rslearn 0.0.1__py3-none-any.whl → 0.0.21__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (166) hide show
  1. rslearn/arg_parser.py +31 -0
  2. rslearn/config/__init__.py +6 -12
  3. rslearn/config/dataset.py +520 -401
  4. rslearn/const.py +9 -15
  5. rslearn/data_sources/__init__.py +8 -23
  6. rslearn/data_sources/aws_landsat.py +242 -98
  7. rslearn/data_sources/aws_open_data.py +111 -151
  8. rslearn/data_sources/aws_sentinel1.py +131 -0
  9. rslearn/data_sources/climate_data_store.py +471 -0
  10. rslearn/data_sources/copernicus.py +884 -12
  11. rslearn/data_sources/data_source.py +43 -12
  12. rslearn/data_sources/earthdaily.py +484 -0
  13. rslearn/data_sources/earthdata_srtm.py +282 -0
  14. rslearn/data_sources/eurocrops.py +242 -0
  15. rslearn/data_sources/gcp_public_data.py +578 -222
  16. rslearn/data_sources/google_earth_engine.py +461 -135
  17. rslearn/data_sources/local_files.py +219 -150
  18. rslearn/data_sources/openstreetmap.py +51 -89
  19. rslearn/data_sources/planet.py +24 -60
  20. rslearn/data_sources/planet_basemap.py +275 -0
  21. rslearn/data_sources/planetary_computer.py +798 -0
  22. rslearn/data_sources/usda_cdl.py +195 -0
  23. rslearn/data_sources/usgs_landsat.py +115 -83
  24. rslearn/data_sources/utils.py +249 -61
  25. rslearn/data_sources/vector_source.py +1 -0
  26. rslearn/data_sources/worldcereal.py +449 -0
  27. rslearn/data_sources/worldcover.py +144 -0
  28. rslearn/data_sources/worldpop.py +153 -0
  29. rslearn/data_sources/xyz_tiles.py +150 -107
  30. rslearn/dataset/__init__.py +8 -2
  31. rslearn/dataset/add_windows.py +2 -2
  32. rslearn/dataset/dataset.py +40 -51
  33. rslearn/dataset/handler_summaries.py +131 -0
  34. rslearn/dataset/manage.py +313 -74
  35. rslearn/dataset/materialize.py +431 -107
  36. rslearn/dataset/remap.py +29 -4
  37. rslearn/dataset/storage/__init__.py +1 -0
  38. rslearn/dataset/storage/file.py +202 -0
  39. rslearn/dataset/storage/storage.py +140 -0
  40. rslearn/dataset/window.py +181 -44
  41. rslearn/lightning_cli.py +454 -0
  42. rslearn/log_utils.py +24 -0
  43. rslearn/main.py +384 -181
  44. rslearn/models/anysat.py +215 -0
  45. rslearn/models/attention_pooling.py +177 -0
  46. rslearn/models/clay/clay.py +231 -0
  47. rslearn/models/clay/configs/metadata.yaml +295 -0
  48. rslearn/models/clip.py +68 -0
  49. rslearn/models/component.py +111 -0
  50. rslearn/models/concatenate_features.py +103 -0
  51. rslearn/models/conv.py +63 -0
  52. rslearn/models/croma.py +306 -0
  53. rslearn/models/detr/__init__.py +5 -0
  54. rslearn/models/detr/box_ops.py +103 -0
  55. rslearn/models/detr/detr.py +504 -0
  56. rslearn/models/detr/matcher.py +107 -0
  57. rslearn/models/detr/position_encoding.py +114 -0
  58. rslearn/models/detr/transformer.py +429 -0
  59. rslearn/models/detr/util.py +24 -0
  60. rslearn/models/dinov3.py +177 -0
