python-doctr 0.8.0__py3-none-any.whl → 0.9.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- doctr/__init__.py +1 -1
- doctr/contrib/__init__.py +0 -0
- doctr/contrib/artefacts.py +131 -0
- doctr/contrib/base.py +105 -0
- doctr/datasets/datasets/pytorch.py +2 -2
- doctr/datasets/generator/base.py +6 -5
- doctr/datasets/imgur5k.py +1 -1
- doctr/datasets/loader.py +1 -6
- doctr/datasets/utils.py +2 -1
- doctr/datasets/vocabs.py +9 -2
- doctr/file_utils.py +26 -12
- doctr/io/elements.py +40 -6
- doctr/io/html.py +2 -2
- doctr/io/image/pytorch.py +6 -8
- doctr/io/image/tensorflow.py +1 -1
- doctr/io/pdf.py +5 -2
- doctr/io/reader.py +6 -0
- doctr/models/__init__.py +0 -1
- doctr/models/_utils.py +57 -20
- doctr/models/builder.py +71 -13
- doctr/models/classification/mobilenet/pytorch.py +45 -9
- doctr/models/classification/mobilenet/tensorflow.py +38 -7
- doctr/models/classification/predictor/pytorch.py +18 -11
- doctr/models/classification/predictor/tensorflow.py +16 -10
- doctr/models/classification/textnet/pytorch.py +3 -3
- doctr/models/classification/textnet/tensorflow.py +3 -3
- doctr/models/classification/zoo.py +39 -15
- doctr/models/detection/__init__.py +1 -0
- doctr/models/detection/_utils/__init__.py +1 -0
- doctr/models/detection/_utils/base.py +66 -0
- doctr/models/detection/differentiable_binarization/base.py +4 -3
- doctr/models/detection/differentiable_binarization/pytorch.py +2 -2
- doctr/models/detection/differentiable_binarization/tensorflow.py +14 -18
- doctr/models/detection/fast/__init__.py +6 -0
- doctr/models/detection/fast/base.py +257 -0
- doctr/models/detection/fast/pytorch.py +442 -0
- doctr/models/detection/fast/tensorflow.py +428 -0
- doctr/models/detection/linknet/base.py +4 -3
- doctr/models/detection/predictor/pytorch.py +15 -1
- doctr/models/detection/predictor/tensorflow.py +15 -1
- doctr/models/detection/zoo.py +21 -4
- doctr/models/factory/hub.py +3 -12
- doctr/models/kie_predictor/base.py +9 -3
- doctr/models/kie_predictor/pytorch.py +41 -20
- doctr/models/kie_predictor/tensorflow.py +36 -16
- doctr/models/modules/layers/pytorch.py +89 -10
- doctr/models/modules/layers/tensorflow.py +88 -10
- doctr/models/modules/transformer/pytorch.py +2 -2
- doctr/models/predictor/base.py +77 -50
- doctr/models/predictor/pytorch.py +31 -20
- doctr/models/predictor/tensorflow.py +27 -17
- doctr/models/preprocessor/pytorch.py +4 -4
- doctr/models/preprocessor/tensorflow.py +3 -2
- doctr/models/recognition/master/pytorch.py +2 -2
- doctr/models/recognition/parseq/pytorch.py +4 -3
- doctr/models/recognition/parseq/tensorflow.py +4 -3
- doctr/models/recognition/sar/pytorch.py +7 -6
- doctr/models/recognition/sar/tensorflow.py +3 -9
- doctr/models/recognition/vitstr/pytorch.py +1 -1
- doctr/models/recognition/zoo.py +1 -1
- doctr/models/zoo.py +2 -2
- doctr/py.typed +0 -0
- doctr/transforms/functional/base.py +1 -1
- doctr/transforms/functional/pytorch.py +4 -4
- doctr/transforms/modules/base.py +37 -15
- doctr/transforms/modules/pytorch.py +66 -8
- doctr/transforms/modules/tensorflow.py +63 -7
- doctr/utils/fonts.py +7 -5
- doctr/utils/geometry.py +35 -12
- doctr/utils/metrics.py +33 -174
- doctr/utils/reconstitution.py +126 -0
- doctr/utils/visualization.py +5 -118
- doctr/version.py +1 -1
- {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/METADATA +96 -91
- {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/RECORD +79 -75
- {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/WHEEL +1 -1
- doctr/models/artefacts/__init__.py +0 -2
- doctr/models/artefacts/barcode.py +0 -74
- doctr/models/artefacts/face.py +0 -63
- doctr/models/obj_detection/__init__.py +0 -1
- doctr/models/obj_detection/faster_rcnn/__init__.py +0 -4
- doctr/models/obj_detection/faster_rcnn/pytorch.py +0 -81
- {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/LICENSE +0 -0
- {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/top_level.txt +0 -0
- {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/zip-safe +0 -0
|
@@ -22,21 +22,21 @@ default_cfgs: Dict[str, Dict[str, Any]] = {
|
|
|
22
22
|
"std": (0.299, 0.296, 0.301),
|
|
23
23
|
"input_shape": (32, 32, 3),
|
|
24
24
|
"classes": list(VOCABS["french"]),
|
|
25
|
-
"url": "https://doctr-static.mindee.com/models?id=v0.
