242 -98
- rslearn/data_sources/aws_open_data.py +111 -151
- rslearn/data_sources/aws_sentinel1.py +131 -0
- rslearn/data_sources/climate_data_store.py +471 -0
- rslearn/data_sources/copernicus.py +884 -12
- rslearn/data_sources/data_source.py +43 -12
- rslearn/data_sources/earthdaily.py +484 -0
- rslearn/data_sources/earthdata_srtm.py +282 -0
- rslearn/data_sources/eurocrops.py +242 -0
- rslearn/data_sources/gcp_public_data.py +578 -222
- rslearn/data_sources/google_earth_engine.py +461 -135
- rslearn/data_sources/local_files.py +219 -150
- rslearn/data_sources/openstreetmap.py +51 -89
- rslearn/data_sources/planet.py +24 -60
- rslearn/data_sources/planet_basemap.py +275 -0
- rslearn/data_sources/planetary_computer.py +798 -0
- rslearn/data_sources/usda_cdl.py +195 -0
- rslearn/data_sources/usgs_landsat.py +115 -83
- rslearn/data_sources/utils.py +249 -61
- rslearn/data_sources/vector_source.py +1 -0
- rslearn/data_sources/worldcereal.py +449 -0
- rslearn/data_sources/worldcover.py +144 -0
- rslearn/data_sources/worldpop.py +153 -0
- rslearn/data_sources/xyz_tiles.py +150 -107
- rslearn/dataset/__init__.py +8 -2
- rslearn/dataset/add_windows.py +2 -2
- rslearn/dataset/dataset.py +40 -51
- rslearn/dataset/handler_summaries.py +131 -0
- rslearn/dataset/manage.py +313 -74
- rslearn/dataset/materialize.py +431 -107
- rslearn/dataset/remap.py +29 -4
- rslearn/dataset/storage/__init__.py +1 -0
- rslearn/dataset/storage/file.py +202 -0
- rslearn/dataset/storage/storage.py +140 -0
- rslearn/dataset/window.py +181 -44
- rslearn/lightning_cli.py +454 -0
- rslearn/log_utils.py +24 -0
- rslearn/main.py +384 -181
- rslearn/models/anysat.py +215 -0
- rslearn/models/attention_pooling.py +177 -0
- rslearn/models/clay/clay.py +231 -0
- rslearn/models/clay/configs/metadata.yaml +295 -0
- rslearn/models/clip.py +68 -0
- rslearn/models/component.py +111 -0
- rslearn/models/concatenate_features.py +103 -0
- rslearn/models/conv.py +63 -0
- rslearn/models/croma.py +306 -0
- rslearn/models/detr/__init__.py +5 -0
- rslearn/models/detr/box_ops.py +103 -0
- rslearn/models/detr/detr.py +504 -0
- rslearn/models/detr/matcher.py +107 -0
- rslearn/models/detr/position_encoding.py +114 -0
- rslearn/models/detr/transformer.py +429 -0
- rslearn/models/detr/util.py +24 -0
- rslearn/models/dinov3.py +177 -0
- rslearn/models/faster_rcnn.py +30 -28
- rslearn/models/feature_center_crop.py +53 -0
- rslearn/models/fpn.py +19 -8
- rslearn/models/galileo/__init__.py +5 -0
- rslearn/models/galileo/galileo.py +595 -0
- rslearn/models/galileo/single_file_galileo.py +1678 -0
- rslearn/models/module_wrapper.py +65 -0
- rslearn/models/molmo.py +69 -0
- rslearn/models/multitask.py +384 -28
- rslearn/models/olmoearth_pretrain/__init__.py +1 -0
