quraite 0.0.2__py3-none-any.whl → 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- quraite/__init__.py +3 -3
- quraite/adapters/__init__.py +134 -134
- quraite/adapters/agno_adapter.py +159 -159
- quraite/adapters/base.py +123 -123
- quraite/adapters/bedrock_agents_adapter.py +343 -343
- quraite/adapters/flowise_adapter.py +275 -275
- quraite/adapters/google_adk_adapter.py +209 -209
- quraite/adapters/http_adapter.py +239 -239
- quraite/adapters/langflow_adapter.py +192 -192
- quraite/adapters/langgraph_adapter.py +304 -304
- quraite/adapters/langgraph_server_adapter.py +252 -252
- quraite/adapters/n8n_adapter.py +220 -220
- quraite/adapters/openai_agents_adapter.py +269 -269
- quraite/adapters/pydantic_ai_adapter.py +312 -312
- quraite/adapters/smolagents_adapter.py +152 -152
- quraite/logger.py +61 -64
- quraite/schema/message.py +91 -54
- quraite/schema/response.py +16 -16
- quraite/serve/__init__.py +1 -1
- quraite/serve/cloudflared.py +210 -210
- quraite/serve/local_agent.py +360 -360
- quraite/tracing/__init__.py +24 -24
- quraite/tracing/constants.py +16 -16
- quraite/tracing/span_exporter.py +115 -115
- quraite/tracing/span_processor.py +49 -49
- quraite/tracing/tool_extractors.py +290 -290
- quraite/tracing/trace.py +564 -494
- quraite/tracing/types.py +179 -179
- quraite/tracing/utils.py +170 -170
- quraite/utils/json_utils.py +269 -269
- {quraite-0.0.2.dist-info → quraite-0.1.0.dist-info}/METADATA +9 -9
- quraite-0.1.0.dist-info/RECORD +35 -0
- {quraite-0.0.2.dist-info → quraite-0.1.0.dist-info}/WHEEL +1 -1
- quraite/traces/traces_adk_openinference.json +0 -379
- quraite/traces/traces_agno_multi_agent.json +0 -669
- quraite/traces/traces_agno_openinference.json +0 -321
- quraite/traces/traces_crewai_openinference.json +0 -155
- quraite/traces/traces_langgraph_openinference.json +0 -349
- quraite/traces/traces_langgraph_openinference_multi_agent.json +0 -2705
- quraite/traces/traces_langgraph_traceloop.json +0 -510
- quraite/traces/traces_openai_agents_multi_agent_1.json +0 -402
- quraite/traces/traces_openai_agents_openinference.json +0 -341
- quraite/traces/traces_pydantic_openinference.json +0 -286
- quraite/traces/traces_pydantic_openinference_multi_agent_1.json +0 -399
- quraite/traces/traces_pydantic_openinference_multi_agent_2.json +0 -398
- quraite/traces/traces_smol_agents_openinference.json +0 -397
- quraite/traces/traces_smol_agents_tool_calling_openinference.json +0 -704
- quraite-0.0.2.dist-info/RECORD +0 -49
|
@@ -1,397 +0,0 @@
|
|
|
1
|
-
[
|
|
2
|
-
{
|
|
3
|
-
"trace_id": "5cd2cd8c",
|
|
4
|
-
"spans": [
|
|
5
|
-
{
|
|
6
|
-
"name": "ChatCompletion",
|
|
7
|
-
"context": {
|
|
8
|
-
"trace_id": "0x5cd2cd8c7e880aab44212453209318ca",
|
|
9
|
-
"span_id": "0x0943d0df7ce3c050",
|
|
10
|
-
"trace_state": "[]"
|
|
11
|
-
},
|
|
12
|
-
"kind": "SpanKind.INTERNAL",
|
|
13
|
-
"parent_id": "0xa26fa0df472d6204",
|
|
14
|
-
"start_time": "2025-11-27T04:26:59.245275Z",
|
|
15
|
-
"end_time": "2025-11-27T04:27:02.633975Z",
|
|
16
|
-
"status": {
|
|
17
|
-
"status_code": "OK"
|
|
18
|
-
},
|
|
19
|
-
"attributes": {
|
|
20
|
-
"llm.provider": "openai",
|
|
21
|
-
"llm.system": "openai",
|
|
22
|
-
"input.value": "{\"messages\": [{\"role\": \"system\", \"content\": [{\"type\": \"text\", \"text\": \"You are an expert assistant who can solve any task using code blobs. You will be given a task to solve as best you can.\\nTo do so, you have been given access to a list of tools: these tools are basically Python functions which you can call with code.\\nTo solve the task, you must plan forward to proceed in a series of steps, in a cycle of Thought, Code, and Observation sequences.\\n\\nAt each step, in the 'Thought:' sequence, you should first explain your reasoning towards solving the task and the tools that you want to use.\\nThen in the Code sequence you should write the code in simple Python. The code sequence must be opened with '<code>', and closed with '</code>'.\\nDuring each intermediate step, you can use 'print()' to save whatever important information you will then need.\\nThese print outputs will then appear in the 'Observation:' field, which will be available as input for the next step.\\nIn the end you have to return a final answer using the `final_answer` tool.\\n\\nHere are a few examples using notional tools:\\n---\\nTask: \\\"Generate an image of the oldest person in this document.\\\"\\n\\nThought: I will proceed step by step and use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.\\n<code>\\nanswer = document_qa(document=document, question=\\\"Who is the oldest person mentioned?\\\")\\nprint(answer)\\n</code>\\nObservation: \\\"The oldest person in the document is John Doe, a 55 year old lumberjack living in Newfoundland.\\\"\\n\\nThought: I will now generate an image showcasing the oldest person.\\n<code>\\nimage = image_generator(\\\"A portrait of John Doe, a 55-year-old man living in Canada.\\\")\\nfinal_answer(image)\\n</code>\\n\\n---\\nTask: \\\"What is the result of the following operation: 5 + 3 + 1294.678?\\\"\\n\\nThought: I will use Python code to compute the result of the operation and then return the final answer using the `final_answer` tool.\\n<code>\\nresult = 5 + 3 + 1294.678\\nfinal_answer(result)\\n</code>\\n\\n---\\nTask:\\n\\\"Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French.\\nYou have been provided with these additional arguments, that you can access using the keys as variables in your Python code:\\n{'question': 'Quel est l'animal sur l'image?', 'image': 'path/to/image.jpg'}\\\"\\n\\nThought: I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image.\\n<code>\\ntranslated_question = translator(question=question, src_lang=\\\"French\\\", tgt_lang=\\\"English\\\")\\nprint(f\\\"The translated question is {translated_question}.\\\")\\nanswer = image_qa(image=image, question=translated_question)\\nfinal_answer(f\\\"The answer is {answer}\\\")\\n</code>\\n\\n---\\nTask:\\nIn a 1979 interview, Stanislaus Ulam discusses with Martin Sherwin about other great physicists of his time, including Oppenheimer.\\nWhat does he say was the consequence of Einstein learning too much math on his creativity, in one word?\\n\\nThought: I need to find and read the 1979 interview of Stanislaus Ulam with Martin Sherwin.\\n<code>\\npages = web_search(query=\\\"1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein\\\")\\nprint(pages)\\n</code>\\nObservation:\\nNo result found for query \\\"1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein\\\".\\n\\nThought: The query was maybe too restrictive and did not find any results. Let's try again with a broader query.\\n<code>\\npages = web_search(query=\\\"1979 interview Stanislaus Ulam\\\")\\nprint(pages)\\n</code>\\nObservation:\\nFound 6 pages:\\n[Stanislaus Ulam 1979 interview](https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/)\\n\\n[Ulam discusses Manhattan Project](https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/)\\n\\n(truncated)\\n\\nThought: I will read the first 2 pages to know more.\\n<code>\\nfor url in [\\\"https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/\\\", \\\"https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/\\\"]:\\n whole_page = visit_webpage(url)\\n print(whole_page)\\n print(\\\"\\\\n\\\" + \\\"=\\\"*80 + \\\"\\\\n\\\") # Print separator between pages\\n</code>\\nObservation:\\nManhattan Project Locations:\\nLos Alamos, NM\\nStanislaus Ulam was a Polish-American mathematician. He worked on the Manhattan Project at Los Alamos and later helped design the hydrogen bomb. In this interview, he discusses his work at\\n(truncated)\\n\\nThought: I now have the final answer: from the webpages visited, Stanislaus Ulam says of Einstein: \\\"He learned too much mathematics and sort of diminished, it seems to me personally, it seems to me his purely physics creativity.\\\" Let's answer in one word.\\n<code>\\nfinal_answer(\\\"diminished\\\")\\n</code>\\n\\n---\\nTask: \\\"Which city has the highest population: Guangzhou or Shanghai?\\\"\\n\\nThought: I need to get the populations for both cities and compare them: I will use the tool `web_search` to get the population of both cities.\\n<code>\\nfor city in [\\\"Guangzhou\\\", \\\"Shanghai\\\"]:\\n print(f\\\"Population {city}:\\\", web_search(f\\\"{city} population\\\"))\\n</code>\\nObservation:\\nPopulation Guangzhou: ['Guangzhou has a population of 15 million inhabitants as of 2021.']\\nPopulation Shanghai: '26 million (2019)'\\n\\nThought: Now I know that Shanghai has the highest population.\\n<code>\\nfinal_answer(\\\"Shanghai\\\")\\n</code>\\n\\n---\\nTask: \\\"What is the current age of the pope, raised to the power 0.36?\\\"\\n\\nThought: I will use the tool `wikipedia_search` to get the age of the pope, and confirm that with a web search.\\n<code>\\npope_age_wiki = wikipedia_search(query=\\\"current pope age\\\")\\nprint(\\\"Pope age as per wikipedia:\\\", pope_age_wiki)\\npope_age_search = web_search(query=\\\"current pope age\\\")\\nprint(\\\"Pope age as per google search:\\\", pope_age_search)\\n</code>\\nObservation:\\nPope age: \\\"The pope Francis is currently 88 years old.\\\"\\n\\nThought: I know that the pope is 88 years old. Let's compute the result using Python code.\\n<code>\\npope_current_age = 88 ** 0.36\\nfinal_answer(pope_current_age)\\n</code>\\n\\nAbove examples were using notional tools that might not exist for you. On top of performing computations in the Python code snippets that you create, you only have access to these tools, behaving like regular python functions:\\n<code>\\ndef sql_engine(query: string) -> string:\\n \\\"\\\"\\\"Allows you to perform SQL queries on the table. Returns a string representation of the result.\\n The table is named 'receipts'. Its description is as follows:\\n Columns:\\n - receipt_id: INTEGER\\n - customer_name: VARCHAR(16)\\n - price: FLOAT\\n - tip: FLOAT\\n\\n Args:\\n query: The query to perform. This should be correct SQL.\\n \\\"\\\"\\\"\\n\\ndef final_answer(answer: any) -> any:\\n \\\"\\\"\\\"Provides a final answer to the given problem.\\n\\n Args:\\n answer: The final answer to the problem\\n \\\"\\\"\\\"\\n\\n</code>\\n\\nHere are the rules you should always follow to solve your task:\\n1. Always provide a 'Thought:' sequence, and a '<code>' sequence ending with '</code>', else you will fail.\\n2. Use only variables that you have defined!\\n3. Always use the right arguments for the tools. DO NOT pass the arguments as a dict as in 'answer = wikipedia_search({'query': \\\"What is the place where James Bond lives?