|
|
25
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_tiny-fe9cc245.zip&src=0",
|
|
26
26
|
},
|
|
27
27
|
"textnet_small": {
|
|
28
28
|
"mean": (0.694, 0.695, 0.693),
|
|
29
29
|
"std": (0.299, 0.296, 0.301),
|
|
30
30
|
"input_shape": (32, 32, 3),
|
|
31
31
|
"classes": list(VOCABS["french"]),
|
|
32
|
-
"url": "https://doctr-static.mindee.com/models?id=v0.
|
|
32
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_small-29c39c82.zip&src=0",
|
|
33
33
|
},
|
|
34
34
|
"textnet_base": {
|
|
35
35
|
"mean": (0.694, 0.695, 0.693),
|
|
36
36
|
"std": (0.299, 0.296, 0.301),
|
|
37
37
|
"input_shape": (32, 32, 3),
|
|
38
38
|
"classes": list(VOCABS["french"]),
|
|
39
|
-
"url": "https://doctr-static.mindee.com/models?id=v0.
|
|
39
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_base-168aa82c.zip&src=0",
|
|
40
40
|
},
|
|
41
41
|
}
|
|
42
42
|
|
|
@@ -9,9 +9,9 @@ from doctr.file_utils import is_tf_available
|
|
|
9
9
|
|
|
10
10
|
from .. import classification
|
|
11
11
|
from ..preprocessor import PreProcessor
|
|
12
|
-
from .predictor import
|
|
12
|
+
from .predictor import OrientationPredictor
|
|
13
13
|
|
|
14
|
-
__all__ = ["crop_orientation_predictor"]
|
|
14
|
+
__all__ = ["crop_orientation_predictor", "page_orientation_predictor"]
|
|
15
15
|
|
|
16
16
|
ARCHS: List[str] = [
|
|
17
17
|
"magc_resnet31",
|
|
@@ -31,10 +31,10 @@ ARCHS: List[str] = [
|
|
|
31
31
|
"vit_s",
|
|
32
32
|
"vit_b",
|
|
33
33
|
]
|
|
34
|
-
ORIENTATION_ARCHS: List[str] = ["
|
|
34
|
+
ORIENTATION_ARCHS: List[str] = ["mobilenet_v3_small_crop_orientation", "mobilenet_v3_small_page_orientation"]
|
|
35
35
|
|
|
36
36
|
|
|
37
|
-
def
|
|
37
|
+
def _orientation_predictor(arch: str, pretrained: bool, **kwargs: Any) -> OrientationPredictor:
|
|
38
38
|
if arch not in ORIENTATION_ARCHS:
|
|
39
39
|
raise ValueError(f"unknown architecture '{arch}'")
|
|
40
40
|
|
|
@@ -42,33 +42,57 @@ def _crop_orientation_predictor(arch: str, pretrained: bool, **kwargs: Any) -> C
|
|
|
42
42
|
_model = classification.__dict__[arch](pretrained=pretrained)
|
|
43
43
|
kwargs["mean"] = kwargs.get("mean", _model.cfg["mean"])
|
|
44
44
|
kwargs["std"] = kwargs.get("std", _model.cfg["std"])
|
|
45
|
-
kwargs["batch_size"] = kwargs.get("batch_size",
|
|
45
|
+
kwargs["batch_size"] = kwargs.get("batch_size", 128 if "crop" in arch else 4)
|
|
46
46
|
input_shape = _model.cfg["input_shape"][:-1] if is_tf_available() else _model.cfg["input_shape"][1:]
|
|
47
|
-
predictor =
|
|
47
|
+
predictor = OrientationPredictor(
|
|
48
48
|
PreProcessor(input_shape, preserve_aspect_ratio=True, symmetric_pad=True, **kwargs), _model
|
|
49
49
|
)
|
|
50
50
|
return predictor
|
|
51
51
|
|
|
52
52
|
|
|
53
53
|
def crop_orientation_predictor(
|
|
54
|
-
arch: str = "
|
|
55
|
-
) ->
|
|
56
|
-
"""
|
|
54
|
+
arch: str = "mobilenet_v3_small_crop_orientation", pretrained: bool = False, **kwargs: Any
|
|
55
|
+
) -> OrientationPredictor:
|
|
56
|
+
"""Crop orientation classification architecture.
