python-doctr 0.8.0__py3-none-any.whl → 0.9.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (85) hide show
  1. doctr/__init__.py +1 -1
  2. doctr/contrib/__init__.py +0 -0
  3. doctr/contrib/artefacts.py +131 -0
  4. doctr/contrib/base.py +105 -0
  5. doctr/datasets/datasets/pytorch.py +2 -2
  6. doctr/datasets/generator/base.py +6 -5
  7. doctr/datasets/imgur5k.py +1 -1
  8. doctr/datasets/loader.py +1 -6
  9. doctr/datasets/utils.py +2 -1
  10. doctr/datasets/vocabs.py +9 -2
  11. doctr/file_utils.py +26 -12
  12. doctr/io/elements.py +40 -6
  13. doctr/io/html.py +2 -2
  14. doctr/io/image/pytorch.py +6 -8
  15. doctr/io/image/tensorflow.py +1 -1
  16. doctr/io/pdf.py +5 -2
  17. doctr/io/reader.py +6 -0
  18. doctr/models/__init__.py +0 -1
  19. doctr/models/_utils.py +57 -20
  20. doctr/models/builder.py +71 -13
  21. doctr/models/classification/mobilenet/pytorch.py +45 -9
  22. doctr/models/classification/mobilenet/tensorflow.py +38 -7
  23. doctr/models/classification/predictor/pytorch.py +18 -11
  24. doctr/models/classification/predictor/tensorflow.py +16 -10
  25. doctr/models/classification/textnet/pytorch.py +3 -3
  26. doctr/models/classification/textnet/tensorflow.py +3 -3
  27. doctr/models/classification/zoo.py +39 -15
  28. doctr/models/detection/__init__.py +1 -0
  29. doctr/models/detection/_utils/__init__.py +1 -0
  30. doctr/models/detection/_utils/base.py +66 -0
  31. doctr/models/detection/differentiable_binarization/base.py +4 -3
  32. doctr/models/detection/differentiable_binarization/pytorch.py +2 -2
  33. doctr/models/detection/differentiable_binarization/tensorflow.py +14 -18
  34. doctr/models/detection/fast/__init__.py +6 -0
  35. doctr/models/detection/fast/base.py +257 -0
  36. doctr/models/detection/fast/pytorch.py +442 -0
  37. doctr/models/detection/fast/tensorflow.py +428 -0
  38. doctr/models/detection/linknet/base.py +4 -3
  39. doctr/models/detection/predictor/pytorch.py +15 -1
  40. doctr/models/detection/predictor/tensorflow.py +15 -1
  41. doctr/models/detection/zoo.py +21 -4
  42. doctr/models/factory/hub.py +3 -12
  43. doctr/models/kie_predictor/base.py +9 -3
  44. doctr/models/kie_predictor/pytorch.py +41 -20
  45. doctr/models/kie_predictor/tensorflow.py +36 -16
  46. doctr/models/modules/layers/pytorch.py +89 -10
  47. doctr/models/modules/layers/tensorflow.py +88 -10
  48. doctr/models/modules/transformer/pytorch.py +2 -2
  49. doctr/models/predictor/base.py +77 -50
  50. doctr/models/predictor/pytorch.py +31 -20
  51. doctr/models/predictor/tensorflow.py +27 -17
  52. doctr/models/preprocessor/pytorch.py +4 -4
  53. doctr/models/preprocessor/tensorflow.py +3 -2
  54. doctr/models/recognition/master/pytorch.py +2 -2
  55. doctr/models/recognition/parseq/pytorch.py +4 -3
  56. doctr/models/recognition/parseq/tensorflow.py +4 -3
  57. doctr/models/recognition/sar/pytorch.py +7 -6
  58. doctr/models/recognition/sar/tensorflow.py +3 -9
  59. doctr/models/recognition/vitstr/pytorch.py +1 -1
  60. doctr/models/recognition/zoo.py +1 -1
  61. doctr/models/zoo.py +2 -2
  62. doctr/py.typed +0 -0
  63. doctr/transforms/functional/base.py +1 -1
  64. doctr/transforms/functional/pytorch.py +4 -4
  65. doctr/transforms/modules/base.py +37 -15
  66. doctr/transforms/modules/pytorch.py +66 -8
  67. doctr/transforms/modules/tensorflow.py +63 -7
  68. doctr/utils/fonts.py +7 -5
  69. doctr/utils/geometry.py +35 -12
  70. doctr/utils/metrics.py +33 -174
  71. doctr/utils/reconstitution.py +126 -0
  72. doctr/utils/visualization.py +5 -118
  73. doctr/version.py +1 -1
  74. {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/METADATA +96 -91
  75. {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/RECORD +79 -75
  76. {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/WHEEL +1 -1
  77. doctr/models/artefacts/__init__.py +0 -2
  78. doctr/models/artefacts/barcode.py +0 -74
  79. doctr/models/artefacts/face.py +0 -63
  80. doctr/models/obj_detection/__init__.py +0 -1
  81. doctr/models/obj_detection/faster_rcnn/__init__.py +0 -4
  82. doctr/models/obj_detection/faster_rcnn/pytorch.py +0 -81
  83. {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/LICENSE +0 -0
  84. {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/top_level.txt +0 -0
  85. {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/zip-safe +0 -0
@@ -3,16 +3,16 @@
3
3
  # This program is licensed under the Apache License 2.0.
4
4
  # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
5
5
 
