rslearn 0.0.1__py3-none-any.whl → 0.0.21__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (166) hide show
  1. rslearn/arg_parser.py +31 -0
  2. rslearn/config/__init__.py +6 -12
  3. rslearn/config/dataset.py +520 -401
  4. rslearn/const.py +9 -15
  5. rslearn/data_sources/__init__.py +8 -23
  6. rslearn/data_sources/aws_landsat.py +242 -98
  7. rslearn/data_sources/aws_open_data.py +111 -151
  8. rslearn/data_sources/aws_sentinel1.py +131 -0
  9. rslearn/data_sources/climate_data_store.py +471 -0
  10. rslearn/data_sources/copernicus.py +884 -12
  11. rslearn/data_sources/data_source.py +43 -12
  12. rslearn/data_sources/earthdaily.py +484 -0
  13. rslearn/data_sources/earthdata_srtm.py +282 -0
  14. rslearn/data_sources/eurocrops.py +242 -0
  15. rslearn/data_sources/gcp_public_data.py +578 -222
  16. rslearn/data_sources/google_earth_engine.py +461 -135
  17. rslearn/data_sources/local_files.py +219 -150
  18. rslearn/data_sources/openstreetmap.py +51 -89
  19. rslearn/data_sources/planet.py +24 -60
  20. rslearn/data_sources/planet_basemap.py +275 -0
  21. rslearn/data_sources/planetary_computer.py +798 -0
  22. rslearn/data_sources/usda_cdl.py +195 -0
  23. rslearn/data_sources/usgs_landsat.py +115 -83
  24. rslearn/data_sources/utils.py +249 -61
  25. rslearn/data_sources/vector_source.py +1 -0
  26. rslearn/data_sources/worldcereal.py +449 -0
  27. rslearn/data_sources/worldcover.py +144 -0
  28. rslearn/data_sources/worldpop.py +153 -0
  29. rslearn/data_sources/xyz_tiles.py +150 -107
  30. rslearn/dataset/__init__.py +8 -2
  31. rslearn/dataset/add_windows.py +2 -2
  32. rslearn/dataset/dataset.py +40 -51
  33. rslearn/dataset/handler_summaries.py +131 -0
  34. rslearn/dataset/manage.py +313 -74
  35. rslearn/dataset/materialize.py +431 -107
  36. rslearn/dataset/remap.py +29 -4
  37. rslearn/dataset/storage/__init__.py +1 -0
  38. rslearn/dataset/storage/file.py +202 -0
  39. rslearn/dataset/storage/storage.py +140 -0
  40. rslearn/dataset/window.py +181 -44
  41. rslearn/lightning_cli.py +454 -0
  42. rslearn/log_utils.py +24 -0
  43. rslearn/main.py +384 -181
  44. rslearn/models/anysat.py +215 -0
  45. rslearn/models/attention_pooling.py +177 -0
  46. rslearn/models/clay/clay.py +231 -0
  47. rslearn/models/clay/configs/metadata.yaml +295 -0
  48. rslearn/models/clip.py +68 -0
  49. rslearn/models/component.py +111 -0
  50. rslearn/models/concatenate_features.py +103 -0
  51. rslearn/models/conv.py +63 -0
  52. rslearn/models/croma.py +306 -0
  53. rslearn/models/detr/__init__.py +5 -0
  54. rslearn/models/detr/box_ops.py +103 -0
  55. rslearn/models/detr/detr.py +504 -0
  56. rslearn/models/detr/matcher.py +107 -0
  57. rslearn/models/detr/position_encoding.py +114 -0
  58. rslearn/models/detr/transformer.py +429 -0