- rslearn/models/olmoearth_pretrain/model.py +421 -0
- rslearn/models/olmoearth_pretrain/norm.py +86 -0
- rslearn/models/panopticon.py +170 -0
- rslearn/models/panopticon_data/sensors/drone.yaml +32 -0
- rslearn/models/panopticon_data/sensors/enmap.yaml +904 -0
- rslearn/models/panopticon_data/sensors/goes.yaml +9 -0
- rslearn/models/panopticon_data/sensors/himawari.yaml +9 -0
- rslearn/models/panopticon_data/sensors/intuition.yaml +606 -0
- rslearn/models/panopticon_data/sensors/landsat8.yaml +84 -0
- rslearn/models/panopticon_data/sensors/modis_terra.yaml +99 -0
- rslearn/models/panopticon_data/sensors/qb2_ge1.yaml +34 -0
- rslearn/models/panopticon_data/sensors/sentinel1.yaml +85 -0
- rslearn/models/panopticon_data/sensors/sentinel2.yaml +97 -0
- rslearn/models/panopticon_data/sensors/superdove.yaml +60 -0
- rslearn/models/panopticon_data/sensors/wv23.yaml +63 -0
- rslearn/models/pick_features.py +17 -10
- rslearn/models/pooling_decoder.py +60 -7
- rslearn/models/presto/__init__.py +5 -0
- rslearn/models/presto/presto.py +297 -0
- rslearn/models/presto/single_file_presto.py +926 -0
- rslearn/models/prithvi.py +1147 -0
- rslearn/models/resize_features.py +59 -0
- rslearn/models/sam2_enc.py +13 -9
- rslearn/models/satlaspretrain.py +38 -18
- rslearn/models/simple_time_series.py +188 -77
- rslearn/models/singletask.py +24 -13
- rslearn/models/ssl4eo_s12.py +40 -30
- rslearn/models/swin.py +44 -32
- rslearn/models/task_embedding.py +250 -0
- rslearn/models/terramind.py +256 -0
- rslearn/models/trunk.py +139 -0
- rslearn/models/unet.py +68 -22
- rslearn/models/upsample.py +48 -0
- rslearn/models/use_croma.py +508 -0
- rslearn/template_params.py +26 -0
- rslearn/tile_stores/__init__.py +41 -18
- rslearn/tile_stores/default.py +409 -0
- rslearn/tile_stores/tile_store.py +236 -132
- rslearn/train/all_patches_dataset.py +530 -0
- rslearn/train/callbacks/adapters.py +53 -0
- rslearn/train/callbacks/freeze_unfreeze.py +348 -17
- rslearn/train/callbacks/gradients.py +129 -0
- rslearn/train/callbacks/peft.py +116 -0
- rslearn/train/data_module.py +444 -20
- rslearn/train/dataset.py +588 -235
- rslearn/train/lightning_module.py +192 -62
- rslearn/train/model_context.py +88 -0
- rslearn/train/optimizer.py +31 -0
- rslearn/train/prediction_writer.py +319 -84
- rslearn/train/scheduler.py +92 -0
- rslearn/train/tasks/classification.py +55 -28
- rslearn/train/tasks/detection.py +132 -76
- rslearn/train/tasks/embedding.py +120 -0
- rslearn/train/tasks/multi_task.py +28 -14
- rslearn/train/tasks/per_pixel_regression.py +291 -0
- rslearn/train/tasks/regression.py +161 -44
- rslearn/train/tasks/segmentation.py +428 -53
- rslearn/train/tasks/task.py +6 -5
- rslearn/train/transforms/__init__.py +1 -1
- rslearn/train/transforms/concatenate.py +54 -10