6
- from typing import Any, Callable, List, Optional, Tuple
6
+ from typing import Any, Callable, Dict, List, Optional, Tuple
7
7
 
8
8
  import numpy as np
9
9
 
10
10
  from doctr.models.builder import DocumentBuilder
11
- from doctr.utils.geometry import extract_crops, extract_rcrops
11
+ from doctr.utils.geometry import extract_crops, extract_rcrops, rotate_image
12
12
 
13
- from .._utils import rectify_crops, rectify_loc_preds
14
- from ..classification import crop_orientation_predictor
15
- from ..classification.predictor import CropOrientationPredictor
13
+ from .._utils import estimate_orientation, rectify_crops, rectify_loc_preds
14
+ from ..classification import crop_orientation_predictor, page_orientation_predictor
15
+ from ..classification.predictor import OrientationPredictor
16
16
 
17
17
  __all__ = ["_OCRPredictor"]
18
18
 
@@ -29,10 +29,13 @@ class _OCRPredictor:
29
29
  accordingly. Doing so will improve performances for documents with page-uniform rotations.
30
30
  preserve_aspect_ratio: if True, resize preserving the aspect ratio (with padding)
31
31
  symmetric_pad: if True and preserve_aspect_ratio is True, pas the image symmetrically.
32
+ detect_orientation: if True, the estimated general page orientation will be added to the predictions for each
33
+ page. Doing so will slightly deteriorate the overall latency.
32
34
  **kwargs: keyword args of `DocumentBuilder`
33
35
  """
34
36
 
35
- crop_orientation_predictor: Optional[CropOrientationPredictor]
37
+ crop_orientation_predictor: Optional[OrientationPredictor]
38
+ page_orientation_predictor: Optional[OrientationPredictor]
36
39
 
37
40
  def __init__(
38
41
  self,
@@ -40,16 +43,69 @@ class _OCRPredictor:
40
43
  straighten_pages: bool = False,
41
44
  preserve_aspect_ratio: bool = True,
42
45
  symmetric_pad: bool = True,
46
+ detect_orientation: bool = False,
43
47
  **kwargs: Any,
44
48
  ) -> None:
45
49
  self.assume_straight_pages = assume_straight_pages
46
50
  self.straighten_pages = straighten_pages
47
51
  self.crop_orientation_predictor = None if assume_straight_pages else crop_orientation_predictor(pretrained=True)
52
+ self.page_orientation_predictor = (
53
+ page_orientation_predictor(pretrained=True)
54
+ if detect_orientation or straighten_pages or not assume_straight_pages
55
+ else None
56
+ )
48
57
  self.doc_builder = DocumentBuilder(**kwargs)
49
58
  self.preserve_aspect_ratio = preserve_aspect_ratio
50
59
  self.symmetric_pad = symmetric_pad
51
60
  self.hooks: List[Callable] = []
52
61
 