  59. rslearn/models/detr/util.py +24 -0
  60. rslearn/models/dinov3.py +177 -0
  61. rslearn/models/faster_rcnn.py +30 -28
  62. rslearn/models/feature_center_crop.py +53 -0
  63. rslearn/models/fpn.py +19 -8
  64. rslearn/models/galileo/__init__.py +5 -0
  65. rslearn/models/galileo/galileo.py +595 -0
  66. rslearn/models/galileo/single_file_galileo.py +1678 -0
  67. rslearn/models/module_wrapper.py +65 -0
  68. rslearn/models/molmo.py +69 -0
  69. rslearn/models/multitask.py +384 -28
  70. rslearn/models/olmoearth_pretrain/__init__.py +1 -0
  71. rslearn/models/olmoearth_pretrain/model.py +421 -0
  72. rslearn/models/olmoearth_pretrain/norm.py +86 -0
  73. rslearn/models/panopticon.py +170 -0
  74. rslearn/models/panopticon_data/sensors/drone.yaml +32 -0
  75. rslearn/models/panopticon_data/sensors/enmap.yaml +904 -0
  76. rslearn/models/panopticon_data/sensors/goes.yaml +9 -0
  77. rslearn/models/panopticon_data/sensors/himawari.yaml +9 -0
  78. rslearn/models/panopticon_data/sensors/intuition.yaml +606 -0
  79. rslearn/models/panopticon_data/sensors/landsat8.yaml +84 -0
  80. rslearn/models/panopticon_data/sensors/modis_terra.yaml +99 -0
  81. rslearn/models/panopticon_data/sensors/qb2_ge1.yaml +34 -0
  82. rslearn/models/panopticon_data/sensors/sentinel1.yaml +85 -0
  83. rslearn/models/panopticon_data/sensors/sentinel2.yaml +97 -0
  84. rslearn/models/panopticon_data/sensors/superdove.yaml +60 -0
  85. rslearn/models/panopticon_data/sensors/wv23.yaml +63 -0
  86. rslearn/models/pick_features.py +17 -10
  87. rslearn/models/pooling_decoder.py +60 -7
  88. rslearn/models/presto/__init__.py +5 -0
  89. rslearn/models/presto/presto.py +297 -0
  90. rslearn/models/presto/single_file_presto.py +926 -0
  91. rslearn/models/prithvi.py +1147 -0
  92. rslearn/models/resize_features.py +59 -0
  93. rslearn/models/sam2_enc.py +13 -9
  94. rslearn/models/satlaspretrain.py +38 -18
  95. rslearn/models/simple_time_series.py +188 -77
  96. rslearn/models/singletask.py +24 -13
  97. rslearn/models/ssl4eo_s12.py +40 -30
  98. rslearn/models/swin.py +44 -32
  99. rslearn/models/task_embedding.py +250 -0
  100. rslearn/models/terramind.py +256 -0
  101. rslearn/models/trunk.py +139 -0
  102. rslearn/models/unet.py +68 -22
  103. rslearn/models/upsample.py +48 -0
  104. rslearn/models/use_croma.py +508 -0
  105. rslearn/template_params.py +26 -0
  106. rslearn/tile_stores/__init__.py +41 -18
  107. rslearn/tile_stores/default.py +409 -0
  108. rslearn/tile_stores/tile_store.py +236 -132
  109. rslearn/train/all_patches_dataset.py +530 -0
  110. rslearn/train/callbacks/adapters.py +53 -0
  111. rslearn/train/callbacks/freeze_unfreeze.py +348 -17
  112. rslearn/train/callbacks/gradients.py +129 -0
