quraite 0.0.2__py3-none-any.whl → 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. quraite/__init__.py +3 -3
  2. quraite/adapters/__init__.py +134 -134
  3. quraite/adapters/agno_adapter.py +159 -159
  4. quraite/adapters/base.py +123 -123
  5. quraite/adapters/bedrock_agents_adapter.py +343 -343
  6. quraite/adapters/flowise_adapter.py +275 -275
  7. quraite/adapters/google_adk_adapter.py +209 -209
  8. quraite/adapters/http_adapter.py +239 -239
  9. quraite/adapters/langflow_adapter.py +192 -192
  10. quraite/adapters/langgraph_adapter.py +304 -304
  11. quraite/adapters/langgraph_server_adapter.py +252 -252
  12. quraite/adapters/n8n_adapter.py +220 -220
  13. quraite/adapters/openai_agents_adapter.py +269 -269
  14. quraite/adapters/pydantic_ai_adapter.py +312 -312
  15. quraite/adapters/smolagents_adapter.py +152 -152
  16. quraite/logger.py +61 -64
  17. quraite/schema/message.py +91 -54
  18. quraite/schema/response.py +16 -16
  19. quraite/serve/__init__.py +1 -1
  20. quraite/serve/cloudflared.py +210 -210
  21. quraite/serve/local_agent.py +360 -360
  22. quraite/tracing/__init__.py +24 -24
  23. quraite/tracing/constants.py +16 -16
  24. quraite/tracing/span_exporter.py +115 -115
  25. quraite/tracing/span_processor.py +49 -49
  26. quraite/tracing/tool_extractors.py +290 -290
  27. quraite/tracing/trace.py +564 -494
  28. quraite/tracing/types.py +179 -179
  29. quraite/tracing/utils.py +170 -170
  30. quraite/utils/json_utils.py +269 -269
  31. {quraite-0.0.2.dist-info → quraite-0.1.0.dist-info}/METADATA +9 -9
  32. quraite-0.1.0.dist-info/RECORD +35 -0
  33. {quraite-0.0.2.dist-info → quraite-0.1.0.dist-info}/WHEEL +1 -1
  34. quraite/traces/traces_adk_openinference.json +0 -379
  35. quraite/traces/traces_agno_multi_agent.json +0 -669
  36. quraite/traces/traces_agno_openinference.json +0 -321
  37. quraite/traces/traces_crewai_openinference.json +0 -155
  38. quraite/traces/traces_langgraph_openinference.json +0 -349
  39. quraite/traces/traces_langgraph_openinference_multi_agent.json +0 -2705
  40. quraite/traces/traces_langgraph_traceloop.json +0 -510
  41. quraite/traces/traces_openai_agents_multi_agent_1.json +0 -402
  42. quraite/traces/traces_openai_agents_openinference.json +0 -341
  43. quraite/traces/traces_pydantic_openinference.json +0 -286
  44. quraite/traces/traces_pydantic_openinference_multi_agent_1.json +0 -399
  45. quraite/traces/traces_pydantic_openinference_multi_agent_2.json +0 -398
  46. quraite/traces/traces_smol_agents_openinference.json +0 -397
  47. quraite/traces/traces_smol_agents_tool_calling_openinference.json +0 -704
  48. quraite-0.0.2.dist-info/RECORD +0 -49
@@ -1,290 +1,290 @@
1
- """
2
- Framework-specific tool extractors for converting span attributes to standardized tool call information.
3
-
4
- These extractors handle the varying attribute structures across different agent frameworks
5
- (pydantic, langgraph, adk, openai_agents, agno, smolagents, etc.)
6
- """
7
-
8
- import json
9
- from typing import Any, Protocol
10
-
11
- from quraite.tracing.constants import Framework
12
-
13
-
14
- class ToolCallInfo:
15
- """Standardized tool call information extracted from a TOOL span."""