\\\"})', but use the arguments directly as in 'answer = wikipedia_search(query=\\\"What is the place where James Bond lives?\\\")'.\\n4. For tools WITHOUT JSON output schema: Take care to not chain too many sequential tool calls in the same code block, as their output format is unpredictable. For instance, a call to wikipedia_search without a JSON output schema has an unpredictable return format, so do not have another tool call that depends on its output in the same block: rather output results with print() to use them in the next block.\\n5. For tools WITH JSON output schema: You can confidently chain multiple tool calls and directly access structured output fields in the same code block! When a tool has a JSON output schema, you know exactly what fields and data types to expect, allowing you to write robust code that directly accesses the structured response (e.g., result['field_name']) without needing intermediate print() statements.\\n6. Call a tool only when needed, and never re-do a tool call that you previously did with the exact same parameters.\\n7. Don't name any new variable with the same name as a tool: for instance don't name a variable 'final_answer'.\\n8. Never create any notional variables in our code, as having these in your logs will derail you from the true variables.\\n9. You can use imports in your code, but only from the following list of modules: ['collections', 'datetime', 'itertools', 'math', 'queue', 'random', 're', 'stat', 'statistics', 'time', 'unicodedata']\\n10. The state persists between code executions: so if in one step you've created variables or imported modules, these will all persist.\\n11. Don't give up! You're in charge of solving the task, not providing directions to solve it.\\n\\nNow Begin!\"}]}, {\"role\": \"user\", \"content\": [{\"type\": \"text\", \"text\": \"New task:\\nCan you give me the name of the client who got the most expensive receipt?\"}]}], \"model\": \"gpt-4o-mini\", \"stop\": [\"Observation:\", \"Calling tools:\", \"</code>\"]}",
|
|
23
|
-
"input.mime_type": "application/json",
|
|
24
|
-
"output.value": "{\"id\":\"chatcmpl-CgNsqHf3vbVzRDWaXPeMWRnogNZ7s\",\"choices\":[{\"finish_reason\":\"stop\",\"index\":0,\"logprobs\":null,\"message\":{\"content\":\"Thought: To find the name of the client who had the most expensive receipt, I will perform an SQL query on the `receipts` table to get the row corresponding to the highest price, and then extract the customer's name from that row. The SQL query will use the `MAX()` function to find the maximum price and get the corresponding customer. \\n\\n<code>\\nquery = \\\"\\\"\\\"\\nSELECT customer_name FROM receipts \\nWHERE price = (SELECT MAX(price) FROM receipts)\\n\\\"\\\"\\\"\\nresult = sql_engine(query)\\nprint(result)\\n\",\"refusal\":null,\"role\":\"assistant\",\"annotations\":[]}}],\"created\":1764217620,\"model\":\"gpt-4o-mini-2024-07-18\",\"object\":\"chat.completion\",\"service_tier\":\"default\",\"system_fingerprint\":\"fp_560af6e559\",\"usage\":{\"completion_tokens\":107,\"prompt_tokens\":2080,\"total_tokens\":2187,\"completion_tokens_details\":{\"accepted_prediction_tokens\":0,\"audio_tokens\":0,\"reasoning_tokens\":0,\"rejected_prediction_tokens\":0},\"prompt_tokens_details\":{\"audio_tokens\":0,\"cached_tokens\":1920}}}",
|
|
25
|
-
"output.mime_type": "application/json",
|
|
26
|
-
"llm.invocation_parameters": "{\"model\": \"gpt-4o-mini\", \"stop\": [\"Observation:\", \"Calling tools:\", \"</code>\"]}",
|
|
27
|
-
"llm.input_messages.0.message.role": "system",
|
|
28
|
-
"llm.input_messages.0.message.contents.0.message_content.type": "text",
|
|
29
|
-
"llm.input_messages.0.message.contents.0.message_content.text": "You are an expert assistant who can solve any task using code blobs. You will be given a task to solve as best you can.\nTo do so, you have been given access to a list of tools: these tools are basically Python functions which you can call with code.\nTo solve the task, you must plan forward to proceed in a series of steps, in a cycle of Thought, Code, and Observation sequences.\n\nAt each step, in the 'Thought:' sequence, you should first explain your reasoning towards solving the task and the tools that you want to use.\nThen in the Code sequence you should write the code in simple Python. The code sequence must be opened with '<code>', and closed with '</code>'.\nDuring each intermediate step, you can use 'print()' to save whatever important information you will then need.\nThese print outputs will then appear in the 'Observation:' field, which will be available as input for the next step.\nIn the end you have to return a final answer using the `final_answer` tool.\n\nHere are a few examples using notional tools:\n---\nTask: \"Generate an image of the oldest person in this document.\"\n\nThought: I will proceed step by step and use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.\n<code>\nanswer = document_qa(document=document, question=\"Who is the oldest person mentioned?\")\nprint(answer)\n</code>\nObservation: \"The oldest person in the document is John Doe, a 55 year old lumberjack living in Newfoundland.\"\n\nThought: I will now generate an image showcasing the oldest person.\n<code>\nimage = image_generator(\"A portrait of John Doe, a 55-year-old man living in Canada.\")\nfinal_answer(image)\n</code>\n\n---\nTask: \"What is the result of the following operation: 5 + 3 + 1294.678?\"\n\nThought: I will use Python code to compute the result of the operation and then return the final answer using the `final_answer` tool.\n<code>\nresult = 5 + 3 + 1294.678\nfinal_answer(result)\n</code>\n\n---\nTask:\n\"Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French.\nYou have been provided with these additional arguments, that you can access using the keys as variables in your Python code:\n{'question': 'Quel est l'animal sur l'image?', 'image': 'path/to/image.jpg'}\"\n\nThought: I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image.\n<code>\ntranslated_question = translator(question=question, src_lang=\"French\", tgt_lang=\"English\")\nprint(f\"The translated question is {translated_question}.\")\nanswer = image_qa(image=image, question=translated_question)\nfinal_answer(f\"The answer is {answer}\")\n</code>\n\n---\nTask:\nIn a 1979 interview, Stanislaus Ulam discusses with Martin Sherwin about other great physicists of his time, including Oppenheimer.\nWhat does he say was the consequence of Einstein learning too much math on his creativity, in one word?\n\nThought: I need to find and read the 1979 interview of Stanislaus Ulam with Martin Sherwin.\n<code>\npages = web_search(query=\"1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein\")\nprint(pages)\n</code>\nObservation:\nNo result found for query \"1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein\".\n\nThought: The query was maybe too restrictive and did not find any results. Let's try again with a broader query.\n<code>\npages = web_search(query=\"1979 interview Stanislaus Ulam\")\nprint(pages)\n</code>\nObservation:\nFound 6 pages:\n[Stanislaus Ulam 1979 interview](https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/)\n\n[Ulam discusses Manhattan Project](https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/)\n\n(truncated)\n\nThought: I will read the first 2 pages to know more.\n<code>\nfor url in [\"https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/\", \"https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/\"]:\n whole_page = visit_webpage(url)\n print(whole_page)\n print(\"\\n\" + \"=\"*80 + \"\\n\") # Print separator between pages\n</code>\nObservation:\nManhattan Project Locations:\nLos Alamos, NM\nStanislaus Ulam was a Polish-American mathematician. He worked on the Manhattan Project at Los Alamos and later helped design the hydrogen bomb. In this interview, he discusses his work at\n(truncated)\n\nThought: I now have the final answer: from the webpages visited, Stanislaus Ulam says of Einstein: \"He learned too much mathematics and sort of diminished, it seems to me personally, it seems to me his purely physics creativity.\" Let's answer in one word.\n<code>\nfinal_answer(\"diminished\")\n</code>\n\n---\nTask: \"Which city has the highest population: Guangzhou or Shanghai?\"\n\nThought: I need to get the populations for both cities and compare them: I will use the tool `web_search` to get the population of both cities.\n<code>\nfor city in [\"Guangzhou\", \"Shanghai\"]:\n print(f\"Population {city}:\", web_search(f\"{city} population\"))\n</code>\nObservation:\nPopulation Guangzhou: ['Guangzhou has a population of 15 million inhabitants as of 2021.']\nPopulation Shanghai: '26 million (2019)'\n\nThought: Now I know that Shanghai has the highest population.\n<code>\nfinal_answer(\"Shanghai\")\n</code>\n\n---\nTask: \"What is the current age of the pope, raised to the power 0.36?\"\n\nThought: I will use the tool `wikipedia_search` to get the age of the pope, and confirm that with a web search.\n<code>\npope_age_wiki = wikipedia_search(query=\"current pope age\")\nprint(\"Pope age as per wikipedia:\", pope_age_wiki)\npope_age_search = web_search(query=\"current pope age\")\nprint(\"Pope age as per google search:\", pope_age_search)\n</code>\nObservation:\nPope age: \"The pope Francis is currently 88 years old.\"\n\nThought: I know that the pope is 88 years old. Let's compute the result using Python code.\n<code>\npope_current_age = 88 ** 0.36\nfinal_answer(pope_current_age)\n</code>\n\nAbove examples were using notional tools that might not exist for you. On top of performing computations in the Python code snippets that you create, you only have access to these tools, behaving like regular python functions:\n<code>\ndef sql_engine(query: string) -> string:\n \"\"\"Allows you to perform SQL queries on the table. Returns a string representation of the result.\n The table is named 'receipts'. Its description is as follows:\n Columns:\n - receipt_id: INTEGER\n - customer_name: VARCHAR(16)\n - price: FLOAT\n - tip: FLOAT\n\n Args:\n query: The query to perform. This should be correct SQL.\n \"\"\"\n\ndef final_answer(answer: any) -> any:\n \"\"\"Provides a final answer to the given problem.\n\n Args:\n answer: The final answer to the problem\n \"\"\"\n\n</code>\n\nHere are the rules you should always follow to solve your task:\n1. Always provide a 'Thought:' sequence, and a '<code>' sequence ending with '</code>', else you will fail.