  113. rslearn/train/callbacks/peft.py +116 -0
  114. rslearn/train/data_module.py +444 -20
  115. rslearn/train/dataset.py +588 -235
  116. rslearn/train/lightning_module.py +192 -62
  117. rslearn/train/model_context.py +88 -0
  118. rslearn/train/optimizer.py +31 -0
  119. rslearn/train/prediction_writer.py +319 -84
  120. rslearn/train/scheduler.py +92 -0
  121. rslearn/train/tasks/classification.py +55 -28
  122. rslearn/train/tasks/detection.py +132 -76
  123. rslearn/train/tasks/embedding.py +120 -0
  124. rslearn/train/tasks/multi_task.py +28 -14
  125. rslearn/train/tasks/per_pixel_regression.py +291 -0
  126. rslearn/train/tasks/regression.py +161 -44
  127. rslearn/train/tasks/segmentation.py +428 -53
  128. rslearn/train/tasks/task.py +6 -5
  129. rslearn/train/transforms/__init__.py +1 -1
  130. rslearn/train/transforms/concatenate.py +54 -10
  131. rslearn/train/transforms/crop.py +29 -11
  132. rslearn/train/transforms/flip.py +18 -6
  133. rslearn/train/transforms/mask.py +78 -0
  134. rslearn/train/transforms/normalize.py +101 -17
  135. rslearn/train/transforms/pad.py +19 -7
  136. rslearn/train/transforms/resize.py +83 -0
  137. rslearn/train/transforms/select_bands.py +76 -0
  138. rslearn/train/transforms/sentinel1.py +75 -0
  139. rslearn/train/transforms/transform.py +89 -70
  140. rslearn/utils/__init__.py +2 -6
  141. rslearn/utils/array.py +8 -6
  142. rslearn/utils/feature.py +2 -2
  143. rslearn/utils/fsspec.py +90 -1
  144. rslearn/utils/geometry.py +347 -7
  145. rslearn/utils/get_utm_ups_crs.py +2 -3
  146. rslearn/utils/grid_index.py +5 -5
  147. rslearn/utils/jsonargparse.py +178 -0
  148. rslearn/utils/mp.py +4 -3
  149. rslearn/utils/raster_format.py +268 -116
  150. rslearn/utils/rtree_index.py +64 -17
  151. rslearn/utils/sqlite_index.py +7 -1
  152. rslearn/utils/vector_format.py +252 -97
  153. {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/METADATA +532 -283
  154. rslearn-0.0.21.dist-info/RECORD +167 -0
  155. {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/WHEEL +1 -1
  156. rslearn-0.0.21.dist-info/licenses/NOTICE +115 -0
  157. rslearn/data_sources/raster_source.py +0 -309
  158. rslearn/models/registry.py +0 -5
  159. rslearn/tile_stores/file.py +0 -242
  160. rslearn/utils/mgrs.py +0 -24
  161. rslearn/utils/utils.py +0 -22
  162. rslearn-0.0.1.dist-info/RECORD +0 -88
  163. /rslearn/{data_sources/geotiff.py → py.typed} +0 -0
  164. {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/entry_points.txt +0 -0
  165. {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info/licenses}/LICENSE +0 -0
  166. {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,9 @@
1
+ instrument: 'ABI'
2
+ processing_level: 'NA'
3
+ # rough values
4
+ bands:
5
+ B13:
6
+ name: 'Clean IR Longwave Band'