  61. rslearn/models/faster_rcnn.py +30 -28
  62. rslearn/models/feature_center_crop.py +53 -0
  63. rslearn/models/fpn.py +19 -8
  64. rslearn/models/galileo/__init__.py +5 -0
  65. rslearn/models/galileo/galileo.py +595 -0
  66. rslearn/models/galileo/single_file_galileo.py +1678 -0
  67. rslearn/models/module_wrapper.py +65 -0
  68. rslearn/models/molmo.py +69 -0
  69. rslearn/models/multitask.py +384 -28
  70. rslearn/models/olmoearth_pretrain/__init__.py +1 -0
  71. rslearn/models/olmoearth_pretrain/model.py +421 -0
  72. rslearn/models/olmoearth_pretrain/norm.py +86 -0
  73. rslearn/models/panopticon.py +170 -0
  74. rslearn/models/panopticon_data/sensors/drone.yaml +32 -0
  75. rslearn/models/panopticon_data/sensors/enmap.yaml +904 -0
  76. rslearn/models/panopticon_data/sensors/goes.yaml +9 -0
  77. rslearn/models/panopticon_data/sensors/himawari.yaml +9 -0
  78. rslearn/models/panopticon_data/sensors/intuition.yaml +606 -0
  79. rslearn/models/panopticon_data/sensors/landsat8.yaml +84 -0
  80. rslearn/models/panopticon_data/sensors/modis_terra.yaml +99 -0
  81. rslearn/models/panopticon_data/sensors/qb2_ge1.yaml +34 -0
  82. rslearn/models/panopticon_data/sensors/sentinel1.yaml +85 -0
  83. rslearn/models/panopticon_data/sensors/sentinel2.yaml +97 -0
  84. rslearn/models/panopticon_data/sensors/superdove.yaml +60 -0
  85. rslearn/models/panopticon_data/sensors/wv23.yaml +63 -0
  86. rslearn/models/pick_features.py +17 -10
  87. rslearn/models/pooling_decoder.py +60 -7
  88. rslearn/models/presto/__init__.py +5 -0
  89. rslearn/models/presto/presto.py +297 -0
  90. rslearn/models/presto/single_file_presto.py +926 -0
  91. rslearn/models/prithvi.py +1147 -0
  92. rslearn/models/resize_features.py +59 -0
  93. rslearn/models/sam2_enc.py +13 -9
  94. rslearn/models/satlaspretrain.py +38 -18
  95. rslearn/models/simple_time_series.py +188 -77
  96. rslearn/models/singletask.py +24 -13
  97. rslearn/models/ssl4eo_s12.py +40 -30
  98. rslearn/models/swin.py +44 -32
  99. rslearn/models/task_embedding.py +250 -0
  100. rslearn/models/terramind.py +256 -0
  101. rslearn/models/trunk.py +139 -0
  102. rslearn/models/unet.py +68 -22
  103. rslearn/models/upsample.py +48 -0
  104. rslearn/models/use_croma.py +508 -0
  105. rslearn/template_params.py +26 -0
  106. rslearn/tile_stores/__init__.py +41 -18
  107. rslearn/tile_stores/default.py +409 -0
  108. rslearn/tile_stores/tile_store.py +236 -132
  109. rslearn/train/all_patches_dataset.py +530 -0
  110. rslearn/train/callbacks/adapters.py +53 -0
  111. rslearn/train/callbacks/freeze_unfreeze.py +348 -17
  112. rslearn/train/callbacks/gradients.py +129 -0
  113. rslearn/train/callbacks/peft.py +116 -0
  114. rslearn/train/data_module.py +444 -20
  115. rslearn/train/dataset.py +588 -235
  116. rslearn/train/lightning_module.py +192 -62
  117. rslearn/train/model_context.py +88 -0