62
+ def _general_page_orientations(
63
+ self,
64
+ pages: List[np.ndarray],
65
+ ) -> List[Tuple[int, float]]:
66
+ _, classes, probs = zip(self.page_orientation_predictor(pages)) # type: ignore[misc]
67
+ # Flatten to list of tuples with (value, confidence)
68
+ page_orientations = [
69
+ (orientation, prob)
70
+ for page_classes, page_probs in zip(classes, probs)
71
+ for orientation, prob in zip(page_classes, page_probs)
72
+ ]
73
+ return page_orientations
74
+
75
+ def _get_orientations(
76
+ self, pages: List[np.ndarray], seg_maps: List[np.ndarray]
77
+ ) -> Tuple[List[Tuple[int, float]], List[int]]:
78
+ general_pages_orientations = self._general_page_orientations(pages)
79
+ origin_page_orientations = [
80
+ estimate_orientation(seq_map, general_orientation)
81
+ for seq_map, general_orientation in zip(seg_maps, general_pages_orientations)
82
+ ]
83
+ return general_pages_orientations, origin_page_orientations
84
+
85
+ def _straighten_pages(
86
+ self,
87
+ pages: List[np.ndarray],
88
+ seg_maps: List[np.ndarray],
89
+ general_pages_orientations: Optional[List[Tuple[int, float]]] = None,
90
+ origin_pages_orientations: Optional[List[int]] = None,
91
+ ) -> List[np.ndarray]:
92
+ general_pages_orientations = (
93
+ general_pages_orientations if general_pages_orientations else self._general_page_orientations(pages)
94
+ )
95
+ origin_pages_orientations = (
96
+ origin_pages_orientations
97
+ if origin_pages_orientations
98
+ else [
99
+ estimate_orientation(seq_map, general_orientation)
100
+ for seq_map, general_orientation in zip(seg_maps, general_pages_orientations)
101
+ ]
102
+ )
103
+ return [
104
+ # We exapnd if the page is wider than tall and the angle is 90 or -90
105
+ rotate_image(page, angle, expand=page.shape[1] > page.shape[0] and abs(angle) == 90)
106
+ for page, angle in zip(pages, origin_pages_orientations)
107
+ ]
108
+
53
109
  @staticmethod
54
110
  def _generate_crops(
55
111
  pages: List[np.ndarray],
@@ -88,68 +144,39 @@ class _OCRPredictor:
88
144
  self,
89
145
  crops: List[List[np.ndarray]],
90
146
  loc_preds: List[np.ndarray],
91
- ) -> Tuple[List[List[np.ndarray]], List[np.ndarray]]:
147
+ ) -> Tuple[List[List[np.ndarray]], List[np.ndarray], List[Tuple[int, float]]]:
92
148
  # Work at a page level
93
- orientations = [self.crop_orientation_predictor(page_crops) for page_crops in crops] # type: ignore[misc]
149
+ orientations, classes, probs = zip(*[self.crop_orientation_predictor(page_crops) for page_crops in crops]) # type: ignore[misc]
94
150
  rect_crops = [rectify_crops(page_crops, orientation) for page_crops, orientation in zip(crops, orientations)]
95
151
  rect_loc_preds = [
96
152
  rectify_loc_preds(page_loc_preds, orientation) if len(page_loc_preds) > 0 else page_loc_preds
97
153
  for page_loc_preds, orientation in zip(loc_preds, orientations)
98
154
  ]
99
- return rect_crops, rect_loc_preds # type: ignore[return-value]
100
-
101
- def _remove_padding(
102
- self,
103
- pages: List[np.ndarray],
104
- loc_preds: List[np.ndarray],
105
- ) -> List[np.ndarray]:
106
- if self.preserve_aspect_ratio:
107
- # Rectify loc_preds to remove padding
108
- rectified_preds = []
109
- for page, loc_pred in zip(pages, loc_preds):
110
- h, w = page.shape[0], page.shape[1]
111
- if h > w:
112
- # y unchanged, dilate x coord
113
- if self.symmetric_pad:
114
- if self.assume_straight_pages:
115
- loc_pred[:, [0, 2]] = np.clip((loc_pred[:, [0, 2]] - 0.5) * h / w + 0.5, 0, 1)
116
- else:
117
- loc_pred[:, :, 0] = np.clip((loc_pred[:, :, 0] - 0.5) * h / w + 0.5, 0, 1)
118
- else:
119
- if self.assume_straight_pages:
120
- loc_pred[:, [0, 2]] *= h / w
121
- else:
122
- loc_pred[:, :, 0] *= h / w
123
- elif w > h:
124
- # x unchanged, dilate y coord
125
- if self.symmetric_pad:
126
- if self.assume_straight_pages:
127
- loc_pred[:, [1, 3]] = np.clip((loc_pred[:, [1, 3]] - 0.5) * w / h + 0.5, 0, 1)
128
- else:
129
- loc_pred[:, :, 1] = np.clip((loc_pred[:, :, 1] - 0.5) * w / h + 0.5, 0, 1)
130
- else:
131
- if self.assume_straight_pages:
132
- loc_pred[:, [1, 3]] *= w / h
133
- else:
134
- loc_pred[:, :, 1] *= w / h
135
- rectified_preds.append(loc_pred)
136
- return rectified_preds
137
- return loc_preds
155
+ # Flatten to list of tuples with (value, confidence)
156
+ crop_orientations = [
157
+ (orientation, prob)
158
+ for page_classes, page_probs in zip(classes, probs)
159
+ for orientation, prob in zip(page_classes, page_probs)
160
+ ]
161
+ return rect_crops, rect_loc_preds, crop_orientations # type: ignore[return-value]
138
162
 
139
163
  @staticmethod
140
164
  def _process_predictions(
141
165
  loc_preds: List[np.ndarray],
142
166
  word_preds: List[Tuple[str, float]],
143
- ) -> Tuple[List[np.ndarray], List[List[Tuple[str, float]]]]:
167
+ crop_orientations: List[Dict[str, Any]],
168
+ ) -> Tuple[List[np.ndarray], List[List[Tuple[str, float]]], List[List[Dict[str, Any]]]]:
144
169
  text_preds = []
170
+ crop_orientation_preds = []
145
171
  if len(loc_preds) > 0:
146
- # Text
172
+ # Text & crop orientation predictions at page level
147
173
  _idx = 0
148
174
  for page_boxes in loc_preds:
149
175
  text_preds.append(word_preds[_idx : _idx + page_boxes.shape[0]])
176
+ crop_orientation_preds.append(crop_orientations[_idx : _idx + page_boxes.shape[0]])
150
177
  _idx += page_boxes.shape[0]
151
178
 
152
- return loc_preds, text_preds
179
+ return loc_preds, text_preds, crop_orientation_preds
153
180
 
154
181
  def add_hook(self, hook: Callable) -> None:
155
182
  """Add a hook to the predictor
@@ -10,10 +10,10 @@ import torch
10
10
  from torch import nn
11
11
 