|
|
57
57
|
|
|
58
58
|
>>> import numpy as np
|
|
59
59
|
>>> from doctr.models import crop_orientation_predictor
|
|
60
|
-
>>> model = crop_orientation_predictor(arch='
|
|
61
|
-
>>> input_crop = (255 * np.random.rand(
|
|
60
|
+
>>> model = crop_orientation_predictor(arch='mobilenet_v3_small_crop_orientation', pretrained=True)
|
|
61
|
+
>>> input_crop = (255 * np.random.rand(256, 256, 3)).astype(np.uint8)
|
|
62
62
|
>>> out = model([input_crop])
|
|
63
63
|
|
|
64
64
|
Args:
|
|
65
65
|
----
|
|
66
|
-
arch: name of the architecture to use (e.g. '
|
|
66
|
+
arch: name of the architecture to use (e.g. 'mobilenet_v3_small_crop_orientation')
|
|
67
67
|
pretrained: If True, returns a model pre-trained on our recognition crops dataset
|
|
68
|
-
**kwargs: keyword arguments to be passed to the
|
|
68
|
+
**kwargs: keyword arguments to be passed to the OrientationPredictor
|
|
69
69
|
|
|
70
70
|
Returns:
|
|
71
71
|
-------
|
|
72
|
-
|
|
72
|
+
OrientationPredictor
|
|
73
73
|
"""
|
|
74
|
-
return
|
|
74
|
+
return _orientation_predictor(arch, pretrained, **kwargs)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
def page_orientation_predictor(
|
|
78
|
+
arch: str = "mobilenet_v3_small_page_orientation", pretrained: bool = False, **kwargs: Any
|
|
79
|
+
) -> OrientationPredictor:
|
|
80
|
+
"""Page orientation classification architecture.
|
|
81
|
+
|
|
82
|
+
>>> import numpy as np
|
|
83
|
+
>>> from doctr.models import page_orientation_predictor
|
|
84
|
+
>>> model = page_orientation_predictor(arch='mobilenet_v3_small_page_orientation', pretrained=True)
|
|
85
|
+
>>> input_page = (255 * np.random.rand(512, 512, 3)).astype(np.uint8)
|
|
86
|
+
>>> out = model([input_page])
|
|
87
|
+
|
|
88
|
+
Args:
|
|
89
|
+
----
|
|
90
|
+
arch: name of the architecture to use (e.g. 'mobilenet_v3_small_page_orientation')
|
|
91
|
+
pretrained: If True, returns a model pre-trained on our recognition crops dataset
|
|
92
|
+
**kwargs: keyword arguments to be passed to the OrientationPredictor
|
|
93
|
+
|
|
94
|
+
Returns:
|
|
95
|
+
-------
|
|
96
|
+
OrientationPredictor
|
|
97
|
+
"""
|
|
98
|
+
return _orientation_predictor(arch, pretrained, **kwargs)