  118. rslearn/train/optimizer.py +31 -0
  119. rslearn/train/prediction_writer.py +319 -84
  120. rslearn/train/scheduler.py +92 -0
  121. rslearn/train/tasks/classification.py +55 -28
  122. rslearn/train/tasks/detection.py +132 -76
  123. rslearn/train/tasks/embedding.py +120 -0
  124. rslearn/train/tasks/multi_task.py +28 -14
  125. rslearn/train/tasks/per_pixel_regression.py +291 -0
  126. rslearn/train/tasks/regression.py +161 -44
  127. rslearn/train/tasks/segmentation.py +428 -53
  128. rslearn/train/tasks/task.py +6 -5
  129. rslearn/train/transforms/__init__.py +1 -1
  130. rslearn/train/transforms/concatenate.py +54 -10
  131. rslearn/train/transforms/crop.py +29 -11
  132. rslearn/train/transforms/flip.py +18 -6
  133. rslearn/train/transforms/mask.py +78 -0
  134. rslearn/train/transforms/normalize.py +101 -17
  135. rslearn/train/transforms/pad.py +19 -7
  136. rslearn/train/transforms/resize.py +83 -0
  137. rslearn/train/transforms/select_bands.py +76 -0
  138. rslearn/train/transforms/sentinel1.py +75 -0
  139. rslearn/train/transforms/transform.py +89 -70
  140. rslearn/utils/__init__.py +2 -6
  141. rslearn/utils/array.py +8 -6
  142. rslearn/utils/feature.py +2 -2
  143. rslearn/utils/fsspec.py +90 -1
  144. rslearn/utils/geometry.py +347 -7
  145. rslearn/utils/get_utm_ups_crs.py +2 -3
  146. rslearn/utils/grid_index.py +5 -5
  147. rslearn/utils/jsonargparse.py +178 -0
  148. rslearn/utils/mp.py +4 -3
  149. rslearn/utils/raster_format.py +268 -116
  150. rslearn/utils/rtree_index.py +64 -17
  151. rslearn/utils/sqlite_index.py +7 -1
  152. rslearn/utils/vector_format.py +252 -97
  153. {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/METADATA +532 -283
  154. rslearn-0.0.21.dist-info/RECORD +167 -0
  155. {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/WHEEL +1 -1
  156. rslearn-0.0.21.dist-info/licenses/NOTICE +115 -0
  157. rslearn/data_sources/raster_source.py +0 -309
  158. rslearn/models/registry.py +0 -5
  159. rslearn/tile_stores/file.py +0 -242
  160. rslearn/utils/mgrs.py +0 -24
  161. rslearn/utils/utils.py +0 -22
  162. rslearn-0.0.1.dist-info/RECORD +0 -88
  163. /rslearn/{data_sources/geotiff.py → py.typed} +0 -0
  164. {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/entry_points.txt +0 -0
  165. {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info/licenses}/LICENSE +0 -0
  166. {rslearn-0.0.1.dist-info → rslearn-0.0.21.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,904 @@
1
+ instrument: EnMAP
2
+ processing_level: L2A
3
+ GSD: 30
4
+
5
+ srf_filename: rfs_enmap_recon.npy
6
+
7
+ bands:
8
+ B001:
9
+ gaussian:
10
+ mu: 418.416
11
+ sigma: 2.972
12
+ B002:
13
+ gaussian:
14
+ mu: 424.043
15
+ sigma: 2.831
16
+ B003:
17
+ gaussian:
18
+ mu: 429.457
19
+ sigma: 2.728
20
+ B004:
21
+ gaussian:
22
+ mu: 434.686
23
+ sigma: 2.654
24
+ B005:
25