12
12
  from doctr.io.elements import Document
13
- from doctr.models._utils import estimate_orientation, get_language
13
+ from doctr.models._utils import get_language
14
14
  from doctr.models.detection.predictor import DetectionPredictor
15
15
  from doctr.models.recognition.predictor import RecognitionPredictor
16
- from doctr.utils.geometry import rotate_image
16
+ from doctr.utils.geometry import detach_scores
17
17
 
18
18
  from .base import _OCRPredictor
19
19
 
@@ -55,7 +55,13 @@ class OCRPredictor(nn.Module, _OCRPredictor):
55
55
  self.det_predictor = det_predictor.eval() # type: ignore[attr-defined]
56
56
  self.reco_predictor = reco_predictor.eval() # type: ignore[attr-defined]
57
57
  _OCRPredictor.__init__(
58
- self, assume_straight_pages, straighten_pages, preserve_aspect_ratio, symmetric_pad, **kwargs
58
+ self,
59
+ assume_straight_pages,
60
+ straighten_pages,
61
+ preserve_aspect_ratio,
62
+ symmetric_pad,
63
+ detect_orientation,
64
+ **kwargs,
59
65
  )
60
66
  self.detect_orientation = detect_orientation
61
67
  self.detect_language = detect_language
@@ -81,19 +87,16 @@ class OCRPredictor(nn.Module, _OCRPredictor):
81
87
  for out_map in out_maps
82
88
  ]
83
89
  if self.detect_orientation:
84
- origin_page_orientations = [estimate_orientation(seq_map) for seq_map in seg_maps]
90
+ general_pages_orientations, origin_pages_orientations = self._get_orientations(pages, seg_maps) # type: ignore[arg-type]
85
91
  orientations = [
86
- {"value": orientation_page, "confidence": None} for orientation_page in origin_page_orientations
92
+ {"value": orientation_page, "confidence": None} for orientation_page in origin_pages_orientations
87
93
  ]
88
94
  else:
89
95
  orientations = None
96
+ general_pages_orientations = None
97
+ origin_pages_orientations = None
90
98
  if self.straighten_pages:
91
- origin_page_orientations = (
92
- origin_page_orientations
93
- if self.detect_orientation
94
- else [estimate_orientation(seq_map) for seq_map in seg_maps]
95
- )
96
- pages = [rotate_image(page, -angle, expand=False) for page, angle in zip(pages, origin_page_orientations)]
99
+ pages = self._straighten_pages(pages, seg_maps, general_pages_orientations, origin_pages_orientations) # type: ignore
97
100
  # Forward again to get predictions on straight pages
98
101
  loc_preds = self.det_predictor(pages, **kwargs)
99
102
 
@@ -102,30 +105,36 @@ class OCRPredictor(nn.Module, _OCRPredictor):
102
105
  ), "Detection Model in ocr_predictor should output only one class"
103
106
 
104
107
  loc_preds = [list(loc_pred.values())[0] for loc_pred in loc_preds]
108
+ # Detach objectness scores from loc_preds
109
+ loc_preds, objectness_scores = detach_scores(loc_preds)
105
110
  # Check whether crop mode should be switched to channels first
106
111
  channels_last = len(pages) == 0 or isinstance(pages[0], np.ndarray)
107
112
 
108
- # Rectify crops if aspect ratio
109
- loc_preds = self._remove_padding(pages, loc_preds)
110
-
111
113
  # Apply hooks to loc_preds if any
112
114
  for hook in self.hooks:
113
115
  loc_preds = hook(loc_preds)
114
116
 
115
117
  # Crop images
116
118
  crops, loc_preds = self._prepare_crops(
117
- pages,
119
+ pages, # type: ignore[arg-type]
118
120
  loc_preds,
119
121
  channels_last=channels_last,
120
122
  assume_straight_pages=self.assume_straight_pages,
121
123
  )
122
- # Rectify crop orientation
124
+ # Rectify crop orientation and get crop orientation predictions
125
+ crop_orientations: Any = []
123
126
  if not self.assume_straight_pages:
124
- crops, loc_preds = self._rectify_crops(crops, loc_preds)
127
+ crops, loc_preds, _crop_orientations = self._rectify_crops(crops, loc_preds)
128
+ crop_orientations = [
129
+ {"value": orientation[0], "confidence": orientation[1]} for orientation in _crop_orientations
130
+ ]
131
+
125
132
  # Identify character sequences
126
133
  word_preds = self.reco_predictor([crop for page_crops in crops for crop in page_crops], **kwargs)
134
+ if not crop_orientations:
135
+ crop_orientations = [{"value": 0, "confidence": None} for _ in word_preds]
127
136
 
128
- boxes, text_preds = self._process_predictions(loc_preds, word_preds)
137
+ boxes, text_preds, crop_orientations = self._process_predictions(loc_preds, word_preds, crop_orientations)
129
138
 
130
139
  if self.detect_language:
131
140
  languages = [get_language(" ".join([item[0] for item in text_pred])) for text_pred in text_preds]
@@ -134,10 +143,12 @@ class OCRPredictor(nn.Module, _OCRPredictor):
134
143
  languages_dict = None
135
144
 