16
-
17
- def __init__(
18
- self,
19
- tool_name: str,
20
- tool_call_id: str | None,
21
- arguments: str | dict,
22
- response: Any,
23
- ):
24
- self.tool_name = tool_name
25
- self.tool_call_id = tool_call_id
26
- self.arguments = arguments
27
- self.response = response
28
-
29
- def to_dict(self) -> dict[str, Any]:
30
- return {
31
- "role": "tool",
32
- "tool_name": self.tool_name,
33
- "tool_call_id": self.tool_call_id,
34
- "arguments": self.arguments,
35
- "response": self.response,
36
- }
37
-
38
-
39
- class ToolExtractor(Protocol):
40
- """Protocol for framework-specific tool extractors."""
41
-
42
- def __call__(self, span: dict[str, Any]) -> ToolCallInfo | None: ...
43
-
44
-
45
- # =============================================================================
46
- # Framework-specific tool extractors
47
- # =============================================================================
48
-
49
-
50
- def extract_tool_pydantic(span: dict[str, Any]) -> ToolCallInfo | None:
51
- """
52
- Extract tool info from Pydantic AI tool spans.
53
-
54
- Attributes:
55
- - tool.name: "customer_balance"
56
- - tool_call.id: "call_xxx"
57
- - tool_arguments: "{\"include_pending\":true}"
58
- - tool_response: "$123.45"
59
- """
60
- attrs = span.get("attributes", {})
61
-
62
- tool_name = attrs.get("tool.name") or attrs.get("gen_ai.tool.name")
63
- if not tool_name:
64
- return None
65
-
66
- tool_call_id = attrs.get("tool_call.id") or attrs.get("gen_ai.tool.call.id")
67
- arguments = attrs.get("tool_arguments", "{}")
68
- response = attrs.get("tool_response", "")
69
-
70
- return ToolCallInfo(
71
- tool_name=tool_name,
72
- tool_call_id=tool_call_id,
73
- arguments=arguments,
74
- response=response,
75
- )
76
-
77
-
78
- def extract_tool_langgraph(span: dict[str, Any]) -> ToolCallInfo | None:
79
- """
80
- Extract tool info from LangGraph tool spans.
81
-
82
- Attributes:
83
- - tool.name: "add"
84
- - tool.description: "Add two numbers."
85
- - input.value: "{'b': 1, 'a': 1}"
86
- - output.value: JSON with content
87
- """
88
- attrs = span.get("attributes", {})
89
-
90
- tool_name = attrs.get("tool.name")
91
- if not tool_name:
92
- return None
93
-
94
- arguments = attrs.get("input.value", "{}")
95
- output_value = attrs.get("output.value", "")
96
-
97
- # Also check for response attribute (some LangGraph spans store response here)
98
- response_value = attrs.get("response", output_value)
99
-
100
- # Try to parse output to extract content
101
- response = response_value
102
- if isinstance(response_value, str):
103
- try:
104
- parsed = json.loads(response_value)
105
- if isinstance(parsed, dict):
106
- # Check if response field contains JSON string (nested JSON)
107
- if "response" in parsed and isinstance(parsed["response"], str):
108
- try:
109
- inner_parsed = json.loads(parsed["response"])
110
- if isinstance(inner_parsed, dict) and "update" in inner_parsed:
111
- parsed = inner_parsed
112
- except (json.JSONDecodeError, TypeError):
113
- pass
114
-
115
- # First check for direct content field
116
- if "content" in parsed:
117
- response = parsed.get("content", response_value)
118
- # Check for update.messages structure (LangGraph graph updates)
119
- # this comes when you use supervisor agent with multiple agents
120
- elif "update" in parsed:
121
- update = parsed.get("update", {})
122
- messages = update.get("messages", [])
123
- # Find the last tool message
124
- for msg in reversed(messages):
125
- if isinstance(msg, dict) and msg.get("type") == "tool":
126
- content = msg.get("content", "")
127
- if content:
128
- response = content
129
- break
130
- else:
131
- # No tool message found, keep original response
132
- response = response_value
133
- else:
134
- response = response_value
135
- except json.JSONDecodeError:
136
- pass
137
-
138
- return ToolCallInfo(
139
- tool_name=tool_name,
140
- tool_call_id=None, # LangGraph doesn't always have call IDs in tool spans
141
- arguments=arguments,
142
- response=response,
143
- )
144
-
145
-
146
- def extract_tool_adk(span: dict[str, Any]) -> ToolCallInfo | None:
147
- """
148
- Extract tool info from Google ADK tool spans.