\n2. Use only variables that you have defined!\n3. Always use the right arguments for the tools. DO NOT pass the arguments as a dict as in 'answer = wikipedia_search({'query': \"What is the place where James Bond lives?\"})', but use the arguments directly as in 'answer = wikipedia_search(query=\"What is the place where James Bond lives?\")'.\n4. For tools WITHOUT JSON output schema: Take care to not chain too many sequential tool calls in the same code block, as their output format is unpredictable. For instance, a call to wikipedia_search without a JSON output schema has an unpredictable return format, so do not have another tool call that depends on its output in the same block: rather output results with print() to use them in the next block.\n5. For tools WITH JSON output schema: You can confidently chain multiple tool calls and directly access structured output fields in the same code block! When a tool has a JSON output schema, you know exactly what fields and data types to expect, allowing you to write robust code that directly accesses the structured response (e.g., result['field_name']) without needing intermediate print() statements.\n6. Call a tool only when needed, and never re-do a tool call that you previously did with the exact same parameters.\n7. Don't name any new variable with the same name as a tool: for instance don't name a variable 'final_answer'.\n8. Never create any notional variables in our code, as having these in your logs will derail you from the true variables.\n9. You can use imports in your code, but only from the following list of modules: ['collections', 'datetime', 'itertools', 'math', 'queue', 'random', 're', 'stat', 'statistics', 'time', 'unicodedata']\n10. The state persists between code executions: so if in one step you've created variables or imported modules, these will all persist.\n11. Don't give up! You're in charge of solving the task, not providing directions to solve it.\n\nNow Begin!",
|
|
30
|
-
"llm.input_messages.1.message.role": "user",
|
|
31
|
-
"llm.input_messages.1.message.contents.0.message_content.type": "text",
|
|
32
|
-
"llm.input_messages.1.message.contents.0.message_content.text": "New task:\nCan you give me the name of the client who got the most expensive receipt?",
|
|
33
|
-
"llm.model_name": "gpt-4o-mini-2024-07-18",
|
|
34
|
-
"llm.token_count.total": 2187,
|
|
35
|
-
"llm.token_count.prompt": 2080,
|
|
36
|
-
"llm.token_count.completion": 107,
|
|
37
|
-
"llm.token_count.prompt_details.cache_read": 1920,
|
|
38
|
-
"llm.token_count.prompt_details.audio": 0,
|
|
39
|
-
"llm.token_count.completion_details.reasoning": 0,
|
|
40
|
-
"llm.token_count.completion_details.audio": 0,
|
|
41
|
-
"llm.output_messages.0.message.role": "assistant",
|
|
42
|
-
"llm.output_messages.0.message.content": "Thought: To find the name of the client who had the most expensive receipt, I will perform an SQL query on the `receipts` table to get the row corresponding to the highest price, and then extract the customer's name from that row. The SQL query will use the `MAX()` function to find the maximum price and get the corresponding customer. \n\n<code>\nquery = \"\"\"\nSELECT customer_name FROM receipts \nWHERE price = (SELECT MAX(price) FROM receipts)\n\"\"\"\nresult = sql_engine(query)\nprint(result)\n",
|
|
43
|
-
"openinference.span.kind": "LLM"
|
|
44
|
-
},
|
|
45
|
-
"events": [],
|
|
46
|
-
"links": [],
|
|
47
|
-
"resource": {
|
|
48
|
-
"attributes": {
|
|
49
|
-
"telemetry.sdk.language": "python",
|
|
50
|
-
"telemetry.sdk.name": "opentelemetry",
|
|
51
|
-
"telemetry.sdk.version": "1.38.0",
|
|
52
|
-
"service.name": "unknown_service"
|
|
53
|
-
},
|
|
54
|
-
"schema_url": ""
|
|
55
|
-
}
|
|
56
|
-
},
|
|
57
|
-
{
|
|
58
|
-
"name": "OpenAIModel.generate",
|
|
59
|
-
"context": {
|
|
60
|
-
"trace_id": "0x5cd2cd8c7e880aab44212453209318ca",
|
|
61
|
-
"span_id": "0xa26fa0df472d6204",
|
|
62
|
-
"trace_state": "[]"
|
|
63
|
-
},
|
|
64
|
-
"kind": "SpanKind.INTERNAL",
|
|
65
|
-
"parent_id": "0xd031cfcee9d42a37",
|
|
66
|
-
"start_time": "2025-11-27T04:26:59.127446Z",
|
|
67
|
-
"end_time": "2025-11-27T04:27:02.634234Z",
|
|
68
|
-
"status": {
|
|
69
|
-
"status_code": "OK"
|
|
70
|
-
},
|
|
71
|
-
"attributes": {
|
|
72
|
-
"input.mime_type": "application/json",
|
|
73
|
-
"input.value": "{\"messages\": [\"ChatMessage(role=<MessageRole.SYSTEM: 'system'>, content=[{'type': 'text', 'text': 'You are an expert assistant who can solve any task using code blobs. You will be given a task to solve as best you can.\\\\nTo do so, you have been given access to a list of tools: these tools are basically Python functions which you can call with code.\\\\nTo solve the task, you must plan forward to proceed in a series of steps, in a cycle of Thought, Code, and Observation sequences.\\\\n\\\\nAt each step, in the \\\\'Thought:\\\\' sequence, you should first explain your reasoning towards solving the task and the tools that you want to use.\\\\nThen in the Code sequence you should write the code in simple Python. The code sequence must be opened with \\\\'<code>\\\\', and closed with \\\\'</code>\\\\'.\\\\nDuring each intermediate step, you can use \\\\'print()\\\\' to save whatever important information you will then need.\\\\nThese print outputs will then appear in the \\\\'Observation:\\\\' field, which will be available as input for the next step.\\\\nIn the end you have to return a final answer using the `final_answer` tool.\\\\n\\\\nHere are a few examples using notional tools:\\\\n---\\\\nTask: \\\"Generate an image of the oldest person in this document.\\\"\\\\n\\\\nThought: I will proceed step by step and use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.\\\\n<code>\\\\nanswer = document_qa(document=document, question=\\\"Who is the oldest person mentioned?\\\")\\\\nprint(answer)\\\\n</code>\\\\nObservation: \\\"The oldest person in the document is John Doe, a 55 year old lumberjack living in Newfoundland.\\\"\\\\n\\\\nThought: I will now generate an image showcasing the oldest person.\\\\n<code>\\\\nimage = image_generator(\\\"A portrait of John Doe, a 55-year-old man living in Canada.\\\")\\\\nfinal_answer(image)\\\\n</code>\\\\n\\\\n---\\\\nTask: \\\"What is the result of the following operation: 5 + 3 + 1294.678?\\\"\\\\n\\\\nThought: I will use Python code to compute the result of the operation and then return the final answer using the `final_answer` tool.\\\\n<code>\\\\nresult = 5 + 3 + 1294.678\\\\nfinal_answer(result)\\\\n</code>\\\\n\\\\n---\\\\nTask:\\\\n\\\"Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French.\\\\nYou have been provided with these additional arguments, that you can access using the keys as variables in your Python code:\\\\n{\\\\'question\\\\': \\\\'Quel est l\\\\'animal sur l\\\\'image?\\\\', \\\\'image\\\\': \\\\'path/to/image.jpg\\\\'}\\\"\\\\n\\\\nThought: I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image.\\\\n<code>\\\\ntranslated_question = translator(question=question, src_lang=\\\"French\\\", tgt_lang=\\\"English\\\")\\\\nprint(f\\\"The translated question is {translated_question}.\\\")\\\\nanswer = image_qa(image=image, question=translated_question)\\\\nfinal_answer(f\\\"The answer is {answer}\\\")\\\\n</code>\\\\n\\\\n---\\\\nTask:\\\\nIn a 1979 interview, Stanislaus Ulam discusses with Martin Sherwin about other great physicists of his time, including Oppenheimer.\\\\nWhat does he say was the consequence of Einstein learning too much math on his creativity, in one word?\\\\n\\\\nThought: I need to find and read the 1979 interview of Stanislaus Ulam with Martin Sherwin.\\\\n<code>\\\\npages = web_search(query=\\\"1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein\\\")\\\\nprint(pages)\\\\n</code>\\\\nObservation:\\\\nNo result found for query \\\"1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein\\\".\\\\n\\\\nThought: The query was maybe too restrictive and did not find any results. Let\\\\'s try again with a broader query.\\\\n<code>\\\\npages = web_search(query=\\\"1979 interview Stanislaus Ulam\\\")\\\\nprint(pages)\\\\n</code>\\\\nObservation:\\\\nFound 6 pages:\\\\n[Stanislaus Ulam 1979 interview](https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/)\\\\n\\\\n[Ulam discusses Manhattan Project](https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/)\\\\n\\\\n(truncated)\\\\n\\\\nThought: I will read the first 2 pages to know more.\\\\n<code>\\\\nfor url in [\\\"https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/\\\", \\\"https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/\\\"]:\\\\n whole_page = visit_webpage(url)\\\\n print(whole_page)\\\\n print(\\\"\\\\\\\\n\\\" + \\\"=\\\"*80 + \\\"\\\\\\\\n\\\") # Print separator between pages\\\\n</code>\\\\nObservation:\\\\nManhattan Project Locations:\\\\nLos Alamos, NM\\\\nStanislaus Ulam was a Polish-American mathematician. He worked on the Manhattan Project at Los Alamos and later helped design the hydrogen bomb. In this interview, he discusses his work at\\\\n(truncated)\\\\n\\\\nThought: I now have the final answer: from the webpages visited, Stanislaus Ulam says of Einstein: \\\"He learned too much mathematics and sort of diminished, it seems to me personally, it seems to me his purely physics creativity.\\\" Let\\\\'s answer in one word.\\\\n<code>\\\\nfinal_answer(\\\"diminished\\\")\\\\n</code>\\\\n\\\\n---\\\\nTask: \\\"Which city has the highest population: Guangzhou or Shanghai?\\\"\\\\n\\\\nThought: I need to get the populations for both cities and compare them: I will use the tool `web_search` to get the population of both cities.\\\\n<code>\\\\nfor city in [\\\"Guangzhou\\\", \\\"Shanghai\\\"]:\\\\n print(f\\\"Population {city}:\\\", web_search(f\\\"{city} population\\\"))\\\\n</code>\\\\nObservation:\\\\nPopulation Guangzhou: [\\\\'Guangzhou has a population of 15 million inhabitants as of 2021.\\\\']\\\\nPopulation Shanghai: \\\\'26 million (2019)\\\\'\\\\n\\\\nThought: Now I know that Shanghai has the highest population.\\\\n<code>\\\\nfinal_answer(\\\"Shanghai\\\")\\\\n</code>\\\\n\\\\n---\\\\nTask: \\\"What is the current age of the pope, raised to the power 0.36?\\\"\\\\n\\\\nThought: I will use the tool `wikipedia_search` to get the age of the pope, and confirm that with a web search.\\\\n<code>\\\\npope_age_wiki = wikipedia_search(query=\\\"current pope age\\\")\\\\nprint(\\\"Pope age as per wikipedia:\\\", pope_age_wiki)\\\\npope_age_search = web_search(query=\\\"current pope age\\\")\\\\nprint(\\\"Pope age as per google search:\\\", pope_age_search)\\\\n</code>\\\\nObservation:\\\\nPope age: \\\"The pope Francis is currently 88 years old.