+ gaussian:
26
+ mu: 439.758
27
+ sigma: 2.605
28
+ B006:
29
+ gaussian:
30
+ mu: 444.699
31
+ sigma: 2.573
32
+ B007:
33
+ gaussian:
34
+ mu: 449.539
35
+ sigma: 2.554
36
+ B008:
37
+ gaussian:
38
+ mu: 454.306
39
+ sigma: 2.541
40
+ B009:
41
+ gaussian:
42
+ mu: 459.031
43
+ sigma: 2.528
44
+ B010:
45
+ gaussian:
46
+ mu: 463.730
47
+ sigma: 2.514
48
+ B011:
49
+ gaussian:
50
+ mu: 468.411
51
+ sigma: 2.500
52
+ B012:
53
+ gaussian:
54
+ mu: 473.080
55
+ sigma: 2.487
56
+ B013:
57
+ gaussian:
58
+ mu: 477.744
59
+ sigma: 2.477
60
+ B014:
61
+ gaussian:
62
+ mu: 482.411
63
+ sigma: 2.469
64
+ B015:
65
+ gaussian:
66
+ mu: 487.087
67
+ sigma: 2.464
68
+ B016:
69
+ gaussian:
70
+ mu: 491.780
71
+ sigma: 2.464
72
+ B017:
73
+ gaussian:
74
+ mu: 496.497
75
+ sigma: 2.469
76
+ B018:
77
+ gaussian:
78
+ mu: 501.243
79
+ sigma: 2.479
80
+ B019:
81
+ gaussian:
82
+ mu: 506.020
83
+ sigma: 2.493
84
+ B020:
85
+ gaussian:
86
+ mu: 510.829
87
+ sigma: 2.511
88
+ B021:
89
+ gaussian:
90
+ mu: 515.672
91
+ sigma: 2.531
92
+ B022:
93
+ gaussian:
94
+ mu: 520.551
95
+ sigma: 2.553
96
+ B023:
97
+ gaussian:
98
+ mu: 525.467
99
+ sigma: 2.576
100
+ B024:
101
+ gaussian:
102
+ mu: 530.424
103
+ sigma: 2.600
104
+ B025:
105
+ gaussian:
106
+ mu: 535.422
107
+ sigma: 2.624
108
+ B026:
109
+ gaussian:
110
+ mu: 540.463
111
+ sigma: 2.648
112
+ B027:
113
+ gaussian:
114
+ mu: 545.551
115
+ sigma: 2.672
116
+ B028:
117
+ gaussian:
118
+ mu: 550.687
119
+ sigma: 2.697
120
+ B029:
121
+ gaussian:
122
+ mu: 555.873
123
+ sigma: 2.722
124
+ B030:
125
+ gaussian:
126
+ mu: 561.112
127
+ sigma: 2.746
128
+ B031:
129
+ gaussian:
130
+ mu: 566.405
131
+ sigma: 2.772
132
+ B032:
133
+ gaussian:
134
+ mu: 571.756
135
+ sigma: 2.796
136
+ B033:
137
+ gaussian:
138
+ mu: 577.166
139
+ sigma: 2.821
140
+ B034:
141
+ gaussian:
142
+ mu: 582.636
143
+ sigma: 2.846
144
+ B035:
145
+ gaussian:
146
+ mu: 588.171
147
+ sigma: 2.871
148
+ B036:
149
+ gaussian:
150
+ mu: 593.773
151
+ sigma: 2.896
152
+ B037:
153
+ gaussian:
154
+ mu: 599.446
155
+ sigma: 2.923
156
+ B038:
157
+ gaussian:
158
+ mu: 605.193
159
+ sigma: 2.951
160
+ B039:
161
+ gaussian:
162
+ mu: 611.017
163
+ sigma: 2.981
164
+ B040:
165
+ gaussian:
166
+ mu: 616.923
167
+ sigma: 3.013
168
+ B041:
169
+ gaussian:
170
+ mu: 622.921
171
+ sigma: 3.047
172
+
173
+ B042:
174
+ gaussian:
175
+ mu: 628.987
176
+ sigma: 3.080
177
+ B043:
178
+ gaussian:
179
+ mu: 635.112
180
+ sigma: 3.113
181
+ B044:
182
+ gaussian:
183
+ mu: 641.294
184
+ sigma: 3.144
185
+ B045:
186
+ gaussian:
187
+ mu: 647.537
188
+ sigma: 3.175
189
+ B046:
190
+ gaussian:
191
+ mu: 653.841
192
+ sigma: 3.205
193
+ B047:
194
+ gaussian:
195
+ mu: 660.207
196
+ sigma: 3.235
197
+ B048:
198
+ gaussian:
199
+ mu: 666.637
200
+ sigma: 3.264
201
+ B049:
202
+ gaussian:
203
+ mu: 673.131
204
+ sigma: 3.293
205
+ B050:
206
+ gaussian:
207
+ mu: 679.691
208
+ sigma: 3.323
209
+ B051:
210
+ gaussian:
211
+ mu: 686.319
212
+ sigma: 3.354
213
+ B052:
214
+ gaussian:
215
+ mu: 693.014
216
+ sigma: 3.386
217
+ B053:
218
+ gaussian:
219
+ mu: 699.780
220
+ sigma: 3.418
221
+ B054:
222
+ gaussian:
223
+ mu: 706.617
224
+ sigma: 3.452
225
+ B055:
226
+ gaussian:
227
+ mu: 713.524
228
+ sigma: 3.486
229
+ B056:
230
+ gaussian:
231
+ mu: 720.501
232
+ sigma: 3.522
233
+ B057:
234
+ gaussian:
235
+ mu: 727.545
236
+ sigma: 3.558
237
+ B058:
238
+ gaussian:
239
+ mu: 734.654
240
+ sigma: 3.595
241
+ B059:
242
+ gaussian:
243
+ mu: 741.826
244
+ sigma: 3.631
245
+ B060:
246
+ gaussian:
247
+ mu: 749.060
248
+ sigma: 3.667
249
+ B061:
250
+ gaussian:
251
+ mu: 756.353
252
+ sigma: 3.703
253
+ B062:
254
+ gaussian:
255
+ mu: 763.703
256
+ sigma: 3.738
257
+ B063:
258
+ gaussian:
259
+ mu: 771.108
260
+ sigma: 3.772
261
+ B064:
262
+ gaussian:
263
+ mu: 778.567
264
+ sigma: 3.804
265
+ B065:
266
+ gaussian:
267
+ mu: 786.078
268
+ sigma: 3.834
269
+ B066:
270
+ gaussian:
271
+ mu: 793.639
272
+ sigma: 3.864
273
+ B067:
274
+ gaussian:
275
+ mu: 801.249
276
+ sigma: 3.893
277
+ B068:
278
+ gaussian:
279
+ mu: 808.905
280
+ sigma: 3.922
281
+ B069:
282
+ gaussian:
283
+ mu: 816.608
284
+ sigma: 3.950
285
+ B070:
286
+ gaussian:
287
+ mu: 824.355
288
+ sigma: 3.979
289
+ B071:
290
+ gaussian:
291
+ mu: 832.145
292
+ sigma: 4.009
293
+ B072:
294
+ gaussian:
295
+ mu: 839.976
296
+ sigma: 4.039
297
+ B073:
298
+ gaussian:
299
+ mu: 847.847
300
+ sigma: 4.070
301
+ B074:
302
+ gaussian:
303
+ mu: 855.757
304
+ sigma: 4.102
305
+ B075:
306
+ gaussian:
307
+ mu: 863.703
308
+ sigma: 4.136
309
+ B076:
310
+ gaussian:
311
+ mu: 871.683
312
+ sigma: 4.171
313
+ B077:
314
+ gaussian:
315
+ mu: 879.693
316
+ sigma: 4.206
317
+ B078:
318
+ gaussian:
319
+ mu: 887.729
320
+ sigma: 4.242
321
+ B079:
322
+ gaussian:
323
+ mu: 895.789
324
+ sigma: 4.279
325
+ B080:
326
+ gaussian:
327
+ mu: 901.961
328
+ sigma: 3.897
329
+ B081:
330
+ gaussian:
331
+ mu: 903.870
332
+ sigma: 4.316
333
+ B082:
334
+ gaussian:
335
+ mu: 911.571
336
+ sigma: 3.957
337
+ B083:
338
+ gaussian:
339
+ mu: 911.968
340
+ sigma: 4.353
341
+ B084:
342
+ gaussian:
343
+ mu: 920.081
344
+ sigma: 4.390
345
+ B085:
346
+ gaussian:
347
+ mu: 921.320
348
+ sigma: 4.015
349
+ B086:
350
+ gaussian:
351
+ mu: 928.204
352
+ sigma: 4.425
353
+ B087:
354
+ gaussian:
355
+ mu: 931.203
356
+ sigma: 4.069
357
+ B088:
358
+ gaussian:
359
+ mu: 936.335
360
+ sigma: 4.461
361
+ B089:
362
+ gaussian:
363
+ mu: 941.218
364
+ sigma: 4.122
365
+ B090:
366
+ gaussian:
367
+ mu: 944.470
368
+ sigma: 4.495
369
+ B091:
370
+ gaussian:
371
+ mu: 951.360
372
+ sigma: 4.173
373
+ B092:
374
+ gaussian:
375
+ mu: 952.608
376
+ sigma: 4.526
377
+ B093:
378
+ gaussian:
379
+ mu: 960.748
380
+ sigma: 4.550
381
+ B094:
382
+ gaussian:
383