136
145
  out = self.doc_builder(
137
- pages,
146
+ pages, # type: ignore[arg-type]
138
147
  boxes,
148
+ objectness_scores,
139
149
  text_preds,
140
- origin_page_shapes,
150
+ origin_page_shapes, # type: ignore[arg-type]
151
+ crop_orientations,
141
152
  orientations,
142
153
  languages_dict,
143
154
  )
@@ -9,10 +9,10 @@ import numpy as np
9
9
  import tensorflow as tf
10
10
 
11
11
  from doctr.io.elements import Document
12
- from doctr.models._utils import estimate_orientation, get_language
12
+ from doctr.models._utils import get_language
13
13
  from doctr.models.detection.predictor import DetectionPredictor
14
14
  from doctr.models.recognition.predictor import RecognitionPredictor
15
- from doctr.utils.geometry import rotate_image
15
+ from doctr.utils.geometry import detach_scores
16
16
  from doctr.utils.repr import NestedObject
17
17
 
18
18
  from .base import _OCRPredictor
@@ -56,7 +56,13 @@ class OCRPredictor(NestedObject, _OCRPredictor):
56
56
  self.det_predictor = det_predictor
57
57
  self.reco_predictor = reco_predictor
58
58
  _OCRPredictor.__init__(
59
- self, assume_straight_pages, straighten_pages, preserve_aspect_ratio, symmetric_pad, **kwargs
59
+ self,
60
+ assume_straight_pages,
61
+ straighten_pages,
62
+ preserve_aspect_ratio,
63
+ symmetric_pad,
64
+ detect_orientation,
65
+ **kwargs,
60
66
  )
61
67
  self.detect_orientation = detect_orientation
62
68
  self.detect_language = detect_language
@@ -81,19 +87,16 @@ class OCRPredictor(NestedObject, _OCRPredictor):
81
87
  for out_map in out_maps
82
88
  ]
83
89
  if self.detect_orientation:
84
- origin_page_orientations = [estimate_orientation(seq_map) for seq_map in seg_maps]
90
+ general_pages_orientations, origin_pages_orientations = self._get_orientations(pages, seg_maps)
85
91
  orientations = [
86
- {"value": orientation_page, "confidence": None} for orientation_page in origin_page_orientations
92
+ {"value": orientation_page, "confidence": None} for orientation_page in origin_pages_orientations
87
93
  ]
88
94
  else:
89
95
  orientations = None
96
+ general_pages_orientations = None
97
+ origin_pages_orientations = None
90
98
  if self.straighten_pages:
91
- origin_page_orientations = (
92
- origin_page_orientations
93
- if self.detect_orientation
94
- else [estimate_orientation(seq_map) for seq_map in seg_maps]
95
- )
96
- pages = [rotate_image(page, -angle, expand=False) for page, angle in zip(pages, origin_page_orientations)]
99
+ pages = self._straighten_pages(pages, seg_maps, general_pages_orientations, origin_pages_orientations)
97
100
  # forward again to get predictions on straight pages
98
101
  loc_preds_dict = self.det_predictor(pages, **kwargs) # type: ignore[assignment]
99
102
 
@@ -101,9 +104,8 @@ class OCRPredictor(NestedObject, _OCRPredictor):
101
104
  len(loc_pred) == 1 for loc_pred in loc_preds_dict
102
105
  ), "Detection Model in ocr_predictor should output only one class"
103
106
  loc_preds: List[np.ndarray] = [list(loc_pred.values())[0] for loc_pred in loc_preds_dict] # type: ignore[union-attr]
104
-
105
- # Rectify crops if aspect ratio
106
- loc_preds = self._remove_padding(pages, loc_preds)
107
+ # Detach objectness scores from loc_preds
108
+ loc_preds, objectness_scores = detach_scores(loc_preds)
107
109
 
108
110
  # Apply hooks to loc_preds if any
109
111
  for hook in self.hooks:
@@ -113,14 +115,20 @@ class OCRPredictor(NestedObject, _OCRPredictor):
113
115
  crops, loc_preds = self._prepare_crops(
114
116
  pages, loc_preds, channels_last=True, assume_straight_pages=self.assume_straight_pages
115
117
  )
116
- # Rectify crop orientation
118
+ # Rectify crop orientation and get crop orientation predictions
119
+ crop_orientations: Any = []
117
120
  if not self.assume_straight_pages:
118
- crops, loc_preds = self._rectify_crops(crops, loc_preds)
121
+ crops, loc_preds, _crop_orientations = self._rectify_crops(crops, loc_preds)
122
+ crop_orientations = [
123
+ {"value": orientation[0], "confidence": orientation[1]} for orientation in _crop_orientations
124
+ ]
119
125
 
120
126
  # Identify character sequences
121
127
  word_preds = self.reco_predictor([crop for page_crops in crops for crop in page_crops], **kwargs)
128
+ if not crop_orientations:
129
+ crop_orientations = [{"value": 0, "confidence": None} for _ in word_preds]
122
130
 
