quraite 0.0.2__py3-none-any.whl → 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. quraite/__init__.py +3 -3
  2. quraite/adapters/__init__.py +134 -134
  3. quraite/adapters/agno_adapter.py +159 -159
  4. quraite/adapters/base.py +123 -123
  5. quraite/adapters/bedrock_agents_adapter.py +343 -343
  6. quraite/adapters/flowise_adapter.py +275 -275
  7. quraite/adapters/google_adk_adapter.py +209 -209
  8. quraite/adapters/http_adapter.py +239 -239
  9. quraite/adapters/langflow_adapter.py +192 -192
  10. quraite/adapters/langgraph_adapter.py +304 -304
  11. quraite/adapters/langgraph_server_adapter.py +252 -252
  12. quraite/adapters/n8n_adapter.py +220 -220
  13. quraite/adapters/openai_agents_adapter.py +269 -269
  14. quraite/adapters/pydantic_ai_adapter.py +312 -312
  15. quraite/adapters/smolagents_adapter.py +152 -152
  16. quraite/logger.py +61 -64
  17. quraite/schema/message.py +91 -54
  18. quraite/schema/response.py +16 -16
  19. quraite/serve/__init__.py +1 -1
  20. quraite/serve/cloudflared.py +210 -210
  21. quraite/serve/local_agent.py +360 -360
  22. quraite/tracing/__init__.py +24 -24
  23. quraite/tracing/constants.py +16 -16
  24. quraite/tracing/span_exporter.py +115 -115
  25. quraite/tracing/span_processor.py +49 -49
  26. quraite/tracing/tool_extractors.py +290 -290
  27. quraite/tracing/trace.py +564 -494
  28. quraite/tracing/types.py +179 -179
  29. quraite/tracing/utils.py +170 -170
  30. quraite/utils/json_utils.py +269 -269
  31. {quraite-0.0.2.dist-info → quraite-0.1.0.dist-info}/METADATA +9 -9
  32. quraite-0.1.0.dist-info/RECORD +35 -0
  33. {quraite-0.0.2.dist-info → quraite-0.1.0.dist-info}/WHEEL +1 -1
  34. quraite/traces/traces_adk_openinference.json +0 -379
  35. quraite/traces/traces_agno_multi_agent.json +0 -669
  36. quraite/traces/traces_agno_openinference.json +0 -321
  37. quraite/traces/traces_crewai_openinference.json +0 -155
  38. quraite/traces/traces_langgraph_openinference.json +0 -349
  39. quraite/traces/traces_langgraph_openinference_multi_agent.json +0 -2705
  40. quraite/traces/traces_langgraph_traceloop.json +0 -510
  41. quraite/traces/traces_openai_agents_multi_agent_1.json +0 -402
  42. quraite/traces/traces_openai_agents_openinference.json +0 -341
  43. quraite/traces/traces_pydantic_openinference.json +0 -286
  44. quraite/traces/traces_pydantic_openinference_multi_agent_1.json +0 -399
  45. quraite/traces/traces_pydantic_openinference_multi_agent_2.json +0 -398
  46. quraite/traces/traces_smol_agents_openinference.json +0 -397
  47. quraite/traces/traces_smol_agents_tool_calling_openinference.json +0 -704
  48. quraite-0.0.2.dist-info/RECORD +0 -49
@@ -1,192 +1,192 @@
1
- import asyncio
2
- import json
3
- import uuid
4
- from typing import Any, Dict, List, Union
5
-
6
- import aiohttp
7
-
8
- from quraite.adapters.base import BaseAdapter
9
- from quraite.logger import get_logger
10
- from quraite.schema.message import (
11
- AgentMessage,
12
- AssistantMessage,
13
- MessageContentText,
14
- ToolCall,
15
- ToolMessage,
16
- )
17
- from quraite.schema.response import AgentInvocationResponse
18
-
19
- logger = get_logger(__name__)
20
-
21
-
22
- class LangflowAdapter(BaseAdapter):
23
- def __init__(self, api_url: str, x_api_key: str, timeout: int = 60):
24
- self.api_url = api_url
25
- self.x_api_key = x_api_key
26
- self.headers = {"Content-Type": "application/json", "x-api-key": self.x_api_key}
27
- self.timeout = timeout
28
- logger.info(
29
- "LangflowAdapter initialized (api_url=%s, timeout=%s)",
30
- self.api_url,
31
- timeout,
32
- )
33
-
34
- def _convert_api_output_to_messages(
35
- self,
36
- response: Dict[str, Any],
37
- ) -> List[AgentMessage]:
38
- logger.debug(
39
- "Converting Langflow response (root_keys=%s)",
40
- list(response.keys()),
41
- )
42
- content_blocks = response["outputs"][0]["outputs"][0]["results"]["message"][
43
- "content_blocks"
44
- ]
45
- contents = content_blocks[0]["contents"]
46
-
47
- # Assume everything sequential.