7
+ gaussian:
8
+ mu: 10300
9
+ sigma: 200
@@ -0,0 +1,9 @@
1
+ instrument: 'ABI'
2
+ processing_level: 'NA'
3
+ # rough values
4
+ bands:
5
+ B14:
6
+ name: 'Clean IR Longwave Band'
7
+ gaussian:
8
+ mu: 10400
9
+ sigma: 250
@@ -0,0 +1,606 @@
1
+ instrument: Intuition
2
+ processing_level: Unknown
3
+ srf_filename: intuition.npy
4
+
5
+ GSD: 2
6
+ bands:
7
+ B001:
8
+ gaussian:
9
+ mu: 462.08
10
+ sigma: 3.2
11
+ B002:
12
+ gaussian:
13
+ mu: 465.27
14
+ sigma: 3.2
15
+ B003:
16
+ gaussian:
17
+ mu: 468.47
18
+ sigma: 3.2
19
+ B004:
20
+ gaussian:
21
+ mu: 471.67
22
+ sigma: 3.2
23
+ B005:
24
+ gaussian:
25
+ mu: 474.86
26
+ sigma: 3.2
27
+ B006:
28
+ gaussian:
29
+ mu: 478.06
30
+ sigma: 3.2
31
+ B007:
32
+ gaussian:
33
+ mu: 481.26
34
+ sigma: 3.2
35
+ B008:
36
+ gaussian:
37
+ mu: 484.45
38
+ sigma: 3.2
39
+ B009:
40
+ gaussian:
41
+ mu: 487.65
42
+ sigma: 3.2
43
+ B010:
44
+ gaussian:
45
+ mu: 490.85
46
+ sigma: 3.2
47
+ B011:
48
+ gaussian:
49
+ mu: 494.04
50
+ sigma: 3.2
51
+ B012:
52
+ gaussian:
53
+ mu: 497.24
54
+ sigma: 3.2
55
+ B013:
56
+ gaussian:
57
+ mu: 500.43
58
+ sigma: 3.2
59
+ B014:
60
+ gaussian:
61
+ mu: 503.63
62
+ sigma: 3.2
63
+ B015:
64
+ gaussian:
65
+ mu: 506.83
66
+ sigma: 3.2
67
+ B016:
68
+ gaussian:
69
+ mu: 510.03
70
+ sigma: 3.2
71
+ B017:
72
+ gaussian:
73
+ mu: 513.22
74
+ sigma: 3.2
75
+ B018:
76
+ gaussian:
77
+ mu: 516.42
78
+ sigma: 3.2
79
+ B019:
80
+ gaussian:
81
+ mu: 519.61
82
+ sigma: 3.2
83
+ B020:
84
+ gaussian:
85
+ mu: 522.81
86
+ sigma: 3.2
87
+ B021:
88
+ gaussian:
89
+ mu: 526.01
90
+ sigma: 3.2
91
+ B022:
92
+ gaussian:
93
+ mu: 529.20
94
+ sigma: 3.2
95
+ B023:
96
+ gaussian:
97
+ mu: 532.40
98
+ sigma: 3.2
99
+ B024:
100
+ gaussian:
101
+ mu: 535.60
102
+ sigma: 3.2
103
+ B025:
104
+ gaussian:
105
+ mu: 538.79
106
+ sigma: 3.2
107
+ B026:
108
+ gaussian:
109
+ mu: 541.99
110
+ sigma: 3.2
111
+ B027:
112
+ gaussian:
113
+ mu: 545.19
114
+ sigma: 3.2
115
+ B028:
116
+ gaussian:
117
+ mu: 548.38
118
+ sigma: 3.2
119
+ B029:
120
+ gaussian:
121
+ mu: 551.58
122
+ sigma: 3.2
123
+ B030:
124
+ gaussian:
125
+ mu: 554.78
126
+ sigma: 3.2
127
+ B031:
128
+ gaussian:
129
+ mu: 557.97
130
+ sigma: 3.2
131
+ B032:
132
+ gaussian:
133
+ mu: 561.17
134
+ sigma: 3.2
135
+ B033:
136
+ gaussian:
137
+ mu: 564.37
138
+ sigma: 3.2
139
+ B034:
140
+ gaussian:
141
+ mu: 567.56
142
+ sigma: 3.2
143
+ B035:
144
+ gaussian:
145
+ mu: 570.76
146
+ sigma: 3.2
147
+ B036:
148
+ gaussian:
149
+ mu: 573.96
150
+ sigma: 3.2
151
+ B037:
152
+ gaussian:
153
+ mu: 577.15
154
+ sigma: 3.2
155
+ B038:
156
+ gaussian:
157
+ mu: 580.35
158
+ sigma: 3.2
159
+ B039:
160
+ gaussian:
161
+ mu: 583.55
162
+ sigma: 3.2
163
+ B040:
164
+ gaussian:
165
+ mu: 586.74
166
+ sigma: 3.2
167
+ B041:
168
+ gaussian:
169
+ mu: 589.94
170
+ sigma: 3.2
171
+ B042:
172
+ gaussian:
173
+ mu: 593.14
174
+ sigma: 3.2
175
+ B043:
176
+ gaussian:
177
+ mu: 596.33
178
+ sigma: 3.2
179
+ B044:
180
+ gaussian:
181
+ mu: 599.53
182
+ sigma: 3.2
183
+ B045:
184
+ gaussian:
185
+ mu: 602.73
186
+ sigma: 3.2
187
+ B046:
188
+ gaussian:
189
+ mu: 605.92
190
+ sigma: 3.2
191
+ B047:
192
+ gaussian:
193
+ mu: 609.12
194
+ sigma: 3.2
195
+ B048:
196
+ gaussian:
197
+ mu: 612.32
198
+ sigma: 3.2
199
+ B049:
200
+ gaussian:
201
+ mu: 615.51
202
+ sigma: 3.2
203
+ B050:
204
+ gaussian:
205
+ mu: 618.71
206
+ sigma: 3.2
207
+ B051:
208
+ gaussian:
209
+ mu: 621.91
210
+ sigma: 3.2
211
+ B052:
212
+ gaussian:
213
+ mu: 625.10
214
+ sigma: 3.2
215
+ B053:
216
+ gaussian:
217
+ mu: 628.30
218
+ sigma: 3.2
219
+ B054:
220
+ gaussian:
221
+ mu: 631.50
222
+ sigma: 3.2
223
+ B055:
224
+ gaussian:
225
+ mu: 634.69
226
+ sigma: 3.2
227
+ B056:
228
+ gaussian:
229
+ mu: 637.89
230
+ sigma: 3.2
231
+ B057:
232
+ gaussian:
233
+ mu: 641.09
234
+ sigma: 3.2
235
+ B058:
236
+ gaussian:
237
+ mu: 644.28
238
+ sigma: 3.2
239
+ B059:
240
+ gaussian:
241
+ mu: 647.48
242
+ sigma: 3.2
243
+ B060:
244
+ gaussian:
245
+ mu: 650.67
246
+ sigma: 3.2
247
+ B061:
248
+ gaussian:
249
+ mu: 653.87
250
+ sigma: 3.2
251
+ B062:
252
+ gaussian:
253
+ mu: 657.07
254
+ sigma: 3.2
255
+ B063:
256
+ gaussian:
257
+ mu: 660.27
258
+ sigma: 3.2
259
+ B064:
260
+ gaussian:
261
+ mu: 663.46
262
+ sigma: 3.2
263
+ B065:
264
+ gaussian:
265
+ mu: 666.66
266
+ sigma: 3.2
267
+ B066:
268
+ gaussian:
269
+ mu: 669.85
270
+ sigma: 3.2
271
+ B067:
272
+ gaussian:
273
+ mu: 673.05
274
+ sigma: 3.2
275
+ B068:
276
+ gaussian:
277
+ mu: 676.25
278
+ sigma: 3.2
279
+ B069:
280
+ gaussian:
281
+ mu: 679.45
282
+ sigma: 3.2
283
+ B070:
284
+ gaussian:
285
+ mu: 682.64
286
+ sigma: 3.2
287
+ B071:
288
+ gaussian:
289
+ mu: 685.84
290
+ sigma: 3.2
291
+ B072:
292
+ gaussian:
293
+ mu: 689.03
294
+ sigma: 3.2
295
+ B073:
296
+ gaussian:
297
+ mu: 692.23
298
+ sigma: 3.2
299
+ B074:
300
+ gaussian:
301
+ mu: 695.43
302
+ sigma: 3.2
303
+ B075:
304
+ gaussian:
305
+ mu: 698.62
306
+ sigma: 3.2
307
+ B076:
308
+ gaussian:
309
+ mu: 701.82
310
+ sigma: 3.2
311
+ B077:
312
+ gaussian:
313
+ mu: 705.02
314
+ sigma: 3.2
315
+ B078:
316
+ gaussian:
317
+ mu: 708.21
318
+ sigma: 3.2
319
+ B079:
320
+ gaussian:
321
+ mu: 711.41
322
+ sigma: 3.2
323
+ B080:
324
+ gaussian:
325
+ mu: 714.61
326
+ sigma: 3.2
327
+ B081:
328
+ gaussian:
329
+ mu: 717.80
330
+ sigma: 3.2
331
+ B082:
332
+ gaussian:
333
+ mu: 721.00
334
+ sigma: 3.2
335
+ B083:
336
+ gaussian:
337
+ mu: 724.20
338
+ sigma: 3.2
339
+ B084:
340
+ gaussian:
341
+ mu: 727.39
342
+ sigma: 3.2
343
+ B085:
344
+ gaussian:
345
+ mu: 730.59
346
+ sigma: 3.2
347
