python-doctr 0.8.0__py3-none-any.whl → 0.9.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (85) hide show
  1. doctr/__init__.py +1 -1
  2. doctr/contrib/__init__.py +0 -0
  3. doctr/contrib/artefacts.py +131 -0
  4. doctr/contrib/base.py +105 -0
  5. doctr/datasets/datasets/pytorch.py +2 -2
  6. doctr/datasets/generator/base.py +6 -5
  7. doctr/datasets/imgur5k.py +1 -1
  8. doctr/datasets/loader.py +1 -6
  9. doctr/datasets/utils.py +2 -1
  10. doctr/datasets/vocabs.py +9 -2
  11. doctr/file_utils.py +26 -12
  12. doctr/io/elements.py +40 -6
  13. doctr/io/html.py +2 -2
  14. doctr/io/image/pytorch.py +6 -8
  15. doctr/io/image/tensorflow.py +1 -1
  16. doctr/io/pdf.py +5 -2
  17. doctr/io/reader.py +6 -0
  18. doctr/models/__init__.py +0 -1
  19. doctr/models/_utils.py +57 -20
  20. doctr/models/builder.py +71 -13
  21. doctr/models/classification/mobilenet/pytorch.py +45 -9
  22. doctr/models/classification/mobilenet/tensorflow.py +38 -7
  23. doctr/models/classification/predictor/pytorch.py +18 -11
  24. doctr/models/classification/predictor/tensorflow.py +16 -10
  25. doctr/models/classification/textnet/pytorch.py +3 -3
  26. doctr/models/classification/textnet/tensorflow.py +3 -3
  27. doctr/models/classification/zoo.py +39 -15
  28. doctr/models/detection/__init__.py +1 -0
  29. doctr/models/detection/_utils/__init__.py +1 -0
  30. doctr/models/detection/_utils/base.py +66 -0
  31. doctr/models/detection/differentiable_binarization/base.py +4 -3
  32. doctr/models/detection/differentiable_binarization/pytorch.py +2 -2
  33. doctr/models/detection/differentiable_binarization/tensorflow.py +14 -18
  34. doctr/models/detection/fast/__init__.py +6 -0
  35. doctr/models/detection/fast/base.py +257 -0
  36. doctr/models/detection/fast/pytorch.py +442 -0
  37. doctr/models/detection/fast/tensorflow.py +428 -0
  38. doctr/models/detection/linknet/base.py +4 -3
  39. doctr/models/detection/predictor/pytorch.py +15 -1
  40. doctr/models/detection/predictor/tensorflow.py +15 -1
  41. doctr/models/detection/zoo.py +21 -4
  42. doctr/models/factory/hub.py +3 -12
  43. doctr/models/kie_predictor/base.py +9 -3
  44. doctr/models/kie_predictor/pytorch.py +41 -20
  45. doctr/models/kie_predictor/tensorflow.py +36 -16
  46. doctr/models/modules/layers/pytorch.py +89 -10
  47. doctr/models/modules/layers/tensorflow.py +88 -10
  48. doctr/models/modules/transformer/pytorch.py +2 -2
  49. doctr/models/predictor/base.py +77 -50
  50. doctr/models/predictor/pytorch.py +31 -20
  51. doctr/models/predictor/tensorflow.py +27 -17
  52. doctr/models/preprocessor/pytorch.py +4 -4
  53. doctr/models/preprocessor/tensorflow.py +3 -2
  54. doctr/models/recognition/master/pytorch.py +2 -2
  55. doctr/models/recognition/parseq/pytorch.py +4 -3
  56. doctr/models/recognition/parseq/tensorflow.py +4 -3
  57. doctr/models/recognition/sar/pytorch.py +7 -6
  58. doctr/models/recognition/sar/tensorflow.py +3 -9
  59. doctr/models/recognition/vitstr/pytorch.py +1 -1
  60. doctr/models/recognition/zoo.py +1 -1
  61. doctr/models/zoo.py +2 -2
  62. doctr/py.typed +0 -0
  63. doctr/transforms/functional/base.py +1 -1
  64. doctr/transforms/functional/pytorch.py +4 -4
  65. doctr/transforms/modules/base.py +37 -15
  66. doctr/transforms/modules/pytorch.py +66 -8
  67. doctr/transforms/modules/tensorflow.py +63 -7
  68. doctr/utils/fonts.py +7 -5
  69. doctr/utils/geometry.py +35 -12
  70. doctr/utils/metrics.py +33 -174
  71. doctr/utils/reconstitution.py +126 -0
  72. doctr/utils/visualization.py +5 -118
  73. doctr/version.py +1 -1
  74. {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/METADATA +96 -91
  75. {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/RECORD +79 -75
  76. {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/WHEEL +1 -1
  77. doctr/models/artefacts/__init__.py +0 -2
  78. doctr/models/artefacts/barcode.py +0 -74
  79. doctr/models/artefacts/face.py +0 -63
  80. doctr/models/obj_detection/__init__.py +0 -1
  81. doctr/models/obj_detection/faster_rcnn/__init__.py +0 -4
  82. doctr/models/obj_detection/faster_rcnn/pytorch.py +0 -81
  83. {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/LICENSE +0 -0
  84. {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/top_level.txt +0 -0
  85. {python_doctr-0.8.0.dist-info → python_doctr-0.9.0.dist-info}/zip-safe +0 -0
@@ -0,0 +1,428 @@
1
+ # Copyright (C) 2021-2024, Mindee.