149
-
150
- Attributes:
151
- - tool.name: "get_weather"
152
- - tool.parameters: "{\"city\": \"New York\"}"
153
- - gcp.vertex.agent.tool_call_args: "{\"city\": \"New York\"}"
154
- - gcp.vertex.agent.tool_response: JSON response
155
- - output.value: JSON with id, name, response
156
- """
157
- attrs = span.get("attributes", {})
158
-
159
- tool_name = attrs.get("tool.name") or attrs.get("gen_ai.tool.name")
160
- if not tool_name:
161
- return None
162
-
163
- # Skip merged tool spans
164
- if tool_name == "(merged tools)":
165
- return None
166
-
167
- tool_call_id = attrs.get("gen_ai.tool.call.id")
168
- arguments = (
169
- attrs.get("tool.parameters")
170
- or attrs.get("gcp.vertex.agent.tool_call_args")
171
- or attrs.get("input.value", "{}")
172
- )
173
-
174
- # Get response from various possible locations
175
- response = attrs.get("gcp.vertex.agent.tool_response", "")
176
- if not response or response == "<not serializable>":
177
- output_value = attrs.get("output.value", "")
178
- if isinstance(output_value, str):
179
- try:
180
- parsed = json.loads(output_value)
181
- if isinstance(parsed, dict) and "response" in parsed:
182
- response = parsed.get("response", output_value)
183
- else:
184
- response = output_value
185
- except json.JSONDecodeError:
186
- response = output_value
187
- else:
188
- response = output_value
189
-
190
- return ToolCallInfo(
191
- tool_name=tool_name,
192
- tool_call_id=tool_call_id,
193
- arguments=arguments,
194
- response=response,
195
- )
196
-
197
-
198
- def extract_tool_openai_agents(span: dict[str, Any]) -> ToolCallInfo | None:
199
- """
200
- Extract tool info from OpenAI Agents tool spans.
201
-
202
- Attributes:
203
- - tool.name: "multiply"
204
- - input.value: "{\"a\":10,\"b\":2}"
205
- - output.value: 20.0
206
- """
207
- attrs = span.get("attributes", {})
208
-
209
- tool_name = attrs.get("tool.name")
210
- if not tool_name:
211
- return None
212
-
213
- arguments = attrs.get("input.value", "{}")
214
- response = attrs.get("output.value", "")
215
-
216
- return ToolCallInfo(
217
- tool_name=tool_name,
218
- tool_call_id=None, # OpenAI Agents SDK doesn't put call ID in tool span
219
- arguments=arguments,
220
- response=response,
221
- )
222
-
223
-
224
- def extract_tool_agno(span: dict[str, Any]) -> ToolCallInfo | None:
225
- """
226
- Extract tool info from Agno tool spans.
227
-
228
- Attributes:
229
- - tool.name: "duckduckgo_search"
230
- - tool.description: "..."
231
- - tool.parameters: "{\"query\": \"...\", \"max_results\": 5}"
232
- - input.value: same as parameters
233
- - output.value: JSON response
234
- """
235
- attrs = span.get("attributes", {})
236
-
237
- tool_name = attrs.get("tool.name")
238
- if not tool_name:
239
- return None
240
-
241
- arguments = attrs.get("tool.parameters") or attrs.get("input.value", "{}")
242
- response = attrs.get("output.value", "")
243
-
244
- return ToolCallInfo(
245
- tool_name=tool_name,
246
- tool_call_id=None,
247
- arguments=arguments,
248
- response=response,
249
- )
250
-
251
-
252
- def extract_tool_smolagents(span: dict[str, Any]) -> ToolCallInfo | None:
253
- """
254
- Extract tool info from SmolAgents tool spans.