\\\"\\\\n\\\\nThought: I know that the pope is 88 years old. Let\\\\'s compute the result using Python code.\\\\n<code>\\\\npope_current_age = 88 ** 0.36\\\\nfinal_answer(pope_current_age)\\\\n</code>\\\\n\\\\nAbove examples were using notional tools that might not exist for you. On top of performing computations in the Python code snippets that you create, you only have access to these tools, behaving like regular python functions:\\\\n<code>\\\\ndef sql_engine(query: string) -> string:\\\\n \\\"\\\"\\\"Allows you to perform SQL queries on the table. Returns a string representation of the result.\\\\n The table is named \\\\'receipts\\\\'. Its description is as follows:\\\\n Columns:\\\\n - receipt_id: INTEGER\\\\n - customer_name: VARCHAR(16)\\\\n - price: FLOAT\\\\n - tip: FLOAT\\\\n\\\\n Args:\\\\n query: The query to perform. This should be correct SQL.\\\\n \\\"\\\"\\\"\\\\n\\\\ndef final_answer(answer: any) -> any:\\\\n \\\"\\\"\\\"Provides a final answer to the given problem.\\\\n\\\\n Args:\\\\n answer: The final answer to the problem\\\\n \\\"\\\"\\\"\\\\n\\\\n</code>\\\\n\\\\nHere are the rules you should always follow to solve your task:\\\\n1. Always provide a \\\\'Thought:\\\\' sequence, and a \\\\'<code>\\\\' sequence ending with \\\\'</code>\\\\', else you will fail.\\\\n2. Use only variables that you have defined!\\\\n3. Always use the right arguments for the tools. DO NOT pass the arguments as a dict as in \\\\'answer = wikipedia_search({\\\\'query\\\\': \\\"What is the place where James Bond lives?\\\"})\\\\', but use the arguments directly as in \\\\'answer = wikipedia_search(query=\\\"What is the place where James Bond lives?\\\")\\\\'.\\\\n4. For tools WITHOUT JSON output schema: Take care to not chain too many sequential tool calls in the same code block, as their output format is unpredictable. For instance, a call to wikipedia_search without a JSON output schema has an unpredictable return format, so do not have another tool call that depends on its output in the same block: rather output results with print() to use them in the next block.\\\\n5. For tools WITH JSON output schema: You can confidently chain multiple tool calls and directly access structured output fields in the same code block! When a tool has a JSON output schema, you know exactly what fields and data types to expect, allowing you to write robust code that directly accesses the structured response (e.g., result[\\\\'field_name\\\\']) without needing intermediate print() statements.\\\\n6. Call a tool only when needed, and never re-do a tool call that you previously did with the exact same parameters.\\\\n7. Don\\\\'t name any new variable with the same name as a tool: for instance don\\\\'t name a variable \\\\'final_answer\\\\'.\\\\n8. Never create any notional variables in our code, as having these in your logs will derail you from the true variables.\\\\n9. You can use imports in your code, but only from the following list of modules: [\\\\'collections\\\\', \\\\'datetime\\\\', \\\\'itertools\\\\', \\\\'math\\\\', \\\\'queue\\\\', \\\\'random\\\\', \\\\'re\\\\', \\\\'stat\\\\', \\\\'statistics\\\\', \\\\'time\\\\', \\\\'unicodedata\\\\']\\\\n10. The state persists between code executions: so if in one step you\\\\'ve created variables or imported modules, these will all persist.\\\\n11. Don\\\\'t give up! You\\\\'re in charge of solving the task, not providing directions to solve it.\\\\n\\\\nNow Begin!'}], tool_calls=None, raw=None, token_usage=None)\", \"ChatMessage(role=<MessageRole.USER: 'user'>, content=[{'type': 'text', 'text': 'New task:\\\\nCan you give me the name of the client who got the most expensive receipt?'}], tool_calls=None, raw=None, token_usage=None)\"], \"stop_sequences\": [\"Observation:\", \"Calling tools:\", \"</code>\"], \"response_format\": null, \"tools_to_call_from\": null, \"kwargs\": {}}",
|
|
74
|
-
"llm.invocation_parameters": "{}",
|
|
75
|
-
"llm.token_count.prompt": 2080,
|
|
76
|
-
"llm.token_count.completion": 107,
|
|
77
|
-
"llm.token_count.total": 2187,
|
|
78
|
-
"llm.model_name": "gpt-4o-mini",
|
|
79
|
-
"llm.output_messages.0.message.role": "assistant",
|
|
80
|
-
"llm.output_messages.0.message.contents.0.message_content.type": "text",
|
|
81
|
-
"llm.output_messages.0.message.contents.0.message_content.text": "Thought: To find the name of the client who had the most expensive receipt, I will perform an SQL query on the `receipts` table to get the row corresponding to the highest price, and then extract the customer's name from that row. The SQL query will use the `MAX()` function to find the maximum price and get the corresponding customer. \n\n<code>\nquery = \"\"\"\nSELECT customer_name FROM receipts \nWHERE price = (SELECT MAX(price) FROM receipts)\n\"\"\"\nresult = sql_engine(query)\nprint(result)\n",
|
|
82
|
-
"output.mime_type": "application/json",
|
|
83
|
-
"output.value": "{\"role\": \"assistant\", \"content\": \"Thought: To find the name of the client who had the most expensive receipt, I will perform an SQL query on the `receipts` table to get the row corresponding to the highest price, and then extract the customer's name from that row. The SQL query will use the `MAX()` function to find the maximum price and get the corresponding customer. \\n\\n<code>\\nquery = \\\"\\\"\\\"\\nSELECT customer_name FROM receipts \\nWHERE price = (SELECT MAX(price) FROM receipts)\\n\\\"\\\"\\\"\\nresult = sql_engine(query)\\nprint(result)\\n\", \"tool_calls\": null, \"token_usage\": {\"input_tokens\": 2080, \"output_tokens\": 107, \"total_tokens\": 2187}}",
|
|
84
|
-
"openinference.span.kind": "LLM"
|
|
85
|
-
},
|
|
86
|
-
"events": [],
|
|
87
|
-
"links": [],
|
|
88
|
-
"resource": {
|
|
89
|
-
"attributes": {
|
|
90
|
-
"telemetry.sdk.language": "python",
|
|
91
|
-
"telemetry.sdk.name": "opentelemetry",
|
|
92
|
-
"telemetry.sdk.version": "1.38.0",
|
|
93
|
-
"service.name": "unknown_service"
|
|
94
|
-
},
|
|
95
|
-
"schema_url": ""
|
|
96
|
-
}
|
|
97
|
-
},
|
|
98
|
-
{
|
|
99
|
-
"name": "SimpleTool",
|
|
100
|
-
"context": {
|
|
101
|
-
"trace_id": "0x5cd2cd8c7e880aab44212453209318ca",
|
|
102
|
-
"span_id": "0x100a58333d49e38a",
|
|
103
|
-
"trace_state": "[]"
|
|
104
|
-
},
|
|
105
|
-
"kind": "SpanKind.INTERNAL",
|
|
106
|
-
"parent_id": "0xd031cfcee9d42a37",
|
|
107
|
-
"start_time": "2025-11-27T04:27:02.677383Z",
|
|
108
|
-
"end_time": "2025-11-27T04:27:02.677799Z",
|
|
109
|
-
"status": {
|
|
110
|
-
"status_code": "OK"
|
|
111
|
-
},
|
|
112
|
-
"attributes": {
|
|
113
|
-
"input.value": "{\"args\": [\"\\nSELECT customer_name FROM receipts \\nWHERE price = (SELECT MAX(price) FROM receipts)\\n\"], \"sanitize_inputs_outputs\": false, \"kwargs\": {}}",
|
|
114
|
-
"tool.name": "sql_engine",
|
|
115
|
-
"tool.description": "Allows you to perform SQL queries on the table. Returns a string representation of the result.\nThe table is named 'receipts'. Its description is as follows:\n Columns:\n - receipt_id: INTEGER\n - customer_name: VARCHAR(16)\n - price: FLOAT\n - tip: FLOAT",
|
|
116
|
-
"tool.parameters": "{\"query\": {\"type\": \"string\", \"description\": \"The query to perform. This should be correct SQL.\"}}",
|
|
117
|
-
"output.value": "\n('Woodrow Wilson',)",
|
|
118
|
-
"output.mime_type": "text/plain",
|
|
119
|
-
"openinference.span.kind": "TOOL"
|
|
120
|
-
},
|
|
121
|
-
"events": [],
|
|
122
|
-
"links": [],
|
|
123
|
-
"resource": {
|
|
124
|
-
"attributes": {
|
|
125
|
-
"telemetry.sdk.language": "python",
|
|
126
|
-
"telemetry.sdk.name": "opentelemetry",
|
|
127
|
-
"telemetry.sdk.version": "1.38.0",
|
|
128
|
-
"service.name": "unknown_service"
|
|
129
|
-
},
|
|
130
|
-
"schema_url": ""
|
|
131
|
-
}
|
|
132
|
-
},
|
|
133
|
-
{
|
|
134
|
-
"name": "Step 1",
|
|
135
|
-
"context": {
|
|
136
|
-
"trace_id": "0x5cd2cd8c7e880aab44212453209318ca",
|
|
137
|
-
"span_id": "0xd031cfcee9d42a37",
|
|
138
|
-
"trace_state": "[]"
|
|
139
|
-
},
|
|
140
|
-
"kind": "SpanKind.INTERNAL",
|
|
141
|
-
"parent_id": "0xaf16f5039167b5da",
|
|
142
|
-
"start_time": "2025-11-27T04:26:59.127269Z",
|
|
143
|
-
"end_time": "2025-11-27T04:27:02.677998Z",
|
|
144
|
-
"status": {
|
|
145
|
-
"status_code": "OK"
|
|
146
|
-
},
|
|
147
|
-
"attributes": {
|
|
148
|
-
"input.value": "{\"memory_step\": \"ActionStep(step_number=1, timing=Timing(start_time=1764217619.126979, end_time=None, duration=None), model_input_messages=None, tool_calls=None, error=None, model_output_message=None, model_output=None, code_action=None, observations=None, observations_images=None, action_output=None, token_usage=None, is_final_answer=False)\"}",
|
|
149
|
-
"output.value": "Execution logs:\n\n('Woodrow Wilson',)\nLast output from code snippet:\nNone",
|
|
150
|
-
"openinference.span.kind": "CHAIN"
|
|
151
|
-
},
|
|
152
|
-
"events": [],
|
|
153
|
-
"links": [],
|
|
154
|
-
"resource": {
|
|
155
|
-
"attributes": {
|
|
156
|
-
"telemetry.sdk.language": "python",
|
|
157
|
-
"telemetry.sdk.name": "opentelemetry",
|
|
158
|
-
"telemetry.sdk.version": "1.38.0",
|
|
159
|
-
"service.name": "unknown_service"
|
|
160
|
-
},
|
|
161
|
-
"schema_url": ""
|
|
162
|
-
}
|
|
163
|
-
},
|
|
164
|
-
{
|
|
165
|
-
"name": "ChatCompletion",
|
|
166
|
-
"context": {
|
|
167
|
-
"trace_id": "0x5cd2cd8c7e880aab44212453209318ca",
|
|
168
|
-
"span_id": "0x755fb6ac5de4cc6b",
|
|
169
|
-
"trace_state": "[]"
|
|
170
|
-
},
|
|
171
|
-
"kind": "SpanKind.INTERNAL",
|
|
172
|
-
"parent_id": "0x2af3edeb708667af",
|
|
173
|
-
"start_time": "2025-11-27T04:27:02.679181Z",
|
|
174
|
-
"end_time": "2025-11-27T04:27:04.102388Z",
|
|
175
|
-
"status": {
|
|
176
|
-
"status_code": "OK"
|
|
177
|
-
},
|
|
178
|
-
"attributes": {
|
|
179
|
-
"llm.provider": "openai",
|
|
180
|
-
"llm.system": "openai",
|
|
181
|
-