- rslearn/train/transforms/crop.py +29 -11
- rslearn/train/transforms/flip.py +18 -6
- rslearn/train/transforms/mask.py +78 -0
- rslearn/train/transforms/normalize.py +101 -17
- rslearn/train/transforms/pad.py +19 -7
- rslearn/train/transforms/resize.py +83 -0
- rslearn/train/transforms/select_bands.py +76 -0
- rslearn/train/transforms/sentinel1.py +75 -0
- rslearn/train/transforms/transform.py +89 -70
- rslearn/utils/__init__.py +2 -6
- rslearn/utils/array.py +8 -6
- rslearn/utils/feature.py +2 -2
- rslearn/utils/fsspec.py +90 -1
- rslearn/utils/geometry.py +347 -7
- rslearn/utils/get_utm_ups_crs.py +2 -3
- rslearn/utils/grid_index.py +5 -5
- rslearn/utils/jsonargparse.py +178 -0
- rslearn/utils/mp.py +4 -3
- rslearn/utils/raster_format.py +268 -116
- rslearn/utils/rtree_index.py +64 -17
- rslearn/utils/sqlite_index.py +7 -1
- rslearn/utils/vector_format.py +252 -97
- {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/METADATA +532 -283
- rslearn-0.0.21.dist-info/RECORD +167 -0
- {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/WHEEL +1 -1
- rslearn-0.0.21.dist-info/licenses/NOTICE +115 -0
- rslearn/data_sources/raster_source.py +0 -309
- rslearn/models/registry.py +0 -5
- rslearn/tile_stores/file.py +0 -242
- rslearn/utils/mgrs.py +0 -24
- rslearn/utils/utils.py +0 -22
- rslearn-0.0.1.dist-info/RECORD +0 -88
- /rslearn/{data_sources/geotiff.py → py.typed} +0 -0
- {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/entry_points.txt +0 -0
- {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info/licenses}/LICENSE +0 -0
- {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,606 @@
|
|
|
1
|
+
instrument: Intuition
|
|
2
|
+
processing_level: Unknown
|
|
3
|
+
srf_filename: intuition.npy
|
|
4
|
+
|
|
5
|
+
GSD: 2
|
|
6
|
+
bands:
|
|
7
|
+
B001:
|
|
8
|
+
gaussian:
|
|
9
|
+
mu: 462.08
|
|
10
|
+
sigma: 3.2
|
|
11
|
+
B002:
|
|
12
|
+
gaussian:
|
|
13
|
+
mu: 465.27
|
|
14
|
+
sigma: 3.2
|
|
15
|
+
B003:
|
|
16
|
+
gaussian:
|
|
17
|
+
mu: 468.47
|
|
18
|
+
sigma: 3.2
|
|
19
|
+
B004:
|
|
20
|
+
gaussian:
|
|
21
|
+
mu: 471.67
|
|
22
|
+
sigma: 3.2
|
|
23
|
+
B005:
|
|
24
|
+
gaussian:
|
|
25
|
+
mu: 474.86
|
|
26
|
+
sigma: 3.2
|
|
27
|
+
B006:
|
|
28
|
+
gaussian:
|
|
29
|
+
mu: 478.06
|
|
30
|
+
sigma: 3.2
|
|
31
|
+
B007:
|
|
32
|
+
gaussian:
|
|
33
|
+
mu: 481.26
|
|
34
|
+
sigma: 3.2
|
|
35
|
+
B008:
|
|
36
|
+
gaussian:
|
|
37
|
+
mu: 484.45
|
|
38
|
+
sigma: 3.2
|
|
39
|
+
B009:
|
|
40
|
+
gaussian:
|
|
41
|
+
mu: 487.65
|
|
42
|
+
sigma: 3.2
|
|
43
|
+
B010:
|
|
44
|
+
gaussian:
|
|
45
|
+
mu: 490.85
|
|
46
|
+
sigma: 3.2
|
|
47
|
+
B011:
|
|
48
|
+
gaussian:
|
|
49
|
+
mu: 494.04
|
|
50
|
+
sigma: 3.2
|
|
51
|
+
B012:
|
|
52
|
+
gaussian:
|
|
53
|
+
mu: 497.24
|
|
54
|
+
sigma: 3.2
|
|
55
|
+
B013:
|