123
- boxes, text_preds = self._process_predictions(loc_preds, word_preds)
131
+ boxes, text_preds, crop_orientations = self._process_predictions(loc_preds, word_preds, crop_orientations)
124
132
 
125
133
  if self.detect_language:
126
134
  languages = [get_language(" ".join([item[0] for item in text_pred])) for text_pred in text_preds]
@@ -131,8 +139,10 @@ class OCRPredictor(NestedObject, _OCRPredictor):
131
139
  out = self.doc_builder(
132
140
  pages,
133
141
  boxes,
142
+ objectness_scores,
134
143
  text_preds,
135
144
  origin_page_shapes, # type: ignore[arg-type]
145
+ crop_orientations,
136
146
  orientations,
137
147
  languages_dict,
138
148
  )
@@ -79,7 +79,7 @@ class PreProcessor(nn.Module):
79
79
  else:
80
80
  x = x.to(dtype=torch.float32) # type: ignore[union-attr]
81
81
 
82
- return x # type: ignore[return-value]
82
+ return x
83
83
 
84
84
  def __call__(self, x: Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]]) -> List[torch.Tensor]:
85
85
  """Prepare document data for model forwarding
@@ -103,7 +103,7 @@ class PreProcessor(nn.Module):
103
103
  elif x.dtype not in (torch.uint8, torch.float16, torch.float32):
104
104
  raise TypeError("unsupported data type for torch.Tensor")
105
105
  # Resizing
106
- if x.shape[-2] != self.resize.size[0] or x.shape[-1] != self.resize.size[1]: # type: ignore[union-attr]
106
+ if x.shape[-2] != self.resize.size[0] or x.shape[-1] != self.resize.size[1]:
107
107
  x = F.resize(
108
108
  x, self.resize.size, interpolation=self.resize.interpolation, antialias=self.resize.antialias
109
109
  )
@@ -118,11 +118,11 @@ class PreProcessor(nn.Module):
118
118
  # Sample transform (to tensor, resize)
119
119
  samples = list(multithread_exec(self.sample_transforms, x))
120
120
  # Batching
121
- batches = self.batch_inputs(samples) # type: ignore[assignment]
121
+ batches = self.batch_inputs(samples)
122
122
  else:
123
123
  raise TypeError(f"invalid input type: {type(x)}")
124
124
 
125
125
  # Batch transforms (normalize)
126
126
  batches = list(multithread_exec(self.normalize, batches))
127
127
 
128
- return batches # type: ignore[return-value]
128
+ return batches
@@ -41,6 +41,7 @@ class PreProcessor(NestedObject):
41
41
  self.resize = Resize(output_size, **kwargs)
42
42
  # Perform the division by 255 at the same time
43
43
  self.normalize = Normalize(mean, std)
44
+ self._runs_on_cuda = tf.test.is_gpu_available()
44
45
 
45
46
  def batch_inputs(self, samples: List[tf.Tensor]) -> List[tf.Tensor]:
46
47
  """Gather samples into batches for inference purposes
@@ -113,13 +114,13 @@ class PreProcessor(NestedObject):
113
114
 
114
115
  elif isinstance(x, list) and all(isinstance(sample, (np.ndarray, tf.Tensor)) for sample in x):
115
116
  # Sample transform (to tensor, resize)
116
- samples = list(multithread_exec(self.sample_transforms, x))
117
+ samples = list(multithread_exec(self.sample_transforms, x, threads=1 if self._runs_on_cuda else None))
117
118
  # Batching
118
119
  batches = self.batch_inputs(samples)
119
120
  else:
120
121
  raise TypeError(f"invalid input type: {type(x)}")
121
122
 
122
123
  # Batch transforms (normalize)
123
- batches = list(multithread_exec(self.normalize, batches))
124
+ batches = list(multithread_exec(self.normalize, batches, threads=1 if self._runs_on_cuda else None))
124
125
 
125
126
  return batches
@@ -107,7 +107,7 @@ class MASTER(_MASTER, nn.Module):
107
107
  # NOTE: nn.TransformerDecoder takes the inverse from this implementation
108
108
  # [True, True, True, ..., False, False, False] -> False is masked
109
109
  # (N, 1, 1, max_length)
110
- target_pad_mask = (target != self.vocab_size + 2).unsqueeze(1).unsqueeze(1) # type: ignore[attr-defined]
110
+ target_pad_mask = (target != self.vocab_size + 2).unsqueeze(1).unsqueeze(1)
111
111
  target_length = target.size(1)
112
112
  # sub mask filled diagonal with True = see and False = masked (max_length, max_length)
113
113
  # NOTE: onnxruntime tril/triu works only with float currently (onnxruntime 1.11.1 - opset 14)
@@ -142,7 +142,7 @@ class MASTER(_MASTER, nn.Module):
142
142
  # Input length : number of timesteps
143
143
  input_len = model_output.shape[1]
144
144
  # Add one for additional <eos> token (sos disappear in shift!)
145
- seq_len = seq_len + 1 # type: ignore[assignment]
145
+ seq_len = seq_len + 1
146
146
  # Compute loss: don't forget to shift gt! Otherwise the model learns to output the gt[t-1]!
147
147
  # The "masked" first gt char is <sos>. Delete last logit of the model output.
148
148
  cce = F.cross_entropy(model_output[:, :-1, :].permute(0, 2, 1), gt[:, 1:], reduction="none")
@@ -212,7 +212,7 @@ class PARSeq(_PARSeq, nn.Module):
212
212
 