255
- """
256
- attrs = span.get("attributes", {})
257
-
258
- tool_name = attrs.get("tool.name")
259
- if not tool_name:
260
- return None
261
-
262
- arguments = attrs.get("input.value", "{}")
263
- response = attrs.get("output.value", "")
264
-
265
- return ToolCallInfo(
266
- tool_name=tool_name,
267
- tool_call_id=None,
268
- arguments=arguments,
269
- response=response,
270
- )
271
-
272
-
273
- # Registry of framework extractors
274
- TOOL_EXTRACTORS: dict[Framework, ToolExtractor] = {
275
- Framework.PYDANTIC: extract_tool_pydantic,
276
- Framework.LANGGRAPH: extract_tool_langgraph,
277
- Framework.GOOGLE_ADK: extract_tool_adk,
278
- Framework.OPENAI_AGENTS: extract_tool_openai_agents,
279
- Framework.AGNO: extract_tool_agno,
280
- Framework.SMOLAGENTS: extract_tool_smolagents,
281
- }
282
-
283
-
284
- def get_tool_extractor(framework: Framework | str) -> ToolExtractor:
285
- """Get the appropriate tool extractor for the given framework."""
286
- if isinstance(framework, str):
287
- framework = Framework(framework.lower())
288
- return TOOL_EXTRACTORS.get(
289
- framework, extract_tool_langgraph
290
- ) # Default to langgraph
1
+ """
2
+ Framework-specific tool extractors for converting span attributes to standardized tool call information.
3
+
4
+ These extractors handle the varying attribute structures across different agent frameworks
5
+ (pydantic, langgraph, adk, openai_agents, agno, smolagents, etc.)
6
+ """
7
+
8
+ import json
9
+ from typing import Any, Protocol
10
+
11
+ from quraite.tracing.constants import Framework
12
+
13
+
14
+ class ToolCallInfo:
15
+ """Standardized tool call information extracted from a TOOL span."""
16
+
17
+ def __init__(
18
+ self,
19
+ tool_name: str,
20
+ tool_call_id: str | None,
21
+ arguments: str | dict,
22
+ response: Any,
23
+ ):
24
+ self.tool_name = tool_name
25
+ self.tool_call_id = tool_call_id
26
+ self.arguments = arguments
27
+ self.response = response
28
+
29
+ def to_dict(self) -> dict[str, Any]:
30
+ return {
31
+ "role": "tool",
32
+ "tool_name": self.tool_name,
33
+ "tool_call_id": self.tool_call_id,
34
+ "arguments": self.arguments,
35
+ "response": self.response,
36
+ }
37
+
38
+
39
+ class ToolExtractor(Protocol):
40
+ """Protocol for framework-specific tool extractors."""
41
+
42
+ def __call__(self, span: dict[str, Any]) -> ToolCallInfo | None: ...
43
+
44
+
45
+ # =============================================================================
46
+ # Framework-specific tool extractors
47
+ # =============================================================================
48
+
49
+
50
+ def extract_tool_pydantic(span: dict[str, Any]) -> ToolCallInfo | None:
51
+ """
52
+ Extract tool info from Pydantic AI tool spans.
53
+
54
+ Attributes:
55
+ - tool.name: "customer_balance"
56
+ - tool_call.id: "call_xxx"
57
+ - tool_arguments: "{\"include_pending\":true}"
58
+ - tool_response: "$123.45"
59
+ """
60
+ attrs = span.get("attributes", {})
61
+
62
+ tool_name = attrs.get("tool.name") or attrs.get("gen_ai.tool.name")
63
+ if not tool_name:
64
+ return None
65
+
66
+ tool_call_id = attrs.get("tool_call.id") or attrs.get("gen_ai.tool.call.id")
67
+ arguments = attrs.get("tool_arguments", "{}")
68
+ response = attrs.get("tool_response", "")
69
+
70
+ return ToolCallInfo(
71
+ tool_name=tool_name,
72
+ tool_call_id=tool_call_id,
73
+ arguments=arguments,
74
+ response=response,
75
+ )
76
+
77
+
78
+ def extract_tool_langgraph(span: dict[str, Any]) -> ToolCallInfo | None:
79
+ """
80
+ Extract tool info from LangGraph tool spans.