48
- ai_trajectory: List[AgentMessage] = []
49
- for step in contents:
50
- if step["type"] == "text":
51
- if step["header"]["title"] == "Input":
52
- continue
53
- else:
54
- ai_trajectory.append(
55
- AssistantMessage(
56
- content=[
57
- MessageContentText(type="text", text=step["text"])
58
- ],
59
- )
60
- )
61
- elif step["type"] == "tool_use":
62
- tool_id = str(uuid.uuid4())
63
- tool_input = step.get("tool_input", {})
64
- if not isinstance(tool_input, dict):
65
- tool_input = {"value": tool_input}
66
-
67
- # Create AssistantMessage with tool call
68
- ai_trajectory.append(
69
- AssistantMessage(
70
- tool_calls=[
71
- ToolCall(
72
- id=tool_id,
73
- name=step["name"],
74
- arguments=tool_input,
75
- )
76
- ],
77
- )
78
- )
79
- # Create ToolMessage with tool result
80
- tool_output = step.get("output", "")
81
- ai_trajectory.append(
82
- ToolMessage(
83
- tool_name=step["name"],
84
- tool_call_id=tool_id,
85
- content=[
86
- MessageContentText(type="text", text=str(tool_output))
87
- ],
88
- )
89
- )
90
-
91
- logger.info(
92
- "Converted Langflow response into %d trajectory messages",
93
- len(ai_trajectory),
94
- )
95
- return ai_trajectory
96
-
97
- def _prepare_input(self, input: List[AgentMessage]) -> str:
98
- logger.debug("Preparing Langflow input from %d messages", len(input))
99
- if not input or input[-1].role != "user":
100
- logger.error("Langflow input missing user message")
101
- raise ValueError("No user message found in the input")
102
-
103
- last_user_message = input[-1]
104
- if not last_user_message.content:
105
- logger.error("Langflow input user message missing content")
106
- raise ValueError("User message has no content")
107
-
108
- text_content = None
109
- for content_item in last_user_message.content:
110
- if content_item.type == "text" and content_item.text:
111
- text_content = content_item.text
112
- break
113
-
114
- if not text_content:
115
- logger.error("Langflow input missing text content")
116
- raise ValueError("No text content found in user message")
117
-
118
- logger.debug("Prepared Langflow input (text_length=%d)", len(text_content))
119
- return text_content
120
-
121
- async def _aapi_call(
122
- self,
123
- query: str,
124
- sessionId: str,
125
- ) -> Dict[str, Any]:
126
- payload = {
127
- "output_type": "chat",
128
- "input_type": "chat",
129
- "input_value": query,
130
- "session_id": sessionId,
131
- }
132
-
133
- async with aiohttp.ClientSession() as session:
134
- try:
135
- async with session.post(
136
- self.api_url,
137
- headers=self.headers,
138
- json=payload,
139
- timeout=aiohttp.ClientTimeout(total=self.timeout),
140
- ) as response:
141
- response.raise_for_status()
142
- logger.info(
143
- "Langflow API call succeeded (status=%s)", response.status
144
- )
145
- return await response.json()
146
-
147
- except (aiohttp.ClientError, asyncio.TimeoutError) as e:
148
- logger.exception("Langflow API request failed")
149
- raise aiohttp.ClientError(f"Async API request failed: {str(e)}") from e
150
-
151
- except json.JSONDecodeError as e:
152
- logger.exception("Langflow API response decoding failed")
153
- raise ValueError(f"Failed to decode JSON response: {e}") from e
154
-
155
- async def ainvoke(
156
- self,
157
- input: List[AgentMessage],
158
- session_id: Union[str, None],
159
- ) -> AgentInvocationResponse:
160
- """Asynchronous invocation method - invokes the Langflow agent and converts to List[AgentMessage]."""