|
56
|
+
gaussian:
|
|
57
|
+
mu: 500.43
|
|
58
|
+
sigma: 3.2
|
|
59
|
+
B014:
|
|
60
|
+
gaussian:
|
|
61
|
+
mu: 503.63
|
|
62
|
+
sigma: 3.2
|
|
63
|
+
B015:
|
|
64
|
+
gaussian:
|
|
65
|
+
mu: 506.83
|
|
66
|
+
sigma: 3.2
|
|
67
|
+
B016:
|
|
68
|
+
gaussian:
|
|
69
|
+
mu: 510.03
|
|
70
|
+
sigma: 3.2
|
|
71
|
+
B017:
|
|
72
|
+
gaussian:
|
|
73
|
+
mu: 513.22
|
|
74
|
+
sigma: 3.2
|
|
75
|
+
B018:
|
|
76
|
+
gaussian:
|
|
77
|
+
mu: 516.42
|
|
78
|
+
sigma: 3.2
|
|
79
|
+
B019:
|
|
80
|
+
gaussian:
|
|
81
|
+
mu: 519.61
|
|
82
|
+
sigma: 3.2
|
|
83
|
+
B020:
|
|
84
|
+
gaussian:
|
|
85
|
+
mu: 522.81
|
|
86
|
+
sigma: 3.2
|
|
87
|
+
B021:
|
|
88
|
+
gaussian:
|
|
89
|
+
mu: 526.01
|
|
90
|
+
sigma: 3.2
|
|
91
|
+
B022:
|
|
92
|
+
gaussian:
|
|
93
|
+
mu: 529.20
|
|
94
|
+
sigma: 3.2
|
|
95
|
+
B023:
|
|
96
|
+
gaussian:
|
|
97
|
+
mu: 532.40
|
|
98
|
+
sigma: 3.2
|
|
99
|
+
B024:
|
|
100
|
+
gaussian:
|
|
101
|
+
mu: 535.60
|
|
102
|
+
sigma: 3.2
|
|
103
|
+
B025:
|
|
104
|
+
gaussian:
|
|
105
|
+
mu: 538.79
|
|
106
|
+
sigma: 3.2
|
|
107
|
+
B026:
|
|
108
|
+
gaussian:
|
|
109
|
+
mu: 541.99
|
|
110
|
+
sigma: 3.2
|
|
111
|
+
B027:
|
|
112
|
+
gaussian:
|
|
113
|
+
mu: 545.19
|
|
114
|
+
sigma: 3.2
|
|
115
|
+
B028:
|
|
116
|
+
gaussian:
|
|
117
|
+
mu: 548.38
|
|
118
|
+
sigma: 3.2
|
|
119
|
+
B029:
|
|
120
|
+
gaussian:
|
|
121
|
+
mu: 551.58
|
|
122
|
+
sigma: 3.2
|
|
123
|
+
B030:
|
|
124
|
+
gaussian:
|
|
125
|
+
mu: 554.78
|
|
126
|
+
sigma: 3.2
|
|
127
|
+
B031:
|
|
128
|
+
gaussian:
|
|
129
|
+
mu: 557.97
|
|
130
|
+
sigma: 3.2
|
|
131
|
+
B032:
|
|
132
|
+
gaussian:
|
|
133
|
+
mu: 561.17
|
|
134
|
+
sigma: 3.2
|
|
135
|
+
B033:
|
|
136
|
+
gaussian:
|
|
137
|
+
mu: 564.37
|
|
138
|
+
sigma: 3.2
|
|
139
|
+
B034:
|
|
140
|
+
gaussian:
|
|
141
|
+
mu: 567.56
|
|
142
|
+
sigma: 3.2
|
|
143
|
+
B035:
|
|
144
|
+
gaussian:
|
|
145
|
+
mu: 570.76
|
|
146
|
+
sigma: 3.2
|
|
147
|
+
B036:
|
|
148
|
+
gaussian:
|
|
149
|
+
mu: 573.96
|
|
150
|
+
sigma: 3.2
|
|
151
|
+
B037:
|
|
152
|
+
gaussian:
|
|
153
|
+
mu: 577.15
|
|
154
|
+
sigma: 3.2
|
|
155
|
+
B038:
|
|
156
|
+
gaussian:
|
|
157
|
+
mu: 580.35
|
|
158
|
+
sigma: 3.2
|
|
159
|
+
B039:
|
|
160
|
+
gaussian:
|
|
161
|
+
mu: 583.55
|
|
162
|
+
sigma: 3.2
|
|
163
|
+
B040:
|
|
164
|
+
gaussian:
|
|
165
|
+
mu: 586.74
|
|
166
|
+
sigma: 3.2
|
|
167
|
+
B041:
|
|
168
|
+
gaussian:
|
|
169
|
+
mu: 589.94
|
|
170
|
+
sigma: 3.2
|
|
171
|
+
B042:
|
|
172
|
+
gaussian:
|
|
173
|
+
mu: 593.14
|
|
174
|
+
sigma: 3.2
|
|
175
|
+
B043:
|
|
176
|
+
gaussian:
|
|
177
|
+
mu: 596.33
|
|
178
|
+
sigma: 3.2
|
|
179
|
+
B044:
|
|
180
|
+
gaussian:
|
|
181
|
+
mu: 599.53
|
|
182
|
+
sigma: 3.2
|
|
183
|
+
B045:
|
|
184
|
+
gaussian:
|
|
185
|
+
mu: 602.73
|
|
186
|
+