213
213
  sos_idx = torch.zeros(len(final_perms), 1, device=seqlen.device)
214
214
  eos_idx = torch.full((len(final_perms), 1), max_num_chars + 1, device=seqlen.device)
215
- combined = torch.cat([sos_idx, final_perms + 1, eos_idx], dim=1).int() # type: ignore
215
+ combined = torch.cat([sos_idx, final_perms + 1, eos_idx], dim=1).int()
216
216
  if len(combined) > 1:
217
217
  combined[1, 1:] = max_num_chars + 1 - torch.arange(max_num_chars + 1, device=seqlen.device)
218
218
  return combined
@@ -282,7 +282,8 @@ class PARSeq(_PARSeq, nn.Module):
282
282
  ys[:, i + 1] = pos_prob.squeeze().argmax(-1)
283
283
 
284
284
  # Stop decoding if all sequences have reached the EOS token
285
- if max_len is None and (ys == self.vocab_size).any(dim=-1).all(): # type: ignore[attr-defined]
285
+ # NOTE: `break` isn't correctly translated to Onnx so we don't break here if we want to export
286
+ if not self.exportable and max_len is None and (ys == self.vocab_size).any(dim=-1).all():
286
287
  break
287
288
 
288
289
  logits = torch.cat(pos_logits, dim=1) # (N, max_length, vocab_size + 1)
@@ -297,7 +298,7 @@ class PARSeq(_PARSeq, nn.Module):
297
298
 
298
299
  # Create padding mask for refined target input maskes all behind EOS token as False
299
300
  # (N, 1, 1, max_length)
300
- target_pad_mask = ~((ys == self.vocab_size).int().cumsum(-1) > 0).unsqueeze(1).unsqueeze(1) # type: ignore[attr-defined]
301
+ target_pad_mask = ~((ys == self.vocab_size).int().cumsum(-1) > 0).unsqueeze(1).unsqueeze(1)
301
302
  mask = (target_pad_mask.bool() & query_mask[:, : ys.shape[1]].bool()).int()
302
303
  logits = self.head(self.decode(ys, features, mask, target_query=pos_queries))
303
304
 
@@ -288,10 +288,11 @@ class PARSeq(_PARSeq, Model):
288
288
  )
289
289
 
290
290
  # Stop decoding if all sequences have reached the EOS token
291
- # We need to check it on True to be compatible with ONNX
291
+ # NOTE: `break` isn't correctly translated to Onnx so we don't break here if we want to export
292
292
  if (
293
- max_len is None
294
- and tf.reduce_any(tf.reduce_all(tf.equal(ys, tf.constant(self.vocab_size)), axis=-1)) is True
293
+ not self.exportable
294
+ and max_len is None
295
+ and tf.reduce_any(tf.reduce_all(tf.equal(ys, tf.constant(self.vocab_size)), axis=-1))
295
296
  ):
296
297
  break
297
298
 
@@ -125,25 +125,26 @@ class SARDecoder(nn.Module):
125
125
  if t == 0:
126
126
  # step to init the first states of the LSTMCell
127
127
  hidden_state_init = cell_state_init = torch.zeros(
128
- features.size(0), features.size(1), device=features.device
128
+ features.size(0), features.size(1), device=features.device, dtype=features.dtype
129
129
  )
130
130
  hidden_state, cell_state = hidden_state_init, cell_state_init
131
131
  prev_symbol = holistic
132
132
  elif t == 1:
133
133
  # step to init a 'blank' sequence of length vocab_size + 1 filled with zeros
134
134
  # (N, vocab_size + 1) --> (N, embedding_units)
135
- prev_symbol = torch.zeros(features.size(0), self.vocab_size + 1, device=features.device)
135
+ prev_symbol = torch.zeros(
136
+ features.size(0), self.vocab_size + 1, device=features.device, dtype=features.dtype
137
+ )
136
138
  prev_symbol = self.embed(prev_symbol)
137
139
  else:
138
- if gt is not None:
140
+ if gt is not None and self.training:
139
141
  # (N, embedding_units) -2 because of <bos> and <eos> (same)
140
142
  prev_symbol = self.embed(gt_embedding[:, t - 2])
141
143
  else:
142
144
  # -1 to start at timestep where prev_symbol was initialized
143
145
  index = logits_list[t - 1].argmax(-1)
144
146
  # update prev_symbol with ones at the index of the previous logit vector
145
- # (N, embedding_units)
146
- prev_symbol = prev_symbol.scatter_(1, index.unsqueeze(1), 1)
147
+ prev_symbol = self.embed(self.embed_tgt(index))
147
148
 