81
+
82
+ Attributes:
83
+ - tool.name: "add"
84
+ - tool.description: "Add two numbers."
85
+ - input.value: "{'b': 1, 'a': 1}"
86
+ - output.value: JSON with content
87
+ """
88
+ attrs = span.get("attributes", {})
89
+
90
+ tool_name = attrs.get("tool.name")
91
+ if not tool_name:
92
+ return None
93
+
94
+ arguments = attrs.get("input.value", "{}")
95
+ output_value = attrs.get("output.value", "")
96
+
97
+ # Also check for response attribute (some LangGraph spans store response here)
98
+ response_value = attrs.get("response", output_value)
99
+
100
+ # Try to parse output to extract content
101
+ response = response_value
102
+ if isinstance(response_value, str):
103
+ try:
104
+ parsed = json.loads(response_value)
105
+ if isinstance(parsed, dict):
106
+ # Check if response field contains JSON string (nested JSON)
107
+ if "response" in parsed and isinstance(parsed["response"], str):
108
+ try:
109
+ inner_parsed = json.loads(parsed["response"])
110
+ if isinstance(inner_parsed, dict) and "update" in inner_parsed:
111
+ parsed = inner_parsed
112
+ except (json.JSONDecodeError, TypeError):
113
+ pass
114
+
115
+ # First check for direct content field
116
+ if "content" in parsed:
117
+ response = parsed.get("content", response_value)
118
+ # Check for update.messages structure (LangGraph graph updates)
119
+ # this comes when you use supervisor agent with multiple agents
120
+ elif "update" in parsed:
121
+ update = parsed.get("update", {})
122
+ messages = update.get("messages", [])
123
+ # Find the last tool message
124
+ for msg in reversed(messages):
125
+ if isinstance(msg, dict) and msg.get("type") == "tool":
126
+ content = msg.get("content", "")
127
+ if content:
128
+ response = content
129
+ break
130
+ else:
131
+ # No tool message found, keep original response
132
+ response = response_value
133
+ else:
134
+ response = response_value
135
+ except json.JSONDecodeError:
136
+ pass
137
+
138
+ return ToolCallInfo(
139
+ tool_name=tool_name,
140
+ tool_call_id=None, # LangGraph doesn't always have call IDs in tool spans
141
+ arguments=arguments,
142
+ response=response,
143
+ )
144
+
145
+
146
+ def extract_tool_adk(span: dict[str, Any]) -> ToolCallInfo | None:
147
+ """
148
+ Extract tool info from Google ADK tool spans.
149
+
150
+ Attributes:
151
+ - tool.name: "get_weather"
152
+ - tool.parameters: "{\"city\": \"New York\"}"
153
+ - gcp.vertex.agent.tool_call_args: "{\"city\": \"New York\"}"
154
+ - gcp.vertex.agent.tool_response: JSON response
155
+ - output.value: JSON with id, name, response
156
+ """
157
+ attrs = span.get("attributes", {})
158
+
159
+ tool_name = attrs.get("tool.name") or attrs.get("gen_ai.tool.name")
160
+ if not tool_name:
161
+ return None
162
+
163
+ # Skip merged tool spans
164
+ if tool_name == "(merged tools)":
165
+ return None
166
+
167
+ tool_call_id = attrs.get("gen_ai.tool.call.id")
168
+ arguments = (
169
+ attrs.get("tool.parameters")
170
+ or attrs.get("gcp.vertex.agent.tool_call_args")
171
+ or attrs.get("input.value", "{}")
172
+ )
173
+
174
+ # Get response from various possible locations
175
+ response = attrs.get("gcp.vertex.agent.tool_response", "")
176
+ if not response or response == "<not serializable>":
177
+ output_value = attrs.get("output.value", "")
178
+ if isinstance(output_value, str):
179
+ try:
180
+ parsed = json.loads(output_value)
181
+ if isinstance(parsed, dict) and "response" in parsed:
182
+ response = parsed.get("response", output_value)
183
+ else:
184
+ response = output_value
185
+ except json.JSONDecodeError:
186
+ response = output_value
187
+ else:
188
+ response = output_value
189
+
190
+ return ToolCallInfo(
191
+ tool_name=tool_name,
192
+ tool_call_id=tool_call_id,
193
+ arguments=arguments,
194
+ response=response,
195
+ )
196
+
197
+
198
+ def extract_tool_openai_agents(span: dict[str, Any]) -> ToolCallInfo | None:
199
+ """
200
+ Extract tool info from OpenAI Agents tool spans.