+ mu: 961.628
384
+ sigma: 4.223
385
+ B095:
386
+ gaussian:
387
+ mu: 968.892
388
+ sigma: 4.565
389
+ B096:
390
+ gaussian:
391
+ mu: 972.016
392
+ sigma: 4.270
393
+ B097:
394
+ gaussian:
395
+ mu: 977.037
396
+ sigma: 4.566
397
+ B098:
398
+ gaussian:
399
+ mu: 982.523
400
+ sigma: 4.316
401
+ B099:
402
+ gaussian:
403
+ mu: 985.186
404
+ sigma: 4.551
405
+ B100:
406
+ gaussian:
407
+ mu: 993.144
408
+ sigma: 4.361
409
+ B101:
410
+ gaussian:
411
+ mu: 993.338
412
+ sigma: 4.517
413
+ B102:
414
+ gaussian:
415
+ mu: 1003.880
416
+ sigma: 4.405
417
+ B103:
418
+ gaussian:
419
+ mu: 1014.720
420
+ sigma: 4.449
421
+ B104:
422
+ gaussian:
423
+ mu: 1025.660
424
+ sigma: 4.492
425
+ B105:
426
+ gaussian:
427
+ mu: 1036.700
428
+ sigma: 4.533
429
+ B106:
430
+ gaussian:
431
+ mu: 1047.840
432
+ sigma: 4.573
433
+ B107:
434
+ gaussian:
435
+ mu: 1059.070
436
+ sigma: 4.610
437
+ B108:
438
+ gaussian:
439
+ mu: 1070.390
440
+ sigma: 4.646
441
+ B109:
442
+ gaussian:
443
+ mu: 1081.780
444
+ sigma: 4.678
445
+ B110:
446
+ gaussian:
447
+ mu: 1093.260
448
+ sigma: 4.707
449
+ B111:
450
+ gaussian:
451
+ mu: 1104.810
452
+ sigma: 4.732
453
+ B112:
454
+ gaussian:
455
+ mu: 1116.430
456
+ sigma: 4.754
457
+ B113:
458
+ gaussian:
459
+ mu: 1128.100
460
+ sigma: 4.774
461
+ B114:
462
+ gaussian:
463
+ mu: 1139.840
464
+ sigma: 4.791
465
+ B115:
466
+ gaussian:
467
+ mu: 1151.620
468
+ sigma: 4.805
469
+ B116:
470
+ gaussian:
471
+ mu: 1163.440
472
+ sigma: 4.817
473
+ B117:
474
+ gaussian:
475
+ mu: 1175.300
476
+ sigma: 4.827
477
+ B118:
478
+ gaussian:
479
+ mu: 1187.200
480
+ sigma: 4.835
481
+ B119:
482
+ gaussian:
483
+ mu: 1199.110
484
+ sigma: 4.841
485
+ B120:
486
+ gaussian:
487
+ mu: 1211.050
488
+ sigma: 4.846
489
+ B121:
490
+ gaussian:
491
+ mu: 1223.000
492
+ sigma: 4.850
493
+ B122:
494
+ gaussian:
495
+ mu: 1234.970
496
+ sigma: 4.853
497
+ B123:
498
+ gaussian:
499
+ mu: 1246.940
500
+ sigma: 4.854
501
+ B124:
502
+ gaussian:
503
+ mu: 1258.930
504
+ sigma: 4.854
505
+ B125:
506
+ gaussian:
507
+ mu: 1270.920
508
+ sigma: 4.853
509
+ B126:
510
+ gaussian:
511
+ mu: 1282.920
512
+ sigma: 4.851
513
+ B127:
514
+ gaussian:
515
+ mu: 1294.910
516
+ sigma: 4.848
517
+ B128:
518
+ gaussian:
519
+ mu: 1306.900
520
+ sigma: 4.844
521
+ B129:
522
+ gaussian:
523
+ mu: 1318.880
524
+ sigma: 4.838
525
+ B130:
526
+ gaussian:
527
+ mu: 1330.850
528
+ sigma: 4.832
529
+ B131:
530
+ gaussian:
531
+ mu: 1342.820
532
+ sigma: 4.825
533
+ B132:
534
+ gaussian:
535
+ mu: 1354.760
536
+ sigma: 4.817
537
+ B133:
538
+ gaussian:
539
+ mu: 1366.690
540
+ sigma: 4.808
541
+ B134:
542
+ gaussian:
543
+ mu: 1378.600
544
+ sigma: 4.797
545
+ B135:
546
+ gaussian:
547
+ mu: 1390.480
548
+ sigma: 4.786
549
+ B136:
550
+ gaussian:
551
+ mu: 1461.100
552
+ sigma: 4.708
553
+ B137:
554
+ gaussian:
555
+ mu: 1472.740
556
+ sigma: 4.693
557