+ B086:
348
+ gaussian:
349
+ mu: 733.79
350
+ sigma: 3.2
351
+ B087:
352
+ gaussian:
353
+ mu: 736.98
354
+ sigma: 3.2
355
+ B088:
356
+ gaussian:
357
+ mu: 740.18
358
+ sigma: 3.2
359
+ B089:
360
+ gaussian:
361
+ mu: 743.38
362
+ sigma: 3.2
363
+ B090:
364
+ gaussian:
365
+ mu: 746.57
366
+ sigma: 3.2
367
+ B091:
368
+ gaussian:
369
+ mu: 749.77
370
+ sigma: 3.2
371
+ B092:
372
+ gaussian:
373
+ mu: 752.97
374
+ sigma: 3.2
375
+ B093:
376
+ gaussian:
377
+ mu: 756.16
378
+ sigma: 3.2
379
+ B094:
380
+ gaussian:
381
+ mu: 759.36
382
+ sigma: 3.2
383
+ B095:
384
+ gaussian:
385
+ mu: 762.56
386
+ sigma: 3.2
387
+ B096:
388
+ gaussian:
389
+ mu: 765.75
390
+ sigma: 3.2
391
+ B097:
392
+ gaussian:
393
+ mu: 768.95
394
+ sigma: 3.2
395
+ B098:
396
+ gaussian:
397
+ mu: 772.15
398
+ sigma: 3.2
399
+ B099:
400
+ gaussian:
401
+ mu: 775.34
402
+ sigma: 3.2
403
+ B100:
404
+ gaussian:
405
+ mu: 778.54
406
+ sigma: 3.2
407
+ B101:
408
+ gaussian:
409
+ mu: 781.74
410
+ sigma: 3.2
411
+ B102:
412
+ gaussian:
413
+ mu: 784.93
414
+ sigma: 3.2
415
+ B103:
416
+ gaussian:
417
+ mu: 788.13
418
+ sigma: 3.2
419
+ B104:
420
+ gaussian:
421
+ mu: 791.33
422
+ sigma: 3.2
423
+ B105:
424
+ gaussian:
425
+ mu: 794.52
426
+ sigma: 3.2
427
+ B106:
428
+ gaussian:
429
+ mu: 797.72
430
+ sigma: 3.2
431
+ B107:
432
+ gaussian:
433
+ mu: 800.92
434
+ sigma: 3.2
435
+ B108:
436
+ gaussian:
437
+ mu: 804.11
438
+ sigma: 3.2
439
+ B109:
440
+ gaussian:
441
+ mu: 807.31
442
+ sigma: 3.2
443
+ B110:
444
+ gaussian:
445
+ mu: 810.51
446
+ sigma: 3.2
447
+ B111:
448
+ gaussian:
449
+ mu: 813.70
450
+ sigma: 3.2
451
+ B112:
452
+ gaussian:
453
+ mu: 816.90
454
+ sigma: 3.2
455
+ B113:
456
+ gaussian:
457
+ mu: 820.10
458
+ sigma: 3.2
459
+ B114:
460
+ gaussian:
461
+ mu: 823.29
462
+ sigma: 3.2
463
+ B115:
464
+ gaussian:
465
+ mu: 826.49
466
+ sigma: 3.2
467
+ B116:
468
+ gaussian:
469
+ mu: 829.68
470
+ sigma: 3.2
471
+ B117:
472
+ gaussian:
473
+ mu: 832.88
474
+ sigma: 3.2
475
+ B118:
476
+ gaussian:
477
+ mu: 836.08
478
+ sigma: 3.2
479
+ B119:
480
+ gaussian:
481
+ mu: 839.28
482
+ sigma: 3.2
483
+ B120:
484
+ gaussian:
485
+ mu: 842.47
486
+ sigma: 3.2
487
+ B121:
488
+ gaussian:
489
+ mu: 845.67
490
+ sigma: 3.2
491
+ B122:
492
+ gaussian:
493
+ mu: 848.86
494
+ sigma: 3.2
495
+ B123:
496
+ gaussian:
497
+ mu: 852.06
498
+ sigma: 3.2
499
+ B124:
500
+ gaussian:
501
+ mu: 855.26
502
+ sigma: 3.2
503
+ B125:
504
+ gaussian:
505
+ mu: 858.46
506
+ sigma: 3.2
507
+ B126:
508
+ gaussian:
509
+ mu: 861.65
510
+ sigma: 3.2
511
+ B127:
512
+ gaussian:
513
+ mu: 864.85
514
+ sigma: 3.2
515
+ B128:
516
+ gaussian:
517
+ mu: 868.04
518
+ sigma: 3.2
519
+ B129:
520
+ gaussian:
521
+ mu: 871.24
522
+ sigma: 3.2
523
+ B130:
524
+ gaussian:
525
+ mu: 874.44