|
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
# Copyright (C) 2021-2024, Mindee.
|
|
2
|
+
|
|
3
|
+
# This program is licensed under the Apache License 2.0.
|
|
4
|
+
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
|
|
5
|
+
|
|
6
|
+
from typing import Dict, List
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
|
|
10
|
+
__all__ = ["_remove_padding"]
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def _remove_padding(
|
|
14
|
+
pages: List[np.ndarray],
|
|
15
|
+
loc_preds: List[Dict[str, np.ndarray]],
|
|
16
|
+
preserve_aspect_ratio: bool,
|
|
17
|
+
symmetric_pad: bool,
|
|
18
|
+
assume_straight_pages: bool,
|
|
19
|
+
) -> List[Dict[str, np.ndarray]]:
|
|
20
|
+
"""Remove padding from the localization predictions
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
----
|
|
24
|
+
pages: list of pages
|
|
25
|
+
loc_preds: list of localization predictions
|
|
26
|
+
preserve_aspect_ratio: whether the aspect ratio was preserved during padding
|
|
27
|
+
symmetric_pad: whether the padding was symmetric
|
|
28
|
+
assume_straight_pages: whether the pages are assumed to be straight
|
|
29
|
+
|
|
30
|
+
Returns:
|
|
31
|
+
-------
|
|
32
|
+
list of unpaded localization predictions
|
|
33
|
+
"""
|
|
34
|
+
if preserve_aspect_ratio:
|
|
35
|
+
# Rectify loc_preds to remove padding
|
|
36
|
+
rectified_preds = []
|
|
37
|
+
for page, dict_loc_preds in zip(pages, loc_preds):
|
|
38
|
+
for k, loc_pred in dict_loc_preds.items():
|
|
39
|
+
h, w = page.shape[0], page.shape[1]
|
|
40
|
+
if h > w:
|
|
41
|
+
# y unchanged, dilate x coord
|
|
42
|
+
if symmetric_pad:
|
|
43
|
+
if assume_straight_pages:
|
|
44
|
+
loc_pred[:, [0, 2]] = (loc_pred[:, [0, 2]] - 0.5) * h / w + 0.5
|
|
45
|
+
else:
|
|
46
|
+
loc_pred[:, :, 0] = (loc_pred[:, :, 0] - 0.5) * h / w + 0.5
|
|
47
|
+
else:
|
|
48
|
+
if assume_straight_pages:
|
|
49
|
+
loc_pred[:, [0, 2]] *= h / w
|
|
50
|
+
else:
|
|
51
|
+
loc_pred[:, :, 0] *= h / w
|
|
52
|
+
elif w > h:
|
|
53
|
+
# x unchanged, dilate y coord
|
|
54
|
+
if symmetric_pad:
|
|
55
|
+
if assume_straight_pages:
|
|
56
|
+
loc_pred[:, [1, 3]] = (loc_pred[:, [1, 3]] - 0.5) * w / h + 0.5
|
|
57
|
+
else:
|
|
58
|
+
loc_pred[:, :, 1] = (loc_pred[:, :, 1] - 0.5) * w / h + 0.5
|
|
59
|
+
else:
|
|
60
|
+
if assume_straight_pages:
|
|
61
|
+
loc_pred[:, [1, 3]] *= w / h
|
|
62
|
+
else:
|
|
63
|
+
loc_pred[:, :, 1] *= w / h
|
|
64
|
+
rectified_preds.append({k: np.clip(loc_pred, 0, 1)})
|
|
65
|
+
return rectified_preds
|
|
66
|
+
return loc_preds
|
|
@@ -114,7 +114,7 @@ class DBPostProcessor(DetectionPostProcessor):
|
|
|
114
114
|
contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
115
115
|
for contour in contours:
|
|
116
116
|
# Check whether smallest enclosing bounding box is not too small
|
|
117
|
-
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < min_size_box):
|
|
117
|
+
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < min_size_box): # type: ignore[index]
|
|
118
118
|
continue
|
|
119
119
|
# Compute objectness
|
|
120
120
|
if self.assume_straight_pages:
|
|
@@ -150,10 +150,11 @@ class DBPostProcessor(DetectionPostProcessor):
|
|
|
150
150
|
raise AssertionError("When assume straight pages is false a box is a (4, 2) array (polygon)")
|
|
151
151
|
_box[:, 0] /= width
|
|
152
152
|
_box[:, 1] /= height
|
|
153
|
-
|
|
153
|
+
# Add score to box as (0, score)
|
|
154
|
+
boxes.append(np.vstack([_box, np.array([0.0, score])]))
|
|
154
155
|
|
|
155
156
|
if not self.assume_straight_pages:
|
|
156
|
-
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0,
|
|
157
|
+
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5, 2), dtype=pred.dtype)
|
|
157
158
|
else:
|
|
158
159
|
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype)
|
|
159
160
|
|
|
@@ -39,7 +39,7 @@ default_cfgs: Dict[str, Dict[str, Any]] = {
|
|
|
39
39
|
"input_shape": (3, 1024, 1024),
|
|
40
40
|
"mean": (0.798, 0.785, 0.772),
|
|
41
41
|
"std": (0.264, 0.2749, 0.287),
|
|
42
|
-
"url": "https://doctr-static.mindee.com/models?id=v0.