148
149
  # (N, C), (N, C) take the last hidden state and cell state from current timestep
149
150
  hidden_state_init, cell_state_init = self.lstm_cell(prev_symbol, (hidden_state_init, cell_state_init))
@@ -292,7 +293,7 @@ class SAR(nn.Module, RecognitionModel):
292
293
  # Input length : number of timesteps
293
294
  input_len = model_output.shape[1]
294
295
  # Add one for additional <eos> token
295
- seq_len = seq_len + 1 # type: ignore[assignment]
296
+ seq_len = seq_len + 1
296
297
  # Compute loss
297
298
  # (N, L, vocab_size + 1)
298
299
  cce = F.cross_entropy(model_output.permute(0, 2, 1), gt, reduction="none")
@@ -177,23 +177,17 @@ class SARDecoder(layers.Layer, NestedObject):
177
177
  elif t == 1:
178
178
  # step to init a 'blank' sequence of length vocab_size + 1 filled with zeros
179
179
  # (N, vocab_size + 1) --> (N, embedding_units)
180
- prev_symbol = tf.zeros([features.shape[0], self.vocab_size + 1])
180
+ prev_symbol = tf.zeros([features.shape[0], self.vocab_size + 1], dtype=features.dtype)
181
181
  prev_symbol = self.embed(prev_symbol, **kwargs)
182
182
  else:
183
- if gt is not None:
183
+ if gt is not None and kwargs.get("training", False):
184
184
  # (N, embedding_units) -2 because of <bos> and <eos> (same)
185
185
  prev_symbol = self.embed(gt_embedding[:, t - 2], **kwargs)
186
186
  else:
187
187
  # -1 to start at timestep where prev_symbol was initialized
188
188
  index = tf.argmax(logits_list[t - 1], axis=-1)
189
189
  # update prev_symbol with ones at the index of the previous logit vector
190
- # (N, embedding_units)
191
- index = tf.ones_like(index)
192
- prev_symbol = tf.scatter_nd(
193
- tf.expand_dims(index, axis=1),
194
- prev_symbol,
195
- tf.constant([features.shape[0], features.shape[-1]], dtype=tf.int64),
196
- )
190
+ prev_symbol = self.embed(self.embed_tgt(index, **kwargs), **kwargs)
197
191
 
198
192
  # (N, C), (N, C) take the last hidden state and cell state from current timestep
199
193
  _, states = self.lstm_cells(prev_symbol, states, **kwargs)
@@ -137,7 +137,7 @@ class ViTSTR(_ViTSTR, nn.Module):
137
137
  # Input length : number of steps
138
138
  input_len = model_output.shape[1]
139
139
  # Add one for additional <eos> token (sos disappear in shift!)
140
- seq_len = seq_len + 1 # type: ignore[assignment]
140
+ seq_len = seq_len + 1
141
141
  # Compute loss: don't forget to shift gt! Otherwise the model learns to output the gt[t-1]!
142
142
  # The "masked" first gt char is <sos>.
143
143
  cce = F.cross_entropy(model_output.permute(0, 2, 1), gt[:, 1:], reduction="none")
@@ -45,7 +45,7 @@ def _predictor(arch: Any, pretrained: bool, **kwargs: Any) -> RecognitionPredict
45
45
 
46
46
  kwargs["mean"] = kwargs.get("mean", _model.cfg["mean"])
47
47
  kwargs["std"] = kwargs.get("std", _model.cfg["std"])
48
- kwargs["batch_size"] = kwargs.get("batch_size", 32)
48
+ kwargs["batch_size"] = kwargs.get("batch_size", 128)
49
49
  input_shape = _model.cfg["input_shape"][:2] if is_tf_available() else _model.cfg["input_shape"][-2:]
50
50
  predictor = RecognitionPredictor(PreProcessor(input_shape, preserve_aspect_ratio=True, **kwargs), _model)
51
51
 
doctr/models/zoo.py CHANGED
@@ -61,7 +61,7 @@ def _predictor(
61
61
 
62
62
 
63
63
  def ocr_predictor(
64
- det_arch: Any = "db_resnet50",
64
+ det_arch: Any = "fast_base",
65
65
  reco_arch: Any = "crnn_vgg16_bn",
66
66
  pretrained: bool = False,
67
67
  pretrained_backbone: bool = True,
@@ -175,7 +175,7 @@ def _kie_predictor(
175
175
 
176
176
 
177
177
  def kie_predictor(
178
- det_arch: Any = "db_resnet50",
178
+ det_arch: Any = "fast_base",
179
179
  reco_arch: Any = "crnn_vgg16_bn",
180
180
  pretrained: bool = False,
181
181
  pretrained_backbone: bool = True,
doctr/py.typed ADDED
File without changes
@@ -200,4 +200,4 @@ def create_shadow_mask(
200
200
  mask: np.ndarray = np.zeros((*target_shape, 1), dtype=np.uint8)
201
201
  mask = cv2.fillPoly(mask, [final_contour], (255,), lineType=cv2.LINE_AA)[..., 0]
202
202
 
203
- return (mask / 255).astype(np.float32).clip(0, 1) * intensity_mask.astype(np.float32) # type: ignore[operator]
203
+ return (mask / 255).astype(np.float32).clip(0, 1) * intensity_mask.astype(np.float32)