"input.value": "{\"messages\": [{\"role\": \"system\", \"content\": [{\"type\": \"text\", \"text\": \"You are an expert assistant who can solve any task using code blobs. You will be given a task to solve as best you can.\\nTo do so, you have been given access to a list of tools: these tools are basically Python functions which you can call with code.\\nTo solve the task, you must plan forward to proceed in a series of steps, in a cycle of Thought, Code, and Observation sequences.\\n\\nAt each step, in the 'Thought:' sequence, you should first explain your reasoning towards solving the task and the tools that you want to use.\\nThen in the Code sequence you should write the code in simple Python. The code sequence must be opened with '<code>', and closed with '</code>'.\\nDuring each intermediate step, you can use 'print()' to save whatever important information you will then need.\\nThese print outputs will then appear in the 'Observation:' field, which will be available as input for the next step.\\nIn the end you have to return a final answer using the `final_answer` tool.\\n\\nHere are a few examples using notional tools:\\n---\\nTask: \\\"Generate an image of the oldest person in this document.\\\"\\n\\nThought: I will proceed step by step and use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.\\n<code>\\nanswer = document_qa(document=document, question=\\\"Who is the oldest person mentioned?\\\")\\nprint(answer)\\n</code>\\nObservation: \\\"The oldest person in the document is John Doe, a 55 year old lumberjack living in Newfoundland.\\\"\\n\\nThought: I will now generate an image showcasing the oldest person.\\n<code>\\nimage = image_generator(\\\"A portrait of John Doe, a 55-year-old man living in Canada.\\\")\\nfinal_answer(image)\\n</code>\\n\\n---\\nTask: \\\"What is the result of the following operation: 5 + 3 + 1294.678?\\\"\\n\\nThought: I will use Python code to compute the result of the operation and then return the final answer using the `final_answer` tool.\\n<code>\\nresult = 5 + 3 + 1294.678\\nfinal_answer(result)\\n</code>\\n\\n---\\nTask:\\n\\\"Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French.\\nYou have been provided with these additional arguments, that you can access using the keys as variables in your Python code:\\n{'question': 'Quel est l'animal sur l'image?', 'image': 'path/to/image.jpg'}\\\"\\n\\nThought: I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image.\\n<code>\\ntranslated_question = translator(question=question, src_lang=\\\"French\\\", tgt_lang=\\\"English\\\")\\nprint(f\\\"The translated question is {translated_question}.\\\")\\nanswer = image_qa(image=image, question=translated_question)\\nfinal_answer(f\\\"The answer is {answer}\\\")\\n</code>\\n\\n---\\nTask:\\nIn a 1979 interview, Stanislaus Ulam discusses with Martin Sherwin about other great physicists of his time, including Oppenheimer.\\nWhat does he say was the consequence of Einstein learning too much math on his creativity, in one word?\\n\\nThought: I need to find and read the 1979 interview of Stanislaus Ulam with Martin Sherwin.\\n<code>\\npages = web_search(query=\\\"1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein\\\")\\nprint(pages)\\n</code>\\nObservation:\\nNo result found for query \\\"1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein\\\".\\n\\nThought: The query was maybe too restrictive and did not find any results. Let's try again with a broader query.\\n<code>\\npages = web_search(query=\\\"1979 interview Stanislaus Ulam\\\")\\nprint(pages)\\n</code>\\nObservation:\\nFound 6 pages:\\n[Stanislaus Ulam 1979 interview](https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/)\\n\\n[Ulam discusses Manhattan Project](https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/)\\n\\n(truncated)\\n\\nThought: I will read the first 2 pages to know more.\\n<code>\\nfor url in [\\\"https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/\\\", \\\"https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/\\\"]:\\n whole_page = visit_webpage(url)\\n print(whole_page)\\n print(\\\"\\\\n\\\" + \\\"=\\\"*80 + \\\"\\\\n\\\") # Print separator between pages\\n</code>\\nObservation:\\nManhattan Project Locations:\\nLos Alamos, NM\\nStanislaus Ulam was a Polish-American mathematician. He worked on the Manhattan Project at Los Alamos and later helped design the hydrogen bomb. In this interview, he discusses his work at\\n(truncated)\\n\\nThought: I now have the final answer: from the webpages visited, Stanislaus Ulam says of Einstein: \\\"He learned too much mathematics and sort of diminished, it seems to me personally, it seems to me his purely physics creativity.\\\" Let's answer in one word.\\n<code>\\nfinal_answer(\\\"diminished\\\")\\n</code>\\n\\n---\\nTask: \\\"Which city has the highest population: Guangzhou or Shanghai?\\\"\\n\\nThought: I need to get the populations for both cities and compare them: I will use the tool `web_search` to get the population of both cities.\\n<code>\\nfor city in [\\\"Guangzhou\\\", \\\"Shanghai\\\"]:\\n print(f\\\"Population {city}:\\\", web_search(f\\\"{city} population\\\"))\\n</code>\\nObservation:\\nPopulation Guangzhou: ['Guangzhou has a population of 15 million inhabitants as of 2021.']\\nPopulation Shanghai: '26 million (2019)'\\n\\nThought: Now I know that Shanghai has the highest population.\\n<code>\\nfinal_answer(\\\"Shanghai\\\")\\n</code>\\n\\n---\\nTask: \\\"What is the current age of the pope, raised to the power 0.36?\\\"\\n\\nThought: I will use the tool `wikipedia_search` to get the age of the pope, and confirm that with a web search.\\n<code>\\npope_age_wiki = wikipedia_search(query=\\\"current pope age\\\")\\nprint(\\\"Pope age as per wikipedia:\\\", pope_age_wiki)\\npope_age_search = web_search(query=\\\"current pope age\\\")\\nprint(\\\"Pope age as per google search:\\\", pope_age_search)\\n</code>\\nObservation:\\nPope age: \\\"The pope Francis is currently 88 years old.\\\"\\n\\nThought: I know that the pope is 88 years old. Let's compute the result using Python code.\\n<code>\\npope_current_age = 88 ** 0.36\\nfinal_answer(pope_current_age)\\n</code>\\n\\nAbove examples were using notional tools that might not exist for you. On top of performing computations in the Python code snippets that you create, you only have access to these tools, behaving like regular python functions:\\n<code>\\ndef sql_engine(query: string) -> string:\\n \\\"\\\"\\\"Allows you to perform SQL queries on the table. Returns a string representation of the result.\\n The table is named 'receipts'. Its description is as follows:\\n Columns:\\n - receipt_id: INTEGER\\n - customer_name: VARCHAR(16)\\n - price: FLOAT\\n - tip: FLOAT\\n\\n Args:\\n query: The query to perform. This should be correct SQL.\\n \\\"\\\"\\\"\\n\\ndef final_answer(answer: any) -> any:\\n \\\"\\\"\\\"Provides a final answer to the given problem.\\n\\n Args:\\n answer: The final answer to the problem\\n \\\"\\\"\\\"\\n\\n</code>\\n\\nHere are the rules you should always follow to solve your task:\\n1. Always provide a 'Thought:' sequence, and a '<code>' sequence ending with '</code>', else you will fail.\\n2. Use only variables that you have defined!\\n3. Always use the right arguments for the tools. DO NOT pass the arguments as a dict as in 'answer = wikipedia_search({'query': \\\"What is the place where James Bond lives?\\\"})', but use the arguments directly as in 'answer = wikipedia_search(query=\\\"What is the place where James Bond lives?\\\")'.\\n4. For tools WITHOUT JSON output schema: Take care to not chain too many sequential tool calls in the same code block, as their output format is unpredictable. For instance, a call to wikipedia_search without a JSON output schema has an unpredictable return format, so do not have another tool call that depends on its output in the same block: rather output results with print() to use them in the next block.\\n5. For tools WITH JSON output schema: You can confidently chain multiple tool calls and directly access structured output fields in the same code block! When a tool has a JSON output schema, you know exactly what fields and data types to expect, allowing you to write robust code that directly accesses the structured response (e.g., result['field_name']) without needing intermediate print() statements.\\n6. Call a tool only when needed, and never re-do a tool call that you previously did with the exact same parameters.\\n7. Don't name any new variable with the same name as a tool: for instance don't name a variable 'final_answer'.\\n8. Never create any notional variables in our code, as having these in your logs will derail you from the true variables.\\n9. You can use imports in your code, but only from the following list of modules: ['collections', 'datetime', 'itertools', 'math', 'queue', 'random', 're', 'stat', 'statistics', 'time', 'unicodedata']\\n10. The state persists between code executions: so if in one step you've created variables or imported modules, these will all persist.\\n11. Don't give up! You're in charge of solving the task, not providing directions to solve it.\\n\\nNow Begin!\"}]}, {\"role\": \"user\", \"content\": [{\"type\": \"text\", \"text\": \"New task:\\nCan you give me the name of the client who got the most expensive receipt?\"}]}, {\"role\": \"assistant\", \"content\": [{\"type\": \"text\", \"text\": \"Thought: To find the name of the client who had the most expensive receipt, I will perform an SQL query on the `receipts` table to get the row corresponding to the highest price, and then extract the customer's name from that row. The SQL query will use the `MAX()` function to find the maximum price and get the corresponding customer. \\n\\n<code>\\nquery = \\\"\\\"\\\"\\nSELECT customer_name FROM receipts \\nWHERE price = (SELECT MAX(price) FROM receipts)\\n\\\"\\\"\\\"\\nresult = sql_engine(query)\\nprint(result)\\n</code>\\nCalling tools:\\n[{'id': 'call_1', 'type': 'function', 'function': {'name': 'python_interpreter', 'arguments': 'query = \\\"\\\"\\\"\\\\nSELECT customer_name FROM receipts \\\\nWHERE price = (SELECT MAX(price) FROM receipts)\\\\n\\\"\\\"\\\"\\\\nresult = sql_engine(query)\\\\nprint(result)'}}]\"}]}, {\"role\": \"user\", \"content\": [{\"type\": \"text\", \"text\": \"Observation:\\nExecution logs:\\n\\n('Woodrow Wilson',)\\nLast output from code snippet:\\nNone\"}]}], \"model\": \"gpt-4o-mini\", \"stop\": [\"Observation:\", \"Calling tools:\", \"</code>\"]}",
|
|
182
|
-
"input.mime_type": "application/json",
|
|
183
|
-
"output.value": "{\"id\":\"chatcmpl-CgNssvJslGdFZ9IO8ItmltpuBgOvs\",\"choices\":[{\"finish_reason\":\"stop\",\"index\":0,\"logprobs\":null,\"message\":{\"content\":\"Thought: From the execution logs, I can see that the client who had the most expensive receipt is Woodrow Wilson. Now, I will return this answer using the `final_answer` tool. \\n\\n<code>\\nfinal_answer(\\\"Woodrow Wilson\\\")\\n\",\"refusal\":null,\"role\":\"assistant\",\"annotations\":[]}}],\"created\":1764217622,\"model\":\"gpt-4o-mini-2024-07-18\",\"object\":\"chat.completion\",\"service_tier\":\"default\",\"system_fingerprint\":\"fp_560af6e559\",\"usage\":{\"completion_tokens\":53,\"prompt_tokens\":2285,\"total_tokens\":2338,\"completion_tokens_details\":{\"accepted_prediction_tokens\":0,\"audio_tokens\":0,\"reasoning_tokens\":0,\"rejected_prediction_tokens\":0},\"prompt_tokens_details\":{\"audio_tokens\":0,\"cached_tokens\":2048}}}",