sigma: 3.2
|
|
187
|
+
B046:
|
|
188
|
+
gaussian:
|
|
189
|
+
mu: 605.92
|
|
190
|
+
sigma: 3.2
|
|
191
|
+
B047:
|
|
192
|
+
gaussian:
|
|
193
|
+
mu: 609.12
|
|
194
|
+
sigma: 3.2
|
|
195
|
+
B048:
|
|
196
|
+
gaussian:
|
|
197
|
+
mu: 612.32
|
|
198
|
+
sigma: 3.2
|
|
199
|
+
B049:
|
|
200
|
+
gaussian:
|
|
201
|
+
mu: 615.51
|
|
202
|
+
sigma: 3.2
|
|
203
|
+
B050:
|
|
204
|
+
gaussian:
|
|
205
|
+
mu: 618.71
|
|
206
|
+
sigma: 3.2
|
|
207
|
+
B051:
|
|
208
|
+
gaussian:
|
|
209
|
+
mu: 621.91
|
|
210
|
+
sigma: 3.2
|
|
211
|
+
B052:
|
|
212
|
+
gaussian:
|
|
213
|
+
mu: 625.10
|
|
214
|
+
sigma: 3.2
|
|
215
|
+
B053:
|
|
216
|
+
gaussian:
|
|
217
|
+
mu: 628.30
|
|
218
|
+
sigma: 3.2
|
|
219
|
+
B054:
|
|
220
|
+
gaussian:
|
|
221
|
+
mu: 631.50
|
|
222
|
+
sigma: 3.2
|
|
223
|
+
B055:
|
|
224
|
+
gaussian:
|
|
225
|
+
mu: 634.69
|
|
226
|
+
sigma: 3.2
|
|
227
|
+
B056:
|
|
228
|
+
gaussian:
|
|
229
|
+
mu: 637.89
|
|
230
|
+
sigma: 3.2
|
|
231
|
+
B057:
|
|
232
|
+
gaussian:
|
|
233
|
+
mu: 641.09
|
|
234
|
+
sigma: 3.2
|
|
235
|
+
B058:
|
|
236
|
+
gaussian:
|
|
237
|
+
mu: 644.28
|
|
238
|
+
sigma: 3.2
|
|
239
|
+
B059:
|
|
240
|
+
gaussian:
|
|
241
|
+
mu: 647.48
|
|
242
|
+
sigma: 3.2
|
|
243
|
+
B060:
|
|
244
|
+
gaussian:
|
|
245
|
+
mu: 650.67
|
|
246
|
+
sigma: 3.2
|
|
247
|
+
B061:
|
|
248
|
+
gaussian:
|
|
249
|
+
mu: 653.87
|
|
250
|
+
sigma: 3.2
|
|
251
|
+
B062:
|
|
252
|
+
gaussian:
|
|
253
|
+
mu: 657.07
|
|
254
|
+
sigma: 3.2
|
|
255
|
+
B063:
|
|
256
|
+
gaussian:
|
|
257
|
+
mu: 660.27
|
|
258
|
+
sigma: 3.2
|
|
259
|
+
B064:
|
|
260
|
+
gaussian:
|
|
261
|
+
mu: 663.46
|
|
262
|
+
sigma: 3.2
|
|
263
|
+
B065:
|
|
264
|
+
gaussian:
|
|
265
|
+
mu: 666.66
|
|
266
|
+
sigma: 3.2
|
|
267
|
+
B066:
|
|
268
|
+
gaussian:
|
|
269
|
+
mu: 669.85
|
|
270
|
+
sigma: 3.2
|
|
271
|
+
B067:
|
|
272
|
+
gaussian:
|
|
273
|
+
mu: 673.05
|
|
274
|
+
sigma: 3.2
|
|
275
|
+
B068:
|
|
276
|
+
gaussian:
|
|
277
|
+
mu: 676.25
|
|
278
|
+
sigma: 3.2
|
|
279
|
+
B069:
|
|
280
|
+
gaussian:
|
|
281
|
+
mu: 679.45
|
|
282
|
+
sigma: 3.2
|
|
283
|
+
B070:
|
|
284
|
+
gaussian:
|
|
285
|
+
mu: 682.64
|
|
286
|
+
sigma: 3.2
|
|
287
|
+
B071:
|
|
288
|
+
gaussian:
|
|
289
|
+
mu: 685.84
|
|
290
|
+
sigma: 3.2
|
|
291
|
+
B072:
|
|
292
|
+
gaussian:
|
|
293
|
+
mu: 689.03
|
|
294
|
+
sigma: 3.2
|
|
295
|
+
B073:
|
|
296
|
+
gaussian:
|
|
297
|
+
mu: 692.23
|
|
298
|
+
sigma: 3.2
|
|
299
|
+
B074:
|
|
300
|
+
gaussian:
|
|
301
|
+
mu: 695.43
|
|
302
|
+
sigma: 3.2
|
|
303
|
+
B075:
|
|
304
|
+
gaussian:
|
|
305
|
+
mu: 698.62
|
|
306
|
+
sigma: 3.2
|
|
307
|
+
B076:
|
|
308
|
+
gaussian:
|
|
309
|
+
mu: 701.82
|
|
310
|
+
sigma: 3.2
|
|
311
|
+
B077:
|
|
312
|
+
gaussian:
|
|
313
|
+
mu: 705.02
|
|
314
|
+
sigma: 3.2
|
|