526
+ sigma: 3.2
527
+ B131:
528
+ gaussian:
529
+ mu: 877.63
530
+ sigma: 3.2
531
+ B132:
532
+ gaussian:
533
+ mu: 880.83
534
+ sigma: 3.2
535
+ B133:
536
+ gaussian:
537
+ mu: 884.03
538
+ sigma: 3.2
539
+ B134:
540
+ gaussian:
541
+ mu: 887.22
542
+ sigma: 3.2
543
+ B135:
544
+ gaussian:
545
+ mu: 890.42
546
+ sigma: 3.2
547
+ B136:
548
+ gaussian:
549
+ mu: 893.62
550
+ sigma: 3.2
551
+ B137:
552
+ gaussian:
553
+ mu: 896.81
554
+ sigma: 3.2
555
+ B138:
556
+ gaussian:
557
+ mu: 900.01
558
+ sigma: 3.2
559
+ B139:
560
+ gaussian:
561
+ mu: 903.21
562
+ sigma: 3.2
563
+ B140:
564
+ gaussian:
565
+ mu: 906.40
566
+ sigma: 3.2
567
+ B141:
568
+ gaussian:
569
+ mu: 909.60
570
+ sigma: 3.2
571
+ B142:
572
+ gaussian:
573
+ mu: 912.80
574
+ sigma: 3.2
575
+ B143:
576
+ gaussian:
577
+ mu: 915.99
578
+ sigma: 3.2
579
+ B144:
580
+ gaussian:
581
+ mu: 919.19
582
+ sigma: 3.2
583
+ B145:
584
+ gaussian:
585
+ mu: 922.39
586
+ sigma: 3.2
587
+ B146:
588
+ gaussian:
589
+ mu: 925.58
590
+ sigma: 3.2
591
+ B147:
592
+ gaussian:
593
+ mu: 928.78
594
+ sigma: 3.2
595
+ B148:
596
+ gaussian:
597
+ mu: 931.98
598
+ sigma: 3.2
599
+ B149:
600
+ gaussian:
601
+ mu: 935.17
602
+ sigma: 3.2
603
+ B150:
604
+ gaussian:
605
+ mu: 938.37
606
+ sigma: 3.2
@@ -0,0 +1,84 @@
1
+ instrument: MSI
2
+ processing_level: L1C
3
+ srf_filename: landsat8_srf.npy
4
+
5
+ bands:
6
+ B1:
7
+ name: 'Coastal aerosol'
8
+ gaussian:
9
+ mu: 442.6486977867469
10
+ sigma: 6.202668564202981
11
+ GSD: 30
12
+ img_size: 256
13
+
14
+ B2:
15
+ name: '02 - Blue'
16
+ gaussian:
17
+ mu: 482.626742301136
18
+ sigma: 22.522673410847318
19
+ GSD: 30
20
+ img_size: 256
21
+
22
+ B3:
23
+ name: '03 - Green'
24
+ gaussian:
25
+ mu: 560.991848338365
26
+ sigma: 21.835390564974098
27
+ GSD: 30
28
+ img_size: 256
29
+
30
+ B4:
31
+ name: '04 - Red'
32
+ gaussian:
33
+ mu: 654.2860463136833
34
+ sigma: 14.30803308731993
35
+ GSD: 30
36
+
37
+ B5:
38
+ name: '05 - NIR'
39
+ gaussian:
40
+ mu: 864.6129891438968
41
+ sigma: 11.346929217149494
42
+ GSD: 30
43
+
44
+ B6:
45
+ name: '06 - SWIR1'
46
+ gaussian:
47
+ mu: 1608.7469945334756
48
+ sigma: 33.925314891204984
49
+ GSD: 30
50
+
51
+ B7:
52
+ name: '07 - SWIR2'
53
+ gaussian:
54
+ mu: 2203.5048261584875
55
+ sigma: 76.21353457472965
56
+ GSD: 30
57
+
58
+ B8:
59
+ name: 'Panchromatic'
60
+ gaussian:
61
+ mu: 596.8190587207782
62
+ sigma: 62.17542606033194
63
+ GSD: 15
64
+
65
+ B9:
66
+ name: 'Cirrus'
67
+ gaussian:
68
+ mu: 1374.1802289606335
69
+ sigma: 8.286360980981396
70
+ GSD: 30
71
+
72
+ B10:
73
+ name: 'TIRS 1'
74
+ gaussian:
75
+ mu: 10847.467021274
76
+ sigma: 289.6384228505229
77
+ GSD: 120
78
+
79
+ B11:
80
+ name: 'TIRS 2'
81
+ gaussian:
82
+ mu: 12017.038582815621
83
+ sigma: 351.18600147726016
84
+ GSD: 120