|
|
42
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/db_mobilenet_v3_large-21748dd0.pt&src=0",
|
|
43
43
|
},
|
|
44
44
|
}
|
|
45
45
|
|
|
@@ -273,7 +273,7 @@ class DBNet(_DBNet, nn.Module):
|
|
|
273
273
|
dice_map = torch.softmax(out_map, dim=1)
|
|
274
274
|
else:
|
|
275
275
|
# compute binary map instead
|
|
276
|
-
dice_map = 1 / (1 + torch.exp(-50.0 * (prob_map - thresh_map)))
|
|
276
|
+
dice_map = 1 / (1 + torch.exp(-50.0 * (prob_map - thresh_map)))
|
|
277
277
|
# Class reduced
|
|
278
278
|
inter = (seg_mask * dice_map * seg_target).sum((0, 2, 3))
|
|
279
279
|
cardinality = (seg_mask * (dice_map + seg_target)).sum((0, 2, 3))
|
|
@@ -147,24 +147,20 @@ class DBNet(_DBNet, keras.Model, NestedObject):
|
|
|
147
147
|
_inputs = [layers.Input(shape=in_shape[1:]) for in_shape in self.feat_extractor.output_shape]
|
|
148
148
|
output_shape = tuple(self.fpn(_inputs).shape)
|
|
149
149
|
|
|
150
|
-
self.probability_head = keras.Sequential(
|
|
151
|
-
[
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
layers.Activation("relu"),
|
|
165
|
-
layers.Conv2DTranspose(num_classes, 2, strides=2, kernel_initializer="he_normal"),
|
|
166
|
-
]
|
|
167
|
-
)
|
|
150
|
+
self.probability_head = keras.Sequential([
|
|
151
|
+
*conv_sequence(64, "relu", True, kernel_size=3, input_shape=output_shape[1:]),
|
|
152
|
+
layers.Conv2DTranspose(64, 2, strides=2, use_bias=False, kernel_initializer="he_normal"),
|
|
153
|
+
layers.BatchNormalization(),
|
|
154
|
+
layers.Activation("relu"),
|
|
155
|
+
layers.Conv2DTranspose(num_classes, 2, strides=2, kernel_initializer="he_normal"),
|
|
156
|
+
])
|
|
157
|
+
self.threshold_head = keras.Sequential([
|
|
158
|
+
*conv_sequence(64, "relu", True, kernel_size=3, input_shape=output_shape[1:]),
|
|
159
|
+
layers.Conv2DTranspose(64, 2, strides=2, use_bias=False, kernel_initializer="he_normal"),
|
|
160
|
+
layers.BatchNormalization(),
|
|
161
|
+
layers.Activation("relu"),
|
|
162
|
+
layers.Conv2DTranspose(num_classes, 2, strides=2, kernel_initializer="he_normal"),
|
|
163
|
+
])
|
|
168
164
|
|
|
169
165
|
self.postprocessor = DBPostProcessor(
|
|
170
166
|
assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh, box_thresh=box_thresh
|
|
@@ -0,0 +1,257 @@
|
|
|
1
|
+
# Copyright (C) 2021-2024, Mindee.
|
|
2
|
+
|
|
3
|
+
# This program is licensed under the Apache License 2.0.
|
|
4
|
+
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
|
|
5
|
+
|
|
6
|
+
# Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization
|
|
7
|
+
|
|
8
|
+
from typing import Dict, List, Tuple, Union
|
|
9
|
+
|
|
10
|
+
import cv2
|
|
11
|
+
import numpy as np
|
|
12
|
+
import pyclipper
|
|
13
|
+
from shapely.geometry import Polygon
|
|
14
|
+
|
|
15
|
+
from doctr.models.core import BaseModel
|
|
16
|
+
|
|
17
|
+
from ..core import DetectionPostProcessor
|
|
18
|
+
|
|
19
|
+
__all__ = ["_FAST", "FASTPostProcessor"]
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class FASTPostProcessor(DetectionPostProcessor):
|
|
23
|
+
"""Implements a post processor for FAST model.