161
- logger.info(
162
- "Langflow ainvoke called (session_id=%s, input_messages=%d)",
163
- session_id,
164
- len(input),
165
- )
166
- agent_input = self._prepare_input(input)
167
-
168
- try:
169
- agent_output = await self._aapi_call(
170
- query=agent_input,
171
- sessionId=session_id if session_id else uuid.uuid4(),
172
- )
173
- logger.debug(
174
- "Langflow API returned payload with top-level keys: %s",
175
- list(agent_output.keys()),
176
- )
177
- except Exception as e:
178
- logger.exception("Error calling Langflow endpoint")
179
- raise RuntimeError(f"Error calling langflow endpoint: {e}") from e
180
-
181
- try:
182
- agent_trajectory = self._convert_api_output_to_messages(agent_output)
183
- logger.info(
184
- "Langflow conversion produced %d trajectory messages",
185
- len(agent_trajectory),
186
- )
187
- return AgentInvocationResponse(
188
- agent_trajectory=agent_trajectory,
189
- )
190
- except Exception as e:
191
- logger.exception("Error processing Langflow response")
192
- raise RuntimeError(f"Error processing langflow response: {e}") from e
1
+ import asyncio
2
+ import json
3
+ import uuid
4
+ from typing import Any, Dict, List, Union
5
+
6
+ import aiohttp
7
+
8
+ from quraite.adapters.base import BaseAdapter
9
+ from quraite.logger import get_logger
10
+ from quraite.schema.message import (
11
+ AgentMessage,
12
+ AssistantMessage,
13
+ MessageContentText,
14
+ ToolCall,
15
+ ToolMessage,
16
+ )
17
+ from quraite.schema.response import AgentInvocationResponse
18
+
19
+ logger = get_logger(__name__)
20
+
21
+
22
+ class LangflowAdapter(BaseAdapter):
23
+ def __init__(self, api_url: str, x_api_key: str, timeout: int = 60):
24
+ self.api_url = api_url
25
+ self.x_api_key = x_api_key
26
+ self.headers = {"Content-Type": "application/json", "x-api-key": self.x_api_key}
27
+ self.timeout = timeout
28
+ logger.info(
29
+ "LangflowAdapter initialized (api_url=%s, timeout=%s)",
30
+ self.api_url,
31
+ timeout,
32
+ )
33
+
34
+ def _convert_api_output_to_messages(
35
+ self,
36
+ response: Dict[str, Any],
37
+ ) -> List[AgentMessage]:
38
+ logger.debug(
39
+ "Converting Langflow response (root_keys=%s)",
40
+ list(response.keys()),
41
+ )
42
+ content_blocks = response["outputs"][0]["outputs"][0]["results"]["message"][
43
+ "content_blocks"
44
+ ]
45
+ contents = content_blocks[0]["contents"]
46
+
47
+ # Assume everything sequential.