|
|
184
|
-
"output.mime_type": "application/json",
|
|
185
|
-
"llm.invocation_parameters": "{\"model\": \"gpt-4o-mini\", \"stop\": [\"Observation:\", \"Calling tools:\", \"</code>\"]}",
|
|
186
|
-
"llm.input_messages.0.message.role": "system",
|
|
187
|
-
"llm.input_messages.0.message.contents.0.message_content.type": "text",
|
|
188
|
-
"llm.input_messages.0.message.contents.0.message_content.text": "You are an expert assistant who can solve any task using code blobs. You will be given a task to solve as best you can.\nTo do so, you have been given access to a list of tools: these tools are basically Python functions which you can call with code.\nTo solve the task, you must plan forward to proceed in a series of steps, in a cycle of Thought, Code, and Observation sequences.\n\nAt each step, in the 'Thought:' sequence, you should first explain your reasoning towards solving the task and the tools that you want to use.\nThen in the Code sequence you should write the code in simple Python. The code sequence must be opened with '<code>', and closed with '</code>'.\nDuring each intermediate step, you can use 'print()' to save whatever important information you will then need.\nThese print outputs will then appear in the 'Observation:' field, which will be available as input for the next step.\nIn the end you have to return a final answer using the `final_answer` tool.\n\nHere are a few examples using notional tools:\n---\nTask: \"Generate an image of the oldest person in this document.\"\n\nThought: I will proceed step by step and use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.\n<code>\nanswer = document_qa(document=document, question=\"Who is the oldest person mentioned?\")\nprint(answer)\n</code>\nObservation: \"The oldest person in the document is John Doe, a 55 year old lumberjack living in Newfoundland.\"\n\nThought: I will now generate an image showcasing the oldest person.\n<code>\nimage = image_generator(\"A portrait of John Doe, a 55-year-old man living in Canada.\")\nfinal_answer(image)\n</code>\n\n---\nTask: \"What is the result of the following operation: 5 + 3 + 1294.678?\"\n\nThought: I will use Python code to compute the result of the operation and then return the final answer using the `final_answer` tool.\n<code>\nresult = 5 + 3 + 1294.678\nfinal_answer(result)\n</code>\n\n---\nTask:\n\"Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French.\nYou have been provided with these additional arguments, that you can access using the keys as variables in your Python code:\n{'question': 'Quel est l'animal sur l'image?', 'image': 'path/to/image.jpg'}\"\n\nThought: I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image.\n<code>\ntranslated_question = translator(question=question, src_lang=\"French\", tgt_lang=\"English\")\nprint(f\"The translated question is {translated_question}.\")\nanswer = image_qa(image=image, question=translated_question)\nfinal_answer(f\"The answer is {answer}\")\n</code>\n\n---\nTask:\nIn a 1979 interview, Stanislaus Ulam discusses with Martin Sherwin about other great physicists of his time, including Oppenheimer.\nWhat does he say was the consequence of Einstein learning too much math on his creativity, in one word?\n\nThought: I need to find and read the 1979 interview of Stanislaus Ulam with Martin Sherwin.\n<code>\npages = web_search(query=\"1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein\")\nprint(pages)\n</code>\nObservation:\nNo result found for query \"1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein\".\n\nThought: The query was maybe too restrictive and did not find any results. Let's try again with a broader query.\n<code>\npages = web_search(query=\"1979 interview Stanislaus Ulam\")\nprint(pages)\n</code>\nObservation:\nFound 6 pages:\n[Stanislaus Ulam 1979 interview](https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/)\n\n[Ulam discusses Manhattan Project](https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/)\n\n(truncated)\n\nThought: I will read the first 2 pages to know more.\n<code>\nfor url in [\"https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/\", \"https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/\"]:\n whole_page = visit_webpage(url)\n print(whole_page)\n print(\"\\n\" + \"=\"*80 + \"\\n\") # Print separator between pages\n</code>\nObservation:\nManhattan Project Locations:\nLos Alamos, NM\nStanislaus Ulam was a Polish-American mathematician. He worked on the Manhattan Project at Los Alamos and later helped design the hydrogen bomb. In this interview, he discusses his work at\n(truncated)\n\nThought: I now have the final answer: from the webpages visited, Stanislaus Ulam says of Einstein: \"He learned too much mathematics and sort of diminished, it seems to me personally, it seems to me his purely physics creativity.\" Let's answer in one word.\n<code>\nfinal_answer(\"diminished\")\n</code>\n\n---\nTask: \"Which city has the highest population: Guangzhou or Shanghai?\"\n\nThought: I need to get the populations for both cities and compare them: I will use the tool `web_search` to get the population of both cities.\n<code>\nfor city in [\"Guangzhou\", \"Shanghai\"]:\n print(f\"Population {city}:\", web_search(f\"{city} population\"))\n</code>\nObservation:\nPopulation Guangzhou: ['Guangzhou has a population of 15 million inhabitants as of 2021.']\nPopulation Shanghai: '26 million (2019)'\n\nThought: Now I know that Shanghai has the highest population.\n<code>\nfinal_answer(\"Shanghai\")\n</code>\n\n---\nTask: \"What is the current age of the pope, raised to the power 0.36?\"\n\nThought: I will use the tool `wikipedia_search` to get the age of the pope, and confirm that with a web search.\n<code>\npope_age_wiki = wikipedia_search(query=\"current pope age\")\nprint(\"Pope age as per wikipedia:\", pope_age_wiki)\npope_age_search = web_search(query=\"current pope age\")\nprint(\"Pope age as per google search:\", pope_age_search)\n</code>\nObservation:\nPope age: \"The pope Francis is currently 88 years old.\"\n\nThought: I know that the pope is 88 years old. Let's compute the result using Python code.\n<code>\npope_current_age = 88 ** 0.36\nfinal_answer(pope_current_age)\n</code>\n\nAbove examples were using notional tools that might not exist for you. On top of performing computations in the Python code snippets that you create, you only have access to these tools, behaving like regular python functions:\n<code>\ndef sql_engine(query: string) -> string:\n \"\"\"Allows you to perform SQL queries on the table. Returns a string representation of the result.\n The table is named 'receipts'. Its description is as follows:\n Columns:\n - receipt_id: INTEGER\n - customer_name: VARCHAR(16)\n - price: FLOAT\n - tip: FLOAT\n\n Args:\n query: The query to perform. This should be correct SQL.\n \"\"\"\n\ndef final_answer(answer: any) -> any:\n \"\"\"Provides a final answer to the given problem.\n\n Args:\n answer: The final answer to the problem\n \"\"\"\n\n</code>\n\nHere are the rules you should always follow to solve your task:\n1. Always provide a 'Thought:' sequence, and a '<code>' sequence ending with '</code>', else you will fail.\n2. Use only variables that you have defined!\n3. Always use the right arguments for the tools. DO NOT pass the arguments as a dict as in 'answer = wikipedia_search({'query': \"What is the place where James Bond lives?\"})', but use the arguments directly as in 'answer = wikipedia_search(query=\"What is the place where James Bond lives?\")'.\n4. For tools WITHOUT JSON output schema: Take care to not chain too many sequential tool calls in the same code block, as their output format is unpredictable. For instance, a call to wikipedia_search without a JSON output schema has an unpredictable return format, so do not have another tool call that depends on its output in the same block: rather output results with print() to use them in the next block.\n5. For tools WITH JSON output schema: You can confidently chain multiple tool calls and directly access structured output fields in the same code block! When a tool has a JSON output schema, you know exactly what fields and data types to expect, allowing you to write robust code that directly accesses the structured response (e.g., result['field_name']) without needing intermediate print() statements.\n6. Call a tool only when needed, and never re-do a tool call that you previously did with the exact same parameters.\n7. Don't name any new variable with the same name as a tool: for instance don't name a variable 'final_answer'.\n8. Never create any notional variables in our code, as having these in your logs will derail you from the true variables.\n9. You can use imports in your code, but only from the following list of modules: ['collections', 'datetime', 'itertools', 'math', 'queue', 'random', 're', 'stat', 'statistics', 'time', 'unicodedata']\n10. The state persists between code executions: so if in one step you've created variables or imported modules, these will all persist.\n11. Don't give up! You're in charge of solving the task, not providing directions to solve it.\n\nNow Begin!",
|
|
189
|
-
"llm.input_messages.1.message.role": "user",
|
|
190
|
-
"llm.input_messages.1.message.contents.0.message_content.type": "text",
|
|
191
|
-
"llm.input_messages.1.message.contents.0.message_content.text": "New task:\nCan you give me the name of the client who got the most expensive receipt?",
|
|
192
|
-
"llm.input_messages.2.message.role": "assistant",
|
|
193
|
-
"llm.input_messages.2.message.contents.0.message_content.type": "text",
|
|
194
|
-
"llm.input_messages.2.message.contents.0.message_content.text": "Thought: To find the name of the client who had the most expensive receipt, I will perform an SQL query on the `receipts` table to get the row corresponding to the highest price, and then extract the customer's name from that row. The SQL query will use the `MAX()` function to find the maximum price and get the corresponding customer. \n\n<code>\nquery = \"\"\"\nSELECT customer_name FROM receipts \nWHERE price = (SELECT MAX(price) FROM receipts)\n\"\"\"\nresult = sql_engine(query)\nprint(result)\n</code>\nCalling tools:\n[{'id': 'call_1', 'type': 'function', 'function': {'name': 'python_interpreter', 'arguments': 'query = \"\"\"\\nSELECT customer_name FROM receipts \\nWHERE price = (SELECT MAX(price) FROM receipts)\\n\"\"\"\\nresult = sql_engine(query)\\nprint(result)'}}]",