|
|
24
|
+
|
|
25
|
+
Args:
|
|
26
|
+
----
|
|
27
|
+
bin_thresh: threshold used to binzarized p_map at inference time
|
|
28
|
+
box_thresh: minimal objectness score to consider a box
|
|
29
|
+
assume_straight_pages: whether the inputs were expected to have horizontal text elements
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
def __init__(
|
|
33
|
+
self,
|
|
34
|
+
bin_thresh: float = 0.1,
|
|
35
|
+
box_thresh: float = 0.1,
|
|
36
|
+
assume_straight_pages: bool = True,
|
|
37
|
+
) -> None:
|
|
38
|
+
super().__init__(box_thresh, bin_thresh, assume_straight_pages)
|
|
39
|
+
self.unclip_ratio = 1.0
|
|
40
|
+
|
|
41
|
+
def polygon_to_box(
|
|
42
|
+
self,
|
|
43
|
+
points: np.ndarray,
|
|
44
|
+
) -> np.ndarray:
|
|
45
|
+
"""Expand a polygon (points) by a factor unclip_ratio, and returns a polygon
|
|
46
|
+
|
|
47
|
+
Args:
|
|
48
|
+
----
|
|
49
|
+
points: The first parameter.
|
|
50
|
+
|
|
51
|
+
Returns:
|
|
52
|
+
-------
|
|
53
|
+
a box in absolute coordinates (xmin, ymin, xmax, ymax) or (4, 2) array (quadrangle)
|
|
54
|
+
"""
|
|
55
|
+
if not self.assume_straight_pages:
|
|
56
|
+
# Compute the rectangle polygon enclosing the raw polygon
|
|
57
|
+
rect = cv2.minAreaRect(points)
|
|
58
|
+
points = cv2.boxPoints(rect)
|
|
59
|
+
# Add 1 pixel to correct cv2 approx
|
|
60
|
+
area = (rect[1][0] + 1) * (1 + rect[1][1])
|
|
61
|
+
length = 2 * (rect[1][0] + rect[1][1]) + 2
|
|
62
|
+
else:
|
|
63
|
+
poly = Polygon(points)
|
|
64
|
+
area = poly.area
|
|
65
|
+
length = poly.length
|
|
66
|
+
distance = area * self.unclip_ratio / length # compute distance to expand polygon
|
|
67
|
+
offset = pyclipper.PyclipperOffset()
|
|
68
|
+
offset.AddPath(points, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
|
69
|
+
_points = offset.Execute(distance)
|
|
70
|
+
# Take biggest stack of points
|
|
71
|
+
idx = 0
|
|
72
|
+
if len(_points) > 1:
|
|
73
|
+
max_size = 0
|
|
74
|
+
for _idx, p in enumerate(_points):
|
|
75
|
+
if len(p) > max_size:
|
|
76
|
+
idx = _idx
|
|
77
|
+
max_size = len(p)
|
|
78
|
+
# We ensure that _points can be correctly casted to a ndarray
|
|
79
|
+
_points = [_points[idx]]
|
|
80
|
+
expanded_points: np.ndarray = np.asarray(_points) # expand polygon
|
|
81
|
+
if len(expanded_points) < 1:
|
|
82
|
+
return None # type: ignore[return-value]
|
|
83
|
+
return (
|
|
84
|
+
cv2.boundingRect(expanded_points) # type: ignore[return-value]
|
|
85
|
+
if self.assume_straight_pages
|
|
86
|
+
else np.roll(cv2.boxPoints(cv2.minAreaRect(expanded_points)), -1, axis=0)
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
def bitmap_to_boxes(
|
|
90
|
+
self,
|
|
91
|
+
pred: np.ndarray,
|
|
92
|
+
bitmap: np.ndarray,
|
|
93
|
+
) -> np.ndarray:
|
|
94
|
+
"""Compute boxes from a bitmap/pred_map: find connected components then filter boxes
|
|
95
|
+
|
|
96
|
+
Args:
|
|
97
|
+
----
|
|
98
|
+
pred: Pred map from differentiable linknet output
|
|
99
|
+
bitmap: Bitmap map computed from pred (binarized)
|
|
100
|
+
angle_tol: Comparison tolerance of the angle with the median angle across the page
|
|
101
|
+
ratio_tol: Under this limit aspect ratio, we cannot resolve the direction of the crop
|
|
102
|
+
|
|
103
|
+
Returns:
|
|
104
|
+
-------
|
|
105
|
+
np tensor boxes for the bitmap, each box is a 6-element list
|
|
106
|
+
containing x, y, w, h, alpha, score for the box
|
|
107
|