48
+ ai_trajectory: List[AgentMessage] = []
49
+ for step in contents:
50
+ if step["type"] == "text":
51
+ if step["header"]["title"] == "Input":
52
+ continue
53
+ else:
54
+ ai_trajectory.append(
55
+ AssistantMessage(
56
+ content=[
57
+ MessageContentText(type="text", text=step["text"])
58
+ ],
59
+ )
60
+ )
61
+ elif step["type"] == "tool_use":
62
+ tool_id = str(uuid.uuid4())
63
+ tool_input = step.get("tool_input", {})
64
+ if not isinstance(tool_input, dict):
65
+ tool_input = {"value": tool_input}
66
+
67
+ # Create AssistantMessage with tool call
68
+ ai_trajectory.append(
69
+ AssistantMessage(
70
+ tool_calls=[
71
+ ToolCall(
72
+ id=tool_id,
73
+ name=step["name"],
74
+ arguments=tool_input,
75
+ )
76
+ ],
77
+ )
78
+ )
79
+ # Create ToolMessage with tool result
80
+ tool_output = step.get("output", "")
81
+ ai_trajectory.append(
82
+ ToolMessage(
83
+ tool_name=step["name"],
84
+ tool_call_id=tool_id,
85
+ content=[
86
+ MessageContentText(type="text", text=str(tool_output))
87
+ ],
88
+ )
89
+ )
90
+
91
+ logger.info(
92
+ "Converted Langflow response into %d trajectory messages",
93
+ len(ai_trajectory),
94
+ )
95
+ return ai_trajectory
96
+
97
+ def _prepare_input(self, input: List[AgentMessage]) -> str:
98
+ logger.debug("Preparing Langflow input from %d messages", len(input))
99
+ if not input or input[-1].role != "user":
100
+ logger.error("Langflow input missing user message")
101
+ raise ValueError("No user message found in the input")
102
+
103
+ last_user_message = input[-1]
104
+ if not last_user_message.content:
105
+ logger.error("Langflow input user message missing content")
106
+ raise ValueError("User message has no content")
107
+
108
+ text_content = None
109
+ for content_item in last_user_message.content:
110
+ if content_item.type == "text" and content_item.text:
111
+ text_content = content_item.text
112
+ break
113
+
114
+ if not text_content:
115
+ logger.error("Langflow input missing text content")
116
+ raise ValueError("No text content found in user message")
117
+
118
+ logger.debug("Prepared Langflow input (text_length=%d)", len(text_content))
119
+ return text_content
120
+
121
+ async def _aapi_call(
122
+ self,
123
+ query: str,
124
+ sessionId: str,
125
+ ) -> Dict[str, Any]:
126
+ payload = {
127
+ "output_type": "chat",
128
+ "input_type": "chat",
129
+ "input_value": query,
130
+ "session_id": sessionId,
131
+ }
132
+
133
+ async with aiohttp.ClientSession() as session:
134
+ try:
135
+ async with session.post(
136
+ self.api_url,
137
+ headers=self.headers,
138
+ json=payload,
139
+ timeout=aiohttp.ClientTimeout(total=self.timeout),
140
+ ) as response:
141
+ response.raise_for_status()
142
+ logger.info(
143
+ "Langflow API call succeeded (status=%s)", response.status
144
+ )
145
+ return await response.json()
146
+
147
+ except (aiohttp.ClientError, asyncio.TimeoutError) as e:
148
+ logger.exception("Langflow API request failed")
149
+ raise aiohttp.ClientError(f"Async API request failed: {str(e)}") from e
150
+
151
+ except json.JSONDecodeError as e:
152
+ logger.exception("Langflow API response decoding failed")
153
+ raise ValueError(f"Failed to decode JSON response: {e}") from e
154
+
155
+ async def ainvoke(
156
+ self,
157
+ input: List[AgentMessage],
158
+ session_id: Union[str, None],
159
+ ) -> AgentInvocationResponse:
160
+ """Asynchronous invocation method - invokes the Langflow agent and converts to List[AgentMessage]."""
161
+ logger.info(
162
+ "Langflow ainvoke called (session_id=%s, input_messages=%d)",
163
+ session_id,
164
+ len(input),
165
+ )
166
+ agent_input = self._prepare_input(input)
167
+
168
+ try:
169
+ agent_output = await self._aapi_call(
170
+ query=agent_input,
171
+ sessionId=session_id if session_id else uuid.uuid4(),
172
+ )
173
+ logger.debug(
174
+ "Langflow API returned payload with top-level keys: %s",
175
+ list(agent_output.keys()),
176
+ )
177
+ except Exception as e:
178
+ logger.exception("Error calling Langflow endpoint")
179
+ raise RuntimeError(f"Error calling langflow endpoint: {e}") from e
180
+
181
+ try:
182
+ agent_trajectory = self._convert_api_output_to_messages(agent_output)
183
+ logger.info(
184
+ "Langflow conversion produced %d trajectory messages",
185
+ len(agent_trajectory),
186
+ )
187
+ return AgentInvocationResponse(
188
+ agent_trajectory=agent_trajectory,
189
+ )
190
+ except Exception as e:
191
+ logger.exception("Error processing Langflow response")
192
+ raise RuntimeError(f"Error processing langflow response: {e}") from e