2
+
3
+ # This program is licensed under the Apache License 2.0.
4
+ # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
5
+
6
+ # Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization
7
+
8
+ from copy import deepcopy
9
+ from typing import Any, Dict, List, Optional, Tuple, Union
10
+
11
+ import numpy as np
12
+ import tensorflow as tf
13
+ from tensorflow import keras
14
+ from tensorflow.keras import Sequential, layers
15
+
16
+ from doctr.file_utils import CLASS_NAME
17
+ from doctr.models.utils import IntermediateLayerGetter, _bf16_to_float32, load_pretrained_params
18
+ from doctr.utils.repr import NestedObject
19
+
20
+ from ...classification import textnet_base, textnet_small, textnet_tiny
21
+ from ...modules.layers import FASTConvLayer
22
+ from .base import _FAST, FASTPostProcessor
23
+
24
+ __all__ = ["FAST", "fast_tiny", "fast_small", "fast_base", "reparameterize"]
25
+
26
+
27
+ default_cfgs: Dict[str, Dict[str, Any]] = {
28
+ "fast_tiny": {
29
+ "input_shape": (1024, 1024, 3),
30
+ "mean": (0.798, 0.785, 0.772),
31
+ "std": (0.264, 0.2749, 0.287),
32
+ "url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_tiny-959daecb.zip&src=0",
33
+ },
34
+ "fast_small": {
35
+ "input_shape": (1024, 1024, 3),
36
+ "mean": (0.798, 0.785, 0.772),
37
+ "std": (0.264, 0.2749, 0.287),
38
+ "url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_small-f1617503.zip&src=0",
39
+ },
40
+ "fast_base": {
41
+ "input_shape": (1024, 1024, 3),
42
+ "mean": (0.798, 0.785, 0.772),
43
+ "std": (0.264, 0.2749, 0.287),
44
+ "url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_base-255e2ac3.zip&src=0",
45
+ },
46
+ }
47
+
48
+
49
+ class FastNeck(layers.Layer, NestedObject):
50
+ """Neck of the FAST architecture, composed of a series of 3x3 convolutions and upsampling layer.
51
+
52
+ Args:
53
+ ----
54
+ in_channels: number of input channels
55
+ out_channels: number of output channels
56
+ """
57
+
58
+ def __init__(
59
+ self,
60
+ in_channels: int,
61
+ out_channels: int = 128,
62
+ ) -> None:
63
+ super().__init__()
64
+ self.reduction = [FASTConvLayer(in_channels * scale, out_channels, kernel_size=3) for scale in [1, 2, 4, 8]]
65
+
66
+ def _upsample(self, x: tf.Tensor, y: tf.Tensor) -> tf.Tensor:
67
+ return tf.image.resize(x, size=y.shape[1:3], method="bilinear")
68
+
69
+ def call(self, x: tf.Tensor, **kwargs: Any) -> tf.Tensor:
70
+ f1, f2, f3, f4 = x
71
+ f1, f2, f3, f4 = [reduction(f, **kwargs) for reduction, f in zip(self.reduction, (f1, f2, f3, f4))]
72
+ f2, f3, f4 = [self._upsample(f, f1) for f in (f2, f3, f4)]
73
+ f = tf.concat((f1, f2, f3, f4), axis=-1)
74
+ return f
75
+
76
+
77
+ class FastHead(Sequential):
78
+ """Head of the FAST architecture
79
+
80
+ Args:
81
+ ----
82
+ in_channels: number of input channels
83
+ num_classes: number of output classes
84
+ out_channels: number of output channels
85
+ dropout: dropout probability
86
+ """
87
+
88
+ def __init__(
89
+ self,
90
+ in_channels: int,
91
+ num_classes: int,
92
+ out_channels: int = 128,
93
+ dropout: float = 0.1,
94
+ ) -> None:
95
+ _layers = [
96
+ FASTConvLayer(in_channels, out_channels, kernel_size=3),
97
+ layers.Dropout(dropout),
98
+ layers.Conv2D(num_classes, kernel_size=1, use_bias=False),
99
+ ]
100
+ super().__init__(_layers)
101
+
102
+
103
+ class FAST(_FAST, keras.Model, NestedObject):
104
+ """FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
105
+ <https://arxiv.org/pdf/2111.02394.pdf>`_.