+
"""
|
|
108
|
+
height, width = bitmap.shape[:2]
|
|
109
|
+
boxes: List[Union[np.ndarray, List[float]]] = []
|
|
110
|
+
# get contours from connected components on the bitmap
|
|
111
|
+
contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
112
|
+
for contour in contours:
|
|
113
|
+
# Check whether smallest enclosing bounding box is not too small
|
|
114
|
+
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2): # type: ignore[index]
|
|
115
|
+
continue
|
|
116
|
+
# Compute objectness
|
|
117
|
+
if self.assume_straight_pages:
|
|
118
|
+
x, y, w, h = cv2.boundingRect(contour)
|
|
119
|
+
points: np.ndarray = np.array([[x, y], [x, y + h], [x + w, y + h], [x + w, y]])
|
|
120
|
+
score = self.box_score(pred, points, assume_straight_pages=True)
|
|
121
|
+
else:
|
|
122
|
+
score = self.box_score(pred, contour, assume_straight_pages=False)
|
|
123
|
+
|
|
124
|
+
if score < self.box_thresh: # remove polygons with a weak objectness
|
|
125
|
+
continue
|
|
126
|
+
|
|
127
|
+
if self.assume_straight_pages:
|
|
128
|
+
_box = self.polygon_to_box(points)
|
|
129
|
+
else:
|
|
130
|
+
_box = self.polygon_to_box(np.squeeze(contour))
|
|
131
|
+
|
|
132
|
+
if self.assume_straight_pages:
|
|
133
|
+
# compute relative polygon to get rid of img shape
|
|
134
|
+
x, y, w, h = _box
|
|
135
|
+
xmin, ymin, xmax, ymax = x / width, y / height, (x + w) / width, (y + h) / height
|
|
136
|
+
boxes.append([xmin, ymin, xmax, ymax, score])
|
|
137
|
+
else:
|
|
138
|
+
# compute relative box to get rid of img shape
|
|
139
|
+
_box[:, 0] /= width
|
|
140
|
+
_box[:, 1] /= height
|
|
141
|
+
# Add score to box as (0, score)
|
|
142
|
+
boxes.append(np.vstack([_box, np.array([0.0, score])]))
|
|
143
|
+
|
|
144
|
+
if not self.assume_straight_pages:
|
|
145
|
+
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5, 2), dtype=pred.dtype)
|
|
146
|
+
else:
|
|
147
|
+
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype)
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
class _FAST(BaseModel):
|
|
151
|
+
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
|
|
152
|
+
<https://arxiv.org/pdf/2111.02394.pdf>`_.
|
|
153
|
+
"""
|
|
154
|
+
|
|
155
|
+
min_size_box: int = 3
|
|
156
|
+
assume_straight_pages: bool = True
|
|
157
|
+
shrink_ratio = 0.4
|
|
158
|
+
|
|
159
|
+
def build_target(
|
|
160
|
+
self,
|
|
161
|
+
target: List[Dict[str, np.ndarray]],
|
|
162
|
+
output_shape: Tuple[int, int, int],
|
|
163
|
+
channels_last: bool = True,
|
|
164
|
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
|
165
|
+
"""Build the target, and it's mask to be used from loss computation.
|
|
166
|
+
|
|
167
|
+
Args:
|
|
168
|
+
----
|
|
169
|
+
target: target coming from dataset
|
|
170
|
+
output_shape: shape of the output of the model without batch_size
|
|
171
|
+
channels_last: whether channels are last or not
|
|
172
|
+
|
|
173
|
+
Returns:
|
|
174
|
+
-------
|
|
175
|
+
the new formatted target, mask and shrunken text kernel
|
|
176
|
+
"""
|
|
177
|
+
if any(t.dtype != np.float32 for tgt in target for t in tgt.values()):
|
|
178
|
+
raise AssertionError("the expected dtype of target 'boxes' entry is 'np.float32'.")
|
|
179
|
+
if any(np.any((t[:, :4] > 1) | (t[:, :4] < 0)) for tgt in target for t in tgt.values()):
|
|
180
|
+
raise ValueError("the 'boxes' entry of the target is expected to take values between 0 & 1.")