+ B138:
558
+ gaussian:
559
+ mu: 1484.340
560
+ sigma: 4.677
561
+ B139:
562
+ gaussian:
563
+ mu: 1495.890
564
+ sigma: 4.662
565
+ B140:
566
+ gaussian:
567
+ mu: 1507.400
568
+ sigma: 4.645
569
+ B141:
570
+ gaussian:
571
+ mu: 1518.870
572
+ sigma: 4.628
573
+ B142:
574
+ gaussian:
575
+ mu: 1530.290
576
+ sigma: 4.610
577
+ B143:
578
+ gaussian:
579
+ mu: 1541.670
580
+ sigma: 4.592
581
+ B144:
582
+ gaussian:
583
+ mu: 1553.010
584
+ sigma: 4.574
585
+ B145:
586
+ gaussian:
587
+ mu: 1564.300
588
+ sigma: 4.556
589
+ B146:
590
+ gaussian:
591
+ mu: 1575.550
592
+ sigma: 4.538
593
+ B147:
594
+ gaussian:
595
+ mu: 1586.760
596
+ sigma: 4.520
597
+ B148:
598
+ gaussian:
599
+ mu: 1597.910
600
+ sigma: 4.501
601
+ B149:
602
+ gaussian:
603
+ mu: 1609.020
604
+ sigma: 4.481
605
+ B150:
606
+ gaussian:
607
+ mu: 1620.090
608
+ sigma: 4.462
609
+ B151:
610
+ gaussian:
611
+ mu: 1631.110
612
+ sigma: 4.442
613
+ B152:
614
+ gaussian:
615
+ mu: 1642.070
616
+ sigma: 4.423
617
+ B153:
618
+ gaussian:
619
+ mu: 1653.000
620
+ sigma: 4.404
621
+ B154:
622
+ gaussian:
623
+ mu: 1663.870
624
+ sigma: 4.384
625
+ B155:
626
+ gaussian:
627
+ mu: 1674.700
628
+ sigma: 4.365
629
+ B156:
630
+ gaussian:
631
+ mu: 1685.470
632
+ sigma: 4.345
633
+ B157:
634
+ gaussian:
635
+ mu: 1696.200
636
+ sigma: 4.326
637
+ B158:
638
+ gaussian:
639
+ mu: 1706.870
640
+ sigma: 4.307
641
+ B159:
642
+ gaussian:
643
+ mu: 1717.500
644
+ sigma: 4.288
645
+ B160:
646
+ gaussian:
647
+ mu: 1728.080
648
+ sigma: 4.269
649
+ B161:
650
+ gaussian:
651
+ mu: 1738.600
652
+ sigma: 4.250
653
+ B162:
654
+ gaussian:
655
+ mu: 1749.080
656
+ sigma: 4.231
657
+ B163:
658
+ gaussian:
659
+ mu: 1759.510
660
+ sigma: 4.212
661
+ B164:
662
+ gaussian:
663
+ mu: 1939.140
664
+ sigma: 3.892
665
+ B165:
666
+ gaussian:
667
+ mu: 1948.690
668
+ sigma: 3.875
669
+ B166:
670
+ gaussian:
671
+ mu: 1958.200
672
+ sigma: 3.858
673
+ B167:
674
+ gaussian:
675
+ mu: 1967.660
676
+ sigma: 3.842
677
+ B168:
678
+ gaussian:
679
+ mu: 1977.080
680
+ sigma: 3.826
681
+ B169:
682
+ gaussian:
683
+ mu: 1986.450
684
+ sigma: 3.809
685
+ B170:
686
+ gaussian:
687
+ mu: 1995.790
688
+ sigma: 3.792
689
+ B171:
690
+ gaussian:
691
+ mu: 2005.080
692
+ sigma: 3.775
693
+ B172:
694
+ gaussian:
695
+ mu: 2014.330
696
+ sigma: 3.759
697
+ B173:
698
+ gaussian:
699
+ mu: 2023.540
700
+ sigma: 3.743
701
+ B174:
702
+ gaussian:
703
+ mu: 2032.700
704
+ sigma: 3.727
705
+ B175:
706
+ gaussian:
707
+ mu: 2041.830
708
+ sigma: 3.711
709
+ B176:
710
+ gaussian:
711
+ mu: 2050.920
712
+ sigma: 3.695
713
+ B177:
714
+ gaussian:
715
+ mu: 2059.960
716
+ sigma: 3.679
717
+ B178:
718
+ gaussian:
719
+ mu: 2068.970
720
+ sigma: 3.663
721
+ B179:
722
+ gaussian:
723
+ mu: 2077.930
724
+ sigma: 3.647
725
+ B180:
726
+ gaussian:
727
+ mu: 2086.860
728
+ sigma: 3.631
729
+ B181:
730
+ gaussian:
731