|
|
195
|
-
"llm.input_messages.3.message.role": "user",
|
|
196
|
-
"llm.input_messages.3.message.contents.0.message_content.type": "text",
|
|
197
|
-
"llm.input_messages.3.message.contents.0.message_content.text": "Observation:\nExecution logs:\n\n('Woodrow Wilson',)\nLast output from code snippet:\nNone",
|
|
198
|
-
"llm.model_name": "gpt-4o-mini-2024-07-18",
|
|
199
|
-
"llm.token_count.total": 2338,
|
|
200
|
-
"llm.token_count.prompt": 2285,
|
|
201
|
-
"llm.token_count.completion": 53,
|
|
202
|
-
"llm.token_count.prompt_details.cache_read": 2048,
|
|
203
|
-
"llm.token_count.prompt_details.audio": 0,
|
|
204
|
-
"llm.token_count.completion_details.reasoning": 0,
|
|
205
|
-
"llm.token_count.completion_details.audio": 0,
|
|
206
|
-
"llm.output_messages.0.message.role": "assistant",
|
|
207
|
-
"llm.output_messages.0.message.content": "Thought: From the execution logs, I can see that the client who had the most expensive receipt is Woodrow Wilson. Now, I will return this answer using the `final_answer` tool. \n\n<code>\nfinal_answer(\"Woodrow Wilson\")\n",
|
|
208
|
-
"openinference.span.kind": "LLM"
|
|
209
|
-
},
|
|
210
|
-
"events": [],
|
|
211
|
-
"links": [],
|
|
212
|
-
"resource": {
|
|
213
|
-
"attributes": {
|
|
214
|
-
"telemetry.sdk.language": "python",
|
|
215
|
-
"telemetry.sdk.name": "opentelemetry",
|
|
216
|
-
"telemetry.sdk.version": "1.38.0",
|
|
217
|
-
"service.name": "unknown_service"
|
|
218
|
-
},
|
|
219
|
-
"schema_url": ""
|
|
220
|
-
}
|
|
221
|
-
},
|
|
222
|
-
{
|
|
223
|
-
"name": "OpenAIModel.generate",
|
|
224
|
-
"context": {
|
|
225
|
-
"trace_id": "0x5cd2cd8c7e880aab44212453209318ca",
|
|
226
|
-
"span_id": "0x2af3edeb708667af",
|
|
227
|
-
"trace_state": "[]"
|
|
228
|
-
},
|
|
229
|
-
"kind": "SpanKind.INTERNAL",
|
|
230
|
-
"parent_id": "0xfa2bb211b0e7d6b8",
|
|
231
|
-
"start_time": "2025-11-27T04:27:02.678523Z",
|
|
232
|
-
"end_time": "2025-11-27T04:27:04.102533Z",
|
|
233
|
-
"status": {
|
|
234
|
-
"status_code": "OK"
|
|
235
|
-
},
|
|
236
|
-
"attributes": {
|
|
237
|
-
"input.mime_type": "application/json",
|
|
238
|
-
"input.value": "{\"messages\": [\"ChatMessage(role=<MessageRole.SYSTEM: 'system'>, content=[{'type': 'text', 'text': 'You are an expert assistant who can solve any task using code blobs. You will be given a task to solve as best you can.\\\\nTo do so, you have been given access to a list of tools: these tools are basically Python functions which you can call with code.\\\\nTo solve the task, you must plan forward to proceed in a series of steps, in a cycle of Thought, Code, and Observation sequences.\\\\n\\\\nAt each step, in the \\\\'Thought:\\\\' sequence, you should first explain your reasoning towards solving the task and the tools that you want to use.\\\\nThen in the Code sequence you should write the code in simple Python. The code sequence must be opened with \\\\'<code>\\\\', and closed with \\\\'</code>\\\\'.\\\\nDuring each intermediate step, you can use \\\\'print()\\\\' to save whatever important information you will then need.\\\\nThese print outputs will then appear in the \\\\'Observation:\\\\' field, which will be available as input for the next step.\\\\nIn the end you have to return a final answer using the `final_answer` tool.\\\\n\\\\nHere are a few examples using notional tools:\\\\n---\\\\nTask: \\\"Generate an image of the oldest person in this document.\\\"\\\\n\\\\nThought: I will proceed step by step and use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.\\\\n<code>\\\\nanswer = document_qa(document=document, question=\\\"Who is the oldest person mentioned?\\\")\\\\nprint(answer)\\\\n</code>\\\\nObservation: \\\"The oldest person in the document is John Doe, a 55 year old lumberjack living in Newfoundland.\\\"\\\\n\\\\nThought: I will now generate an image showcasing the oldest person.\\\\n<code>\\\\nimage = image_generator(\\\"A portrait of John Doe, a 55-year-old man living in Canada.\\\")\\\\nfinal_answer(image)\\\\n</code>\\\\n\\\\n---\\\\nTask: \\\"What is the result of the following operation: 5 + 3 + 1294.678?\\\"\\\\n\\\\nThought: I will use Python code to compute the result of the operation and then return the final answer using the `final_answer` tool.\\\\n<code>\\\\nresult = 5 + 3 + 1294.678\\\\nfinal_answer(result)\\\\n</code>\\\\n\\\\n---\\\\nTask:\\\\n\\\"Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French.\\\\nYou have been provided with these additional arguments, that you can access using the keys as variables in your Python code:\\\\n{\\\\'question\\\\': \\\\'Quel est l\\\\'animal sur l\\\\'image?\\\\', \\\\'image\\\\': \\\\'path/to/image.jpg\\\\'}\\\"\\\\n\\\\nThought: I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image.\\\\n<code>\\\\ntranslated_question = translator(question=question, src_lang=\\\"French\\\", tgt_lang=\\\"English\\\")\\\\nprint(f\\\"The translated question is {translated_question}.\\\")\\\\nanswer = image_qa(image=image, question=translated_question)\\\\nfinal_answer(f\\\"The answer is {answer}\\\")\\\\n</code>\\\\n\\\\n---\\\\nTask:\\\\nIn a 1979 interview, Stanislaus Ulam discusses with Martin Sherwin about other great physicists of his time, including Oppenheimer.\\\\nWhat does he say was the consequence of Einstein learning too much math on his creativity, in one word?\\\\n\\\\nThought: I need to find and read the 1979 interview of Stanislaus Ulam with Martin Sherwin.\\\\n<code>\\\\npages = web_search(query=\\\"1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein\\\")\\\\nprint(pages)\\\\n</code>\\\\nObservation:\\\\nNo result found for query \\\"1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein\\\".\\\\n\\\\nThought: The query was maybe too restrictive and did not find any results. Let\\\\'s try again with a broader query.\\\\n<code>\\\\npages = web_search(query=\\\"1979 interview Stanislaus Ulam\\\")\\\\nprint(pages)\\\\n</code>\\\\nObservation:\\\\nFound 6 pages:\\\\n[Stanislaus Ulam 1979 interview](https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/)\\\\n\\\\n[Ulam discusses Manhattan Project](https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/)\\\\n\\\\n(truncated)\\\\n\\\\nThought: I will read the first 2 pages to know more.\\\\n<code>\\\\nfor url in [\\\"https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/\\\", \\\"https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/\\\"]:\\\\n whole_page = visit_webpage(url)\\\\n print(whole_page)\\\\n print(\\\"\\\\\\\\n\\\" + \\\"=\\\"*80 + \\\"\\\\\\\\n\\\") # Print separator between pages\\\\n</code>\\\\nObservation:\\\\nManhattan Project Locations:\\\\nLos Alamos, NM\\\\nStanislaus Ulam was a Polish-American mathematician. He worked on the Manhattan Project at Los Alamos and later helped design the hydrogen bomb. In this interview, he discusses his work at\\\\n(truncated)\\\\n\\\\nThought: I now have the final answer: from the webpages visited, Stanislaus Ulam says of Einstein: \\\"He learned too much mathematics and sort of diminished, it seems to me personally, it seems to me his purely physics creativity.\\\" Let\\\\'s answer in one word.\\\\n<code>\\\\nfinal_answer(\\\"diminished\\\")\\\\n</code>\\\\n\\\\n---\\\\nTask: \\\"Which city has the highest population: Guangzhou or Shanghai?\\\"\\\\n\\\\nThought: I need to get the populations for both cities and compare them: I will use the tool `web_search` to get the population of both cities.\\\\n<code>\\\\nfor city in [\\\"Guangzhou\\\", \\\"Shanghai\\\"]:\\\\n print(f\\\"Population {city}:\\\", web_search(f\\\"{city} population\\\"))\\\\n</code>\\\\nObservation:\\\\nPopulation Guangzhou: [\\\\'Guangzhou has a population of 15 million inhabitants as of 2021.\\\\']\\\\nPopulation Shanghai: \\\\'26 million (2019)\\\\'\\\\n\\\\nThought: Now I know that Shanghai has the highest population.\\\\n<code>\\\\nfinal_answer(\\\"Shanghai\\\")\\\\n</code>\\\\n\\\\n---\\\\nTask: \\\"What is the current age of the pope, raised to the power 0.36?\\\"\\\\n\\\\nThought: I will use the tool `wikipedia_search` to get the age of the pope, and confirm that with a web search.\\\\n<code>\\\\npope_age_wiki = wikipedia_search(query=\\\"current pope age\\\")\\\\nprint(\\\"Pope age as per wikipedia:\\\", pope_age_wiki)\\\\npope_age_search = web_search(query=\\\"current pope age\\\")\\\\nprint(\\\"Pope age as per google search:\\\", pope_age_search)\\\\n</code>\\\\nObservation:\\\\nPope age: \\\"The pope Francis is currently 88 years old.\\\"\\\\n\\\\nThought: I know that the pope is 88 years old. Let\\\\'s compute the result using Python code.\\\\n<code>\\\\npope_current_age = 88 ** 0.36\\\\nfinal_answer(pope_current_age)\\\\n</code>\\\\n\\\\nAbove examples were using notional tools that might not exist for you. On top of performing computations in the Python code snippets that you create, you only have access to these tools, behaving like regular python functions:\\\\n<code>\\\\ndef sql_engine(query: string) -> string:\\\\n \\\"\\\"\\\"Allows you to perform SQL queries on the table. Returns a string representation of the result.\\\\n The table is named \\\\'receipts\\\\'. Its description is as follows:\\\\n Columns:\\\\n - receipt_id: INTEGER\\\\n - customer_name: VARCHAR(16)\\\\n - price: FLOAT\\\\n - tip: FLOAT\\\\n\\\\n Args:\\\\n query: The query to perform. This should be correct SQL.\\\\n \\\"\\\"\\\"\\\\n\\\\ndef final_answer(answer: any) -> any:\\\\n \\\"\\\"\\\"Provides a final answer to the given problem.\\\\n\\\\n Args:\\\\n answer: The final answer to the problem\\\\n \\\"\\\"\\\"\\\\n\\\\n</code>\\\\n\\\\nHere are the rules you should always follow to solve your task:\\\\n1. Always provide a \\\\'Thought:\\\\' sequence, and a \\\\'<code>\\\\' sequence ending with \\\\'</code>\\\\', else you will fail.\\\\n2. Use only variables that you have defined!\\\\n3. Always use the right arguments for the tools. DO NOT pass the arguments as a dict as in \\\\'answer = wikipedia_search({\\\\'query\\\\': \\\"What is the place where James Bond lives?\\\"})\\\\', but use the arguments directly as in \\\\'answer = wikipedia_search(query=\\\"What is the place where James Bond lives?\\\")\\\\'.