|
|
181
|
+
|
|
182
|
+
h: int
|
|
183
|
+
w: int
|
|
184
|
+
if channels_last:
|
|
185
|
+
h, w, num_classes = output_shape
|
|
186
|
+
else:
|
|
187
|
+
num_classes, h, w = output_shape
|
|
188
|
+
target_shape = (len(target), num_classes, h, w)
|
|
189
|
+
|
|
190
|
+
seg_target: np.ndarray = np.zeros(target_shape, dtype=np.uint8)
|
|
191
|
+
seg_mask: np.ndarray = np.ones(target_shape, dtype=bool)
|
|
192
|
+
shrunken_kernel: np.ndarray = np.zeros(target_shape, dtype=np.uint8)
|
|
193
|
+
|
|
194
|
+
for idx, tgt in enumerate(target):
|
|
195
|
+
for class_idx, _tgt in enumerate(tgt.values()):
|
|
196
|
+
# Draw each polygon on gt
|
|
197
|
+
if _tgt.shape[0] == 0:
|
|
198
|
+
# Empty image, full masked
|
|
199
|
+
seg_mask[idx, class_idx] = False
|
|
200
|
+
|
|
201
|
+
# Absolute bounding boxes
|
|
202
|
+
abs_boxes = _tgt.copy()
|
|
203
|
+
|
|
204
|
+
if abs_boxes.ndim == 3:
|
|
205
|
+
abs_boxes[:, :, 0] *= w
|
|
206
|
+
abs_boxes[:, :, 1] *= h
|
|
207
|
+
polys = abs_boxes
|
|
208
|
+
boxes_size = np.linalg.norm(abs_boxes[:, 2, :] - abs_boxes[:, 0, :], axis=-1)
|
|
209
|
+
abs_boxes = np.concatenate((abs_boxes.min(1), abs_boxes.max(1)), -1).round().astype(np.int32)
|
|
210
|
+
else:
|
|
211
|
+
abs_boxes[:, [0, 2]] *= w
|
|
212
|
+
abs_boxes[:, [1, 3]] *= h
|
|
213
|
+
abs_boxes = abs_boxes.round().astype(np.int32)
|
|
214
|
+
polys = np.stack(
|
|
215
|
+
[
|
|
216
|
+
abs_boxes[:, [0, 1]],
|
|
217
|
+
abs_boxes[:, [0, 3]],
|
|
218
|
+
abs_boxes[:, [2, 3]],
|
|
219
|
+
abs_boxes[:, [2, 1]],
|
|
220
|
+
],
|
|
221
|
+
axis=1,
|
|
222
|
+
)
|
|
223
|
+
boxes_size = np.minimum(abs_boxes[:, 2] - abs_boxes[:, 0], abs_boxes[:, 3] - abs_boxes[:, 1])
|
|
224
|
+
|
|
225
|
+
for poly, box, box_size in zip(polys, abs_boxes, boxes_size):
|
|
226
|
+
# Mask boxes that are too small
|
|
227
|
+
if box_size < self.min_size_box:
|
|
228
|
+
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
|
|
229
|
+
continue
|
|
230
|
+
|
|
231
|
+
# Negative shrink for gt, as described in paper
|
|
232
|
+
polygon = Polygon(poly)
|
|
233
|
+
distance = polygon.area * (1 - np.power(self.shrink_ratio, 2)) / polygon.length
|
|
234
|
+
subject = [tuple(coor) for coor in poly]
|
|
235
|
+
padding = pyclipper.PyclipperOffset()
|
|
236
|
+
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
|
237
|
+
shrunken = padding.Execute(-distance)
|
|
238
|
+
|
|
239
|
+
# Draw polygon on gt if it is valid
|
|
240
|
+
if len(shrunken) == 0:
|
|
241
|
+
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
|
|
242
|
+
continue
|
|
243
|
+
shrunken = np.array(shrunken[0]).reshape(-1, 2)
|
|
244
|
+
if shrunken.shape[0] <= 2 or not Polygon(shrunken).is_valid:
|
|
245
|
+
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
|
|
246
|
+
continue
|
|
247
|
+
cv2.fillPoly(shrunken_kernel[idx, class_idx], [shrunken.astype(np.int32)], 1.0) # type: ignore[call-overload]
|
|
248
|
+
# draw the original polygon on the segmentation target
|
|
249
|
+
cv2.fillPoly(seg_target[idx, class_idx], [poly.astype(np.int32)], 1.0) # type: ignore[call-overload]
|
|
250
|
+
|
|
251
|
+
# Don't forget to switch back to channel last if Tensorflow is used
|
|
252
|
+
if channels_last:
|
|
253
|
+
seg_target = seg_target.transpose((0, 2, 3, 1))
|
|
254
|
+
seg_mask = seg_mask.transpose((0, 2, 3, 1))
|
|
255
|
+
shrunken_kernel = shrunken_kernel.transpose((0, 2, 3, 1))
|
|
256
|
+
|
|
257
|
+
return seg_target, seg_mask, shrunken_kernel
|