201
+
202
+ Attributes:
203
+ - tool.name: "multiply"
204
+ - input.value: "{\"a\":10,\"b\":2}"
205
+ - output.value: 20.0
206
+ """
207
+ attrs = span.get("attributes", {})
208
+
209
+ tool_name = attrs.get("tool.name")
210
+ if not tool_name:
211
+ return None
212
+
213
+ arguments = attrs.get("input.value", "{}")
214
+ response = attrs.get("output.value", "")
215
+
216
+ return ToolCallInfo(
217
+ tool_name=tool_name,
218
+ tool_call_id=None, # OpenAI Agents SDK doesn't put call ID in tool span
219
+ arguments=arguments,
220
+ response=response,
221
+ )
222
+
223
+
224
+ def extract_tool_agno(span: dict[str, Any]) -> ToolCallInfo | None:
225
+ """
226
+ Extract tool info from Agno tool spans.
227
+
228
+ Attributes:
229
+ - tool.name: "duckduckgo_search"
230
+ - tool.description: "..."
231
+ - tool.parameters: "{\"query\": \"...\", \"max_results\": 5}"
232
+ - input.value: same as parameters
233
+ - output.value: JSON response
234
+ """
235
+ attrs = span.get("attributes", {})
236
+
237
+ tool_name = attrs.get("tool.name")
238
+ if not tool_name:
239
+ return None
240
+
241
+ arguments = attrs.get("tool.parameters") or attrs.get("input.value", "{}")
242
+ response = attrs.get("output.value", "")
243
+
244
+ return ToolCallInfo(
245
+ tool_name=tool_name,
246
+ tool_call_id=None,
247
+ arguments=arguments,
248
+ response=response,
249
+ )
250
+
251
+
252
+ def extract_tool_smolagents(span: dict[str, Any]) -> ToolCallInfo | None:
253
+ """
254
+ Extract tool info from SmolAgents tool spans.
255
+ """
256
+ attrs = span.get("attributes", {})
257
+
258
+ tool_name = attrs.get("tool.name")
259
+ if not tool_name:
260
+ return None
261
+
262
+ arguments = attrs.get("input.value", "{}")
263
+ response = attrs.get("output.value", "")
264
+
265
+ return ToolCallInfo(
266
+ tool_name=tool_name,
267
+ tool_call_id=None,
268
+ arguments=arguments,
269
+ response=response,
270
+ )
271
+
272
+
273
+ # Registry of framework extractors
274
+ TOOL_EXTRACTORS: dict[Framework, ToolExtractor] = {
275
+ Framework.PYDANTIC: extract_tool_pydantic,
276
+ Framework.LANGGRAPH: extract_tool_langgraph,
277
+ Framework.GOOGLE_ADK: extract_tool_adk,
278
+ Framework.OPENAI_AGENTS: extract_tool_openai_agents,
279
+ Framework.AGNO: extract_tool_agno,
280
+ Framework.SMOLAGENTS: extract_tool_smolagents,
281
+ }
282
+
283
+
284
+ def get_tool_extractor(framework: Framework | str) -> ToolExtractor:
285
+ """Get the appropriate tool extractor for the given framework."""
286
+ if isinstance(framework, str):
287
+ framework = Framework(framework.lower())
288
+ return TOOL_EXTRACTORS.get(
289
+ framework, extract_tool_langgraph
290
+ ) # Default to langgraph