+ mu: 2095.740
732
+ sigma: 3.616
733
+ B182:
734
+ gaussian:
735
+ mu: 2104.590
736
+ sigma: 3.601
737
+ B183:
738
+ gaussian:
739
+ mu: 2113.400
740
+ sigma: 3.586
741
+ B184:
742
+ gaussian:
743
+ mu: 2122.170
744
+ sigma: 3.570
745
+ B185:
746
+ gaussian:
747
+ mu: 2130.900
748
+ sigma: 3.555
749
+ B186:
750
+ gaussian:
751
+ mu: 2139.600
752
+ sigma: 3.540
753
+ B187:
754
+ gaussian:
755
+ mu: 2148.260
756
+ sigma: 3.525
757
+ B188:
758
+ gaussian:
759
+ mu: 2156.880
760
+ sigma: 3.510
761
+ B189:
762
+ gaussian:
763
+ mu: 2165.470
764
+ sigma: 3.496
765
+ B190:
766
+ gaussian:
767
+ mu: 2174.020
768
+ sigma: 3.481
769
+ B191:
770
+ gaussian:
771
+ mu: 2182.530
772
+ sigma: 3.467
773
+ B192:
774
+ gaussian:
775
+ mu: 2191.010
776
+ sigma: 3.453
777
+ B193:
778
+ gaussian:
779
+ mu: 2199.450
780
+ sigma: 3.438
781
+ B194:
782
+ gaussian:
783
+ mu: 2207.860
784
+ sigma: 3.424
785
+ B195:
786
+ gaussian:
787
+ mu: 2216.240
788
+ sigma: 3.411
789
+ B196:
790
+ gaussian:
791
+ mu: 2224.580
792
+ sigma: 3.397
793
+ B197:
794
+ gaussian:
795
+ mu: 2232.890
796
+ sigma: 3.384
797
+ B198:
798
+ gaussian:
799
+ mu: 2241.160
800
+ sigma: 3.371
801
+ B199:
802
+ gaussian:
803
+ mu: 2249.400
804
+ sigma: 3.358
805
+ B200:
806
+ gaussian:
807
+ mu: 2257.610
808
+ sigma: 3.345
809
+ B201:
810
+ gaussian:
811
+ mu: 2265.790
812
+ sigma: 3.332
813
+ B202:
814
+ gaussian:
815
+ mu: 2273.930
816
+ sigma: 3.319
817
+ B203:
818
+ gaussian:
819
+ mu: 2282.040
820
+ sigma: 3.307
821
+ B204:
822
+ gaussian:
823
+ mu: 2290.120
824
+ sigma: 3.294
825
+ B205:
826
+ gaussian:
827
+ mu: 2298.170
828
+ sigma: 3.282
829
+ B206:
830
+ gaussian:
831
+ mu: 2306.190
832
+ sigma: 3.270
833
+ B207:
834
+ gaussian:
835
+ mu: 2314.170
836
+ sigma: 3.258
837
+ B208:
838
+ gaussian:
839
+ mu: 2322.130
840
+ sigma: 3.246
841
+ B209:
842
+ gaussian:
843
+ mu: 2330.050
844
+ sigma: 3.233
845
+ B210:
846
+ gaussian:
847
+ mu: 2337.940
848
+ sigma: 3.221
849
+ B211:
850
+ gaussian:
851
+ mu: 2345.810
852
+ sigma: 3.209
853
+ B212:
854
+ gaussian:
855
+ mu: 2353.640
856
+ sigma: 3.197
857
+ B213:
858
+ gaussian:
859
+ mu: 2361.440
860
+ sigma: 3.185
861
+ B214:
862
+ gaussian:
863
+ mu: 2369.210
864
+ sigma: 3.172
865
+ B215:
866
+ gaussian:
867
+ mu: 2376.950
868
+ sigma: 3.160
869
+ B216:
870
+ gaussian:
871
+ mu: 2384.660
872
+ sigma: 3.147
873
+ B217:
874
+ gaussian:
875
+ mu: 2392.340
876
+ sigma: 3.134
877
+ B218:
878
+ gaussian:
879
+ mu: 2400.000
880
+ sigma: 3.121
881
+ B219:
882
+ gaussian:
883
+ mu: 2407.620
884
+ sigma: 3.108
885
+ B220:
886
+ gaussian:
887
+ mu: 2415.210
888
+ sigma: 3.095
889
+ B221:
890
+ gaussian:
891
+ mu: 2422.780
892
+ sigma: 3.081
893
+ B222:
894
+ gaussian:
895
+ mu: 2430.320
896
+ sigma: 3.067
897
+ B223:
898
+ gaussian:
899
+ mu: 2437.820
900
+ sigma: 3.054
901
+ B224:
902
+ gaussian:
903
+ mu: 2445.300
904
+ sigma: 3.040