315
|
+
B078:
|
|
316
|
+
gaussian:
|
|
317
|
+
mu: 708.21
|
|
318
|
+
sigma: 3.2
|
|
319
|
+
B079:
|
|
320
|
+
gaussian:
|
|
321
|
+
mu: 711.41
|
|
322
|
+
sigma: 3.2
|
|
323
|
+
B080:
|
|
324
|
+
gaussian:
|
|
325
|
+
mu: 714.61
|
|
326
|
+
sigma: 3.2
|
|
327
|
+
B081:
|
|
328
|
+
gaussian:
|
|
329
|
+
mu: 717.80
|
|
330
|
+
sigma: 3.2
|
|
331
|
+
B082:
|
|
332
|
+
gaussian:
|
|
333
|
+
mu: 721.00
|
|
334
|
+
sigma: 3.2
|
|
335
|
+
B083:
|
|
336
|
+
gaussian:
|
|
337
|
+
mu: 724.20
|
|
338
|
+
sigma: 3.2
|
|
339
|
+
B084:
|
|
340
|
+
gaussian:
|
|
341
|
+
mu: 727.39
|
|
342
|
+
sigma: 3.2
|
|
343
|
+
B085:
|
|
344
|
+
gaussian:
|
|
345
|
+
mu: 730.59
|
|
346
|
+
sigma: 3.2
|
|
347
|
+
B086:
|
|
348
|
+
gaussian:
|
|
349
|
+
mu: 733.79
|
|
350
|
+
sigma: 3.2
|
|
351
|
+
B087:
|
|
352
|
+
gaussian:
|
|
353
|
+
mu: 736.98
|
|
354
|
+
sigma: 3.2
|
|
355
|
+
B088:
|
|
356
|
+
gaussian:
|
|
357
|
+
mu: 740.18
|
|
358
|
+
sigma: 3.2
|
|
359
|
+
B089:
|
|
360
|
+
gaussian:
|
|
361
|
+
mu: 743.38
|
|
362
|
+
sigma: 3.2
|
|
363
|
+
B090:
|
|
364
|
+
gaussian:
|
|
365
|
+
mu: 746.57
|
|
366
|
+
sigma: 3.2
|
|
367
|
+
B091:
|
|
368
|
+
gaussian:
|
|
369
|
+
mu: 749.77
|
|
370
|
+
sigma: 3.2
|
|
371
|
+
B092:
|
|
372
|
+
gaussian:
|
|
373
|
+
mu: 752.97
|
|
374
|
+
sigma: 3.2
|
|
375
|
+
B093:
|
|
376
|
+
gaussian:
|
|
377
|
+
mu: 756.16
|
|
378
|
+
sigma: 3.2
|
|
379
|
+
B094:
|
|
380
|
+
gaussian:
|
|
381
|
+
mu: 759.36
|
|
382
|
+
sigma: 3.2
|
|
383
|
+
B095:
|
|
384
|
+
gaussian:
|
|
385
|
+
mu: 762.56
|
|
386
|
+
sigma: 3.2
|
|
387
|
+
B096:
|
|
388
|
+
gaussian:
|
|
389
|
+
mu: 765.75
|
|
390
|
+
sigma: 3.2
|
|
391
|
+
B097:
|
|
392
|
+
gaussian:
|
|
393
|
+
mu: 768.95
|
|
394
|
+
sigma: 3.2
|
|
395
|
+
B098:
|
|
396
|
+
gaussian:
|
|
397
|
+
mu: 772.15
|
|
398
|
+
sigma: 3.2
|
|
399
|
+
B099:
|
|
400
|
+
gaussian:
|
|
401
|
+
mu: 775.34
|
|
402
|
+
sigma: 3.2
|
|
403
|
+
B100:
|
|
404
|
+
gaussian:
|
|
405
|
+
mu: 778.54
|
|
406
|
+
sigma: 3.2
|
|
407
|
+
B101:
|
|
408
|
+
gaussian:
|
|
409
|
+
mu: 781.74
|
|
410
|
+
sigma: 3.2
|
|
411
|
+
B102:
|
|
412
|
+
gaussian:
|
|
413
|
+
mu: 784.93
|
|
414
|
+
sigma: 3.2
|
|
415
|
+
B103:
|
|
416
|
+
gaussian:
|
|
417
|
+
mu: 788.13
|
|
418
|
+
sigma: 3.2
|
|
419
|
+
B104:
|
|
420
|
+
gaussian:
|
|
421
|
+
mu: 791.33
|
|
422
|
+
sigma: 3.2
|
|
423
|
+
B105:
|
|
424
|
+
gaussian:
|
|
425
|
+
mu: 794.52
|
|
426
|
+
sigma: 3.2
|
|
427
|
+
B106:
|
|
428
|
+
gaussian:
|
|
429
|
+
mu: 797.72
|
|
430
|
+
sigma: 3.2
|
|
431
|
+
B107:
|
|
432
|
+
gaussian:
|
|
433
|
+
mu: 800.92
|
|
434
|
+
sigma: 3.2
|
|
435
|
+
B108:
|
|
436
|
+
gaussian:
|
|
437
|
+
mu: 804.11
|
|
438
|
+
sigma: 3.2
|
|
439
|
+
B109:
|
|
440
|
+
gaussian:
|
|
441
|
+
mu: 807.31
|
|
442
|
+
sigma: 3.2
|
|
443
|
+
B110:
|
|
444
|
+
gaussian:
|
|
445
|
+
mu: 810.51
|
|
446
|
+
sigma: 3.2
|
|
447
|
+
B111:
|
|
448
|
+
gaussian:
|
|
449
|
+
mu: 813.70
|
|
450
|
+
sigma: 3.2
|
|
451
|
+
B112:
|
|
452
|
+
gaussian:
|
|
453
|
+
mu: 816.90
|
|
454
|
+
sigma: 3.2
|
|
455
|
+
B113:
|
|
456
|
+
gaussian:
|
|
457
|
+
mu: 820.10
|
|
458
|
+
sigma: 3.2
|
|
459
|
+
B114:
|
|
460
|
+
gaussian:
|
|
461
|
+
mu: 823.29
|
|
462
|
+
sigma: 3.2
|
|
463
|
+
B115:
|
|
464
|
+
gaussian:
|
|
465
|
+
mu: 826.49
|
|
466
|
+
sigma: 3.2
|
|
467
|
+
B116:
|
|
468
|
+
gaussian:
|
|
469
|
+
mu: 829.68
|
|
470
|
+
sigma: 3.2
|
|
471
|
+
B117:
|
|
472
|
+
gaussian:
|
|
473
|
+
mu: 832.88
|
|
474
|
+
sigma: 3.2
|
|
475
|
+
B118:
|
|
476
|
+
gaussian:
|
|
477
|
+
mu: 836.08
|
|
478
|
+
sigma: 3.2
|
|
479
|
+
B119:
|
|
480
|
+
gaussian:
|
|
481
|
+
mu: 839.28
|
|
482
|
+
sigma: 3.2
|
|
483
|
+
B120:
|
|
484
|
+
gaussian:
|
|
485
|
+
mu: 842.47
|
|
486
|
+
sigma: 3.2
|
|
487
|
+
B121:
|
|
488
|
+
gaussian:
|
|
489
|
+
mu: 845.67
|
|
490
|
+
sigma: 3.2
|
|
491
|
+
B122:
|
|
492
|
+
gaussian:
|
|
493
|
+
mu: 848.86
|
|
494
|
+
sigma: 3.2
|
|
495
|
+
B123:
|
|
496
|
+
gaussian:
|
|
497
|
+
mu: 852.06
|
|
498
|
+
sigma: 3.2
|
|
499
|
+
B124:
|
|
500
|
+
gaussian:
|
|
501
|
+
mu: 855.26
|
|
502
|
+
sigma: 3.2
|
|
503
|
+
B125:
|
|
504
|
+
gaussian:
|
|
505
|
+
mu: 858.46
|
|
506
|
+
sigma: 3.2
|
|
507
|
+
B126:
|
|
508
|
+
gaussian:
|
|
509
|
+
mu: 861.65
|
|
510
|
+
sigma: 3.2
|
|
511
|
+
B127:
|
|
512
|
+
gaussian:
|
|
513
|
+
mu: 864.85
|
|
514
|
+
sigma: 3.2
|
|
515
|
+
B128:
|
|
516
|
+
gaussian:
|
|
517
|
+
mu: 868.04
|
|
518
|
+
sigma: 3.2
|
|
519
|
+
B129:
|
|
520
|
+
gaussian:
|
|
521
|
+
mu: 871.24
|
|
522
|
+
sigma: 3.2
|
|
523
|
+
B130:
|
|
524
|
+
gaussian:
|
|
525
|
+
mu: 874.44
|
|
526
|
+
sigma: 3.2
|
|
527
|
+
B131:
|
|
528
|
+
gaussian:
|
|
529
|
+
mu: 877.63
|
|
530
|
+
sigma: 3.2
|
|
531
|
+
B132:
|
|
532
|
+
gaussian:
|
|
533
|
+
mu: 880.83
|
|
534
|
+
sigma: 3.2
|
|
535
|
+
B133:
|
|
536
|
+
gaussian:
|
|
537
|
+
mu: 884.03
|
|
538
|
+
sigma: 3.2
|
|
539
|
+
B134:
|
|
540
|
+
gaussian:
|
|
541
|
+
mu: 887.22
|
|
542
|
+
sigma: 3.2
|
|
543
|
+
B135:
|
|
544
|
+
gaussian:
|
|
545
|
+
mu: 890.42
|
|
546
|
+
sigma: 3.2
|
|
547
|
+
B136:
|
|
548
|
+
gaussian:
|
|
549
|
+
mu: 893.62
|
|
550
|
+
sigma: 3.2
|
|
551
|
+
B137:
|
|
552
|
+
gaussian:
|
|
553
|
+
mu: 896.81
|
|
554
|
+
sigma: 3.2
|
|
555
|
+
B138:
|
|
556
|
+
gaussian:
|
|
557
|
+
mu: 900.01
|
|
558
|
+
sigma: 3.2
|
|
559
|
+
B139:
|
|
560
|
+
gaussian:
|
|
561
|
+
mu: 903.21
|
|
562
|
+
sigma: 3.2
|
|
563
|
+
B140:
|
|
564
|
+
gaussian:
|
|
565
|
+
mu: 906.40
|
|
566
|
+
sigma: 3.2
|
|
567
|
+
B141:
|
|
568
|
+
gaussian:
|
|
569
|
+
mu: 909.60
|
|
570
|
+
sigma: 3.2
|
|
571
|
+
B142:
|
|
572
|
+