\\\\n4. For tools WITHOUT JSON output schema: Take care to not chain too many sequential tool calls in the same code block, as their output format is unpredictable. For instance, a call to wikipedia_search without a JSON output schema has an unpredictable return format, so do not have another tool call that depends on its output in the same block: rather output results with print() to use them in the next block.\\\\n5. For tools WITH JSON output schema: You can confidently chain multiple tool calls and directly access structured output fields in the same code block! When a tool has a JSON output schema, you know exactly what fields and data types to expect, allowing you to write robust code that directly accesses the structured response (e.g., result[\\\\'field_name\\\\']) without needing intermediate print() statements.\\\\n6. Call a tool only when needed, and never re-do a tool call that you previously did with the exact same parameters.\\\\n7. Don\\\\'t name any new variable with the same name as a tool: for instance don\\\\'t name a variable \\\\'final_answer\\\\'.\\\\n8. Never create any notional variables in our code, as having these in your logs will derail you from the true variables.\\\\n9. You can use imports in your code, but only from the following list of modules: [\\\\'collections\\\\', \\\\'datetime\\\\', \\\\'itertools\\\\', \\\\'math\\\\', \\\\'queue\\\\', \\\\'random\\\\', \\\\'re\\\\', \\\\'stat\\\\', \\\\'statistics\\\\', \\\\'time\\\\', \\\\'unicodedata\\\\']\\\\n10. The state persists between code executions: so if in one step you\\\\'ve created variables or imported modules, these will all persist.\\\\n11. Don\\\\'t give up! You\\\\'re in charge of solving the task, not providing directions to solve it.\\\\n\\\\nNow Begin!'}], tool_calls=None, raw=None, token_usage=None)\", \"ChatMessage(role=<MessageRole.USER: 'user'>, content=[{'type': 'text', 'text': 'New task:\\\\nCan you give me the name of the client who got the most expensive receipt?'}], tool_calls=None, raw=None, token_usage=None)\", \"ChatMessage(role=<MessageRole.ASSISTANT: 'assistant'>, content=[{'type': 'text', 'text': 'Thought: To find the name of the client who had the most expensive receipt, I will perform an SQL query on the `receipts` table to get the row corresponding to the highest price, and then extract the customer\\\\'s name from that row. The SQL query will use the `MAX()` function to find the maximum price and get the corresponding customer. \\\\n\\\\n<code>\\\\nquery = \\\"\\\"\\\"\\\\nSELECT customer_name FROM receipts \\\\nWHERE price = (SELECT MAX(price) FROM receipts)\\\\n\\\"\\\"\\\"\\\\nresult = sql_engine(query)\\\\nprint(result)\\\\n</code>'}], tool_calls=None, raw=None, token_usage=None)\", \"ChatMessage(role=<MessageRole.TOOL_CALL: 'tool-call'>, content=[{'type': 'text', 'text': 'Calling tools:\\\\n[{\\\\'id\\\\': \\\\'call_1\\\\', \\\\'type\\\\': \\\\'function\\\\', \\\\'function\\\\': {\\\\'name\\\\': \\\\'python_interpreter\\\\', \\\\'arguments\\\\': \\\\'query = \\\"\\\"\\\"\\\\\\\\nSELECT customer_name FROM receipts \\\\\\\\nWHERE price = (SELECT MAX(price) FROM receipts)\\\\\\\\n\\\"\\\"\\\"\\\\\\\\nresult = sql_engine(query)\\\\\\\\nprint(result)\\\\'}}]'}], tool_calls=None, raw=None, token_usage=None)\", \"ChatMessage(role=<MessageRole.TOOL_RESPONSE: 'tool-response'>, content=[{'type': 'text', 'text': \\\"Observation:\\\\nExecution logs:\\\\n\\\\n('Woodrow Wilson',)\\\\nLast output from code snippet:\\\\nNone\\\"}], tool_calls=None, raw=None, token_usage=None)\"], \"stop_sequences\": [\"Observation:\", \"Calling tools:\", \"</code>\"], \"response_format\": null, \"tools_to_call_from\": null, \"kwargs\": {}}",
|
|
239
|
-
"llm.invocation_parameters": "{}",
|
|
240
|
-
"llm.token_count.prompt": 2285,
|
|
241
|
-
"llm.token_count.completion": 53,
|
|
242
|
-
"llm.token_count.total": 2338,
|
|
243
|
-
"llm.model_name": "gpt-4o-mini",
|
|
244
|
-
"llm.output_messages.0.message.role": "assistant",
|
|
245
|
-
"llm.output_messages.0.message.contents.0.message_content.type": "text",
|
|
246
|
-
"llm.output_messages.0.message.contents.0.message_content.text": "Thought: From the execution logs, I can see that the client who had the most expensive receipt is Woodrow Wilson. Now, I will return this answer using the `final_answer` tool. \n\n<code>\nfinal_answer(\"Woodrow Wilson\")\n",
|
|
247
|
-
"output.mime_type": "application/json",
|
|
248
|
-
"output.value": "{\"role\": \"assistant\", \"content\": \"Thought: From the execution logs, I can see that the client who had the most expensive receipt is Woodrow Wilson. Now, I will return this answer using the `final_answer` tool. \\n\\n<code>\\nfinal_answer(\\\"Woodrow Wilson\\\")\\n\", \"tool_calls\": null, \"token_usage\": {\"input_tokens\": 2285, \"output_tokens\": 53, \"total_tokens\": 2338}}",
|
|
249
|
-
"openinference.span.kind": "LLM"
|
|
250
|
-
},
|
|
251
|
-
"events": [],
|
|
252
|
-
"links": [],
|
|
253
|
-
"resource": {
|
|
254
|
-
"attributes": {
|
|
255
|
-
"telemetry.sdk.language": "python",
|
|
256
|
-
"telemetry.sdk.name": "opentelemetry",
|
|
257
|
-
"telemetry.sdk.version": "1.38.0",
|
|
258
|
-
"service.name": "unknown_service"
|
|
259
|
-
},
|
|
260
|
-
"schema_url": ""
|
|
261
|
-
}
|
|
262
|
-
},
|
|
263
|
-
{
|
|
264
|
-
"name": "FinalAnswerTool",
|
|
265
|
-
"context": {
|
|
266
|
-
"trace_id": "0x5cd2cd8c7e880aab44212453209318ca",
|
|
267
|
-
"span_id": "0x85cd593f8ac9cd20",
|
|
268
|
-
"trace_state": "[]"
|
|
269
|
-
},
|
|
270
|
-
"kind": "SpanKind.INTERNAL",
|
|
271
|
-
"parent_id": "0xfa2bb211b0e7d6b8",
|
|
272
|
-
"start_time": "2025-11-27T04:27:04.103135Z",
|
|
273
|
-
"end_time": "2025-11-27T04:27:04.103159Z",
|
|
274
|
-
"status": {
|
|
275
|
-
"status_code": "OK"
|
|
276
|
-
},
|
|
277
|
-
"attributes": {
|
|
278
|
-
"input.value": "{\"args\": [\"Woodrow Wilson\"], \"sanitize_inputs_outputs\": false, \"kwargs\": {}}",
|
|
279
|
-
"tool.name": "final_answer",
|
|
280
|
-
"tool.description": "Provides a final answer to the given problem.",
|
|
281
|
-
"tool.parameters": "{\"answer\": {\"type\": \"any\", \"description\": \"The final answer to the problem\"}}",
|
|
282
|
-
"output.value": "Woodrow Wilson",
|
|
283
|
-
"output.mime_type": "text/plain",
|
|
284
|
-
"openinference.span.kind": "TOOL"
|
|
285
|
-
},
|
|
286
|
-
"events": [],
|
|
287
|
-
"links": [],
|
|
288
|
-
"resource": {
|
|
289
|
-
"attributes": {
|
|
290
|
-
"telemetry.sdk.language": "python",
|
|
291
|
-
"telemetry.sdk.name": "opentelemetry",
|
|
292
|
-
"telemetry.sdk.version": "1.38.0",
|
|
293
|
-
"service.name": "unknown_service"
|
|
294
|
-
},
|
|
295
|
-
"schema_url": ""
|
|
296
|
-
}
|
|
297
|
-
},
|
|
298
|
-
{
|
|
299
|
-
"name": "Step 2",
|
|
300
|
-
"context": {
|
|
301
|
-
"trace_id": "0x5cd2cd8c7e880aab44212453209318ca",
|
|
302
|
-
"span_id": "0xfa2bb211b0e7d6b8",
|
|
303
|
-
"trace_state": "[]"
|
|
304
|
-
},
|
|
305
|
-
"kind": "SpanKind.INTERNAL",
|
|
306
|
-
"parent_id": "0xaf16f5039167b5da",
|
|
307
|
-
"start_time": "2025-11-27T04:27:02.678342Z",
|
|
308
|
-
"end_time": "2025-11-27T04:27:04.103286Z",
|
|
309
|
-
"status": {
|
|
310
|
-
"status_code": "OK"
|
|
311
|
-
},
|
|
312
|
-
"attributes": {
|
|
313
|
-
"input.value": "{\"memory_step\": \"ActionStep(step_number=2, timing=Timing(start_time=1764217622.678127, end_time=None, duration=None), model_input_messages=None, tool_calls=None, error=None, model_output_message=None, model_output=None, code_action=None, observations=None, observations_images=None, action_output=None, token_usage=None, is_final_answer=False)\"}",
|
|
314
|
-
"output.value": "Execution logs:\nLast output from code snippet:\nWoodrow Wilson",
|
|
315
|
-
"openinference.span.kind": "CHAIN"
|
|
316
|
-
},
|
|
317
|
-
"events": [],
|
|
318
|
-
"links": [],
|
|
319
|
-
"resource": {
|
|
320
|
-
"attributes": {
|
|
321
|
-
"telemetry.sdk.language": "python",
|
|
322
|
-
"telemetry.sdk.name": "opentelemetry",
|
|
323
|
-
"telemetry.sdk.version": "1.38.0",
|
|
324
|
-
"service.name": "unknown_service"
|
|
325
|
-
},
|
|
326
|
-
"schema_url": ""
|
|
327
|
-
}
|
|
328
|
-
},
|
|
329
|
-
{
|
|
330
|
-
"name": "CodeAgent.run",
|
|
331
|
-
"context": {
|
|
332
|
-
"trace_id": "0x5cd2cd8c7e880aab44212453209318ca",
|
|
333
|
-
"span_id": "0xaf16f5039167b5da",
|
|
334
|
-
"trace_state": "[]"
|
|
335
|
-
},
|
|
336
|
-
"kind": "SpanKind.INTERNAL",
|
|
337
|
-
"parent_id": "0x87d671bc6348c898",
|
|
338
|
-
"start_time": "2025-11-27T04:26:59.124412Z",
|
|
339
|
-
"end_time": "2025-11-27T04:27:04.103420Z",
|
|
340
|
-
"status": {
|
|
341
|
-
"status_code": "OK"
|
|
342
|
-
},
|
|
343
|
-
"attributes": {
|
|
344
|
-
"input.value": "{\"task\": \"Can you give me the name of the client who got the most expensive receipt?\", \"stream\": false, \"reset\": true, \"images\": null, \"additional_args\": null, \"max_steps\": null, \"return_full_result\": null}",
|
|
345
|
-
"smolagents.max_steps": 20,
|
|
346
|
-
"smolagents.tools_names": [
|
|
347
|
-
"sql_engine",
|
|
348
|
-
"final_answer"
|
|
349
|
-
],
|
|
350
|
-
"output.value": "Woodrow Wilson",
|
|
351
|
-
"llm.token_count.prompt": 4365,
|
|
352
|
-
"llm.token_count.completion": 160,
|
|
353
|
-
"llm.token_count.total": 4525,
|
|
354
|
-
"openinference.span.kind": "AGENT"
|
|
355
|
-
},
|
|
356
|
-
"events": [],
|
|
357
|
-
"links": [],
|
|
358
|
-
"resource": {
|
|
359
|
-
"attributes": {
|
|
360
|
-
"telemetry.sdk.language": "python",
|
|
361
|
-
"telemetry.sdk.name": "opentelemetry",
|
|
362
|
-
"telemetry.sdk.version": "1.38.0",
|
|
363
|
-
"service.name": "unknown_service"
|
|
364
|
-
},
|
|
365
|
-
"schema_url": ""
|
|
366
|
-
}
|
|
367
|
-
},
|
|
368
|
-
{
|
|
369
|
-
"name": "quraite/testcase-1",
|
|
370
|
-
"context": {
|
|
371
|
-
"trace_id": "0x5cd2cd8c7e880aab44212453209318ca",
|
|
372
|
-
"span_id": "0x87d671bc6348c898",
|
|
373
|
-
"trace_state": "[]"
|
|
374
|
-
},
|
|
375
|
-
"kind": "SpanKind.INTERNAL",
|
|
376
|
-
"parent_id": null,
|
|
377
|
-
"start_time": "2025-11-27T04:26:59.124176Z",
|
|
378
|
-
"end_time": "2025-11-27T04:27:04.103439Z",
|
|
379
|
-
"status": {
|
|
380
|
-
"status_code": "UNSET"
|
|
381
|
-
},
|
|
382
|
-
"attributes": {},
|
|
383
|
-
"events": [],
|
|
384
|
-
"links": [],
|
|
385
|
-
"resource": {
|
|
386
|
-
"attributes": {
|
|
387
|
-
"telemetry.sdk.language": "python",
|
|
388
|
-
"telemetry.sdk.name": "opentelemetry",
|
|
389
|
-
"telemetry.sdk.version": "1.38.0",
|
|
390
|
-
"service.name": "unknown_service"
|
|
391
|
-
},
|
|
392
|
-
"schema_url": ""
|
|
393
|
-
}
|
|
394
|
-
}
|
|
395
|
-
]
|
|
396
|
-
}
|
|
397
|
-
]
|