gaussian:
|
|
573
|
+
mu: 912.80
|
|
574
|
+
sigma: 3.2
|
|
575
|
+
B143:
|
|
576
|
+
gaussian:
|
|
577
|
+
mu: 915.99
|
|
578
|
+
sigma: 3.2
|
|
579
|
+
B144:
|
|
580
|
+
gaussian:
|
|
581
|
+
mu: 919.19
|
|
582
|
+
sigma: 3.2
|
|
583
|
+
B145:
|
|
584
|
+
gaussian:
|
|
585
|
+
mu: 922.39
|
|
586
|
+
sigma: 3.2
|
|
587
|
+
B146:
|
|
588
|
+
gaussian:
|
|
589
|
+
mu: 925.58
|
|
590
|
+
sigma: 3.2
|
|
591
|
+
B147:
|
|
592
|
+
gaussian:
|
|
593
|
+
mu: 928.78
|
|
594
|
+
sigma: 3.2
|
|
595
|
+
B148:
|
|
596
|
+
gaussian:
|
|
597
|
+
mu: 931.98
|
|
598
|
+
sigma: 3.2
|
|
599
|
+
B149:
|
|
600
|
+
gaussian:
|
|
601
|
+
mu: 935.17
|
|
602
|
+
sigma: 3.2
|
|
603
|
+
B150:
|
|
604
|
+
gaussian:
|
|
605
|
+
mu: 938.37
|
|
606
|
+
sigma: 3.2
|
|
@@ -0,0 +1,84 @@
|
|
|
1
|
+
instrument: MSI
|
|
2
|
+
processing_level: L1C
|
|
3
|
+
srf_filename: landsat8_srf.npy
|
|
4
|
+
|
|
5
|
+
bands:
|
|
6
|
+
B1:
|
|
7
|
+
name: 'Coastal aerosol'
|
|
8
|
+
gaussian:
|
|
9
|
+
mu: 442.6486977867469
|
|
10
|
+
sigma: 6.202668564202981
|
|
11
|
+
GSD: 30
|
|
12
|
+
img_size: 256
|
|
13
|
+
|
|
14
|
+
B2:
|
|
15
|
+
name: '02 - Blue'
|
|
16
|
+
gaussian:
|
|
17
|
+
mu: 482.626742301136
|
|
18
|
+
sigma: 22.522673410847318
|
|
19
|
+
GSD: 30
|
|
20
|
+
img_size: 256
|
|
21
|
+
|
|
22
|
+
B3:
|
|
23
|
+
name: '03 - Green'
|
|
24
|
+
gaussian:
|
|
25
|
+
mu: 560.991848338365
|
|
26
|
+
sigma: 21.835390564974098
|
|
27
|
+
GSD: 30
|
|
28
|
+
img_size: 256
|
|
29
|
+
|
|
30
|
+
B4:
|
|
31
|
+
name: '04 - Red'
|
|
32
|
+
gaussian:
|
|
33
|
+
mu: 654.2860463136833
|
|
34
|
+
sigma: 14.30803308731993
|
|
35
|
+
GSD: 30
|
|
36
|
+
|
|
37
|
+
B5:
|
|
38
|
+
name: '05 - NIR'
|
|
39
|
+
gaussian:
|
|
40
|
+
mu: 864.6129891438968
|
|
41
|
+
sigma: 11.346929217149494
|
|
42
|
+
GSD: 30
|
|
43
|
+
|
|
44
|
+
B6:
|
|
45
|
+
name: '06 - SWIR1'
|
|
46
|
+
gaussian:
|
|
47
|
+
mu: 1608.7469945334756
|
|
48
|
+
sigma: 33.925314891204984
|
|
49
|
+
GSD: 30
|
|
50
|
+
|
|
51
|
+
B7:
|
|
52
|
+
name: '07 - SWIR2'
|
|
53
|
+
gaussian:
|
|
54
|
+
mu: 2203.5048261584875
|
|
55
|
+
sigma: 76.21353457472965
|
|
56
|
+
GSD: 30
|
|
57
|
+
|
|
58
|
+
B8:
|
|
59
|
+
name: 'Panchromatic'
|
|
60
|
+
gaussian:
|
|
61
|
+
mu: 596.8190587207782
|
|
62
|
+
sigma: 62.17542606033194
|
|
63
|
+
GSD: 15
|
|
64
|
+
|
|
65
|
+
B9:
|
|
66
|
+
name: 'Cirrus'
|
|
67
|
+
gaussian:
|
|
68
|
+
mu: 1374.1802289606335
|
|
69
|
+
sigma: 8.286360980981396
|
|
70
|
+
GSD: 30
|
|
71
|
+
|
|
72
|
+
B10:
|
|
73
|
+
name: 'TIRS 1'
|
|
74
|
+
gaussian:
|
|
75
|
+
mu: 10847.467021274
|
|
76
|
+
sigma: 289.6384228505229
|
|
77
|
+
GSD: 120
|
|
78
|
+
|
|
79
|
+
B11:
|
|
80
|
+
name: 'TIRS 2'
|
|
81
|
+
gaussian:
|
|
82
|
+
mu: 12017.038582815621
|
|
83
|
+
sigma: 351.18600147726016
|
|
84
|
+
GSD: 120
|