106
+
107
+ Args:
108
+ ----
109
+ feature extractor: the backbone serving as feature extractor
110
+ bin_thresh: threshold for binarization
111
+ box_thresh: minimal objectness score to consider a box
112
+ dropout_prob: dropout probability
113
+ pooling_size: size of the pooling layer
114
+ assume_straight_pages: if True, fit straight bounding boxes only
115
+ exportable: onnx exportable returns only logits
116
+ cfg: the configuration dict of the model
117
+ class_names: list of class names
118
+ """
119
+
120
+ _children_names: List[str] = ["feat_extractor", "neck", "head", "postprocessor"]
121
+
122
+ def __init__(
123
+ self,
124
+ feature_extractor: IntermediateLayerGetter,
125
+ bin_thresh: float = 0.1,
126
+ box_thresh: float = 0.1,
127
+ dropout_prob: float = 0.1,
128
+ pooling_size: int = 4, # different from paper performs better on close text-rich images
129
+ assume_straight_pages: bool = True,
130
+ exportable: bool = False,
131
+ cfg: Optional[Dict[str, Any]] = {},
132
+ class_names: List[str] = [CLASS_NAME],
133
+ ) -> None:
134
+ super().__init__()
135
+ self.class_names = class_names
136
+ num_classes: int = len(self.class_names)
137
+ self.cfg = cfg
138
+
139
+ self.feat_extractor = feature_extractor
140
+ self.exportable = exportable
141
+ self.assume_straight_pages = assume_straight_pages
142
+
143
+ # Identify the number of channels for the neck & head initialization
144
+ feat_out_channels = [
145
+ layers.Input(shape=in_shape[1:]).shape[-1] for in_shape in self.feat_extractor.output_shape
146
+ ]
147
+ # Initialize neck & head
148
+ self.neck = FastNeck(feat_out_channels[0], feat_out_channels[1])
149
+ self.head = FastHead(feat_out_channels[-1], num_classes, feat_out_channels[1], dropout_prob)
150
+
151
+ # NOTE: The post processing from the paper works not well for text-rich images
152
+ # so we use a modified version from DBNet
153
+ self.postprocessor = FASTPostProcessor(
154
+ assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh, box_thresh=box_thresh
155
+ )
156
+
157
+ # Pooling layer as erosion reversal as described in the paper
158
+ self.pooling = layers.MaxPooling2D(pool_size=pooling_size // 2 + 1, strides=1, padding="same")
159
+
160
+ def compute_loss(
161
+ self,
162
+ out_map: tf.Tensor,
163
+ target: List[Dict[str, np.ndarray]],
164
+ eps: float = 1e-6,
165
+ ) -> tf.Tensor:
166
+ """Compute fast loss, 2 x Dice loss where the text kernel loss is scaled by 0.5.
167
+
168
+ Args:
169
+ ----
170
+ out_map: output feature map of the model of shape (N, num_classes, H, W)
171
+ target: list of dictionary where each dict has a `boxes` and a `flags` entry
172
+ eps: epsilon factor in dice loss
173
+
174
+ Returns:
175
+ -------
176
+ A loss tensor
177
+ """
178
+ targets = self.build_target(target, out_map.shape[1:], True)
179
+
180
+ seg_target = tf.convert_to_tensor(targets[0], dtype=out_map.dtype)
181
+ seg_mask = tf.convert_to_tensor(targets[1], dtype=out_map.dtype)
182
+ shrunken_kernel = tf.convert_to_tensor(targets[2], dtype=out_map.dtype)
183
+
184
+ def ohem(score: tf.Tensor, gt: tf.Tensor, mask: tf.Tensor) -> tf.Tensor:
185
+ pos_num = tf.reduce_sum(tf.cast(gt > 0.5, dtype=tf.int32)) - tf.reduce_sum(
186
+ tf.cast((gt > 0.5) & (mask <= 0.5), dtype=tf.int32)
187
+ )
188
+ neg_num = tf.reduce_sum(tf.cast(gt <= 0.5, dtype=tf.int32))
189
+ neg_num = tf.minimum(pos_num * 3, neg_num)
190
+
191
+ if neg_num == 0 or pos_num == 0:
192
+ return mask
193
+
194
+ neg_score_sorted, _ = tf.nn.top_k(-tf.boolean_mask(score, gt <= 0.5), k=neg_num)
195
+ threshold = -neg_score_sorted[-1]
196
+
197
+ selected_mask = tf.math.logical_and((score >= threshold) | (gt > 0.5), (mask > 0.5))
198
+ return tf.cast(selected_mask, dtype=tf.float32)
199
+
200
+ if len(self.class_names) > 1:
201
+ kernels = tf.nn.softmax(out_map, axis=-1)
202
+ prob_map = tf.nn.softmax(self.pooling(out_map), axis=-1)
203
+ else:
204
+ kernels = tf.sigmoid(out_map)
205
+ prob_map = tf.sigmoid(self.pooling(out_map))
206
+
207
+ # As described in the paper, we use the Dice loss for the text segmentation map and the Dice loss scaled by 0.5.
208
+ selected_masks = tf.stack(
209
+ [ohem(score, gt, mask) for score, gt, mask in zip(prob_map, seg_target, seg_mask)], axis=0
210
+ )
211
+ inter = tf.reduce_sum(selected_masks * prob_map * seg_target, axis=(0, 1, 2))
212
+ cardinality = tf.reduce_sum(selected_masks * (prob_map + seg_target), axis=(0, 1, 2))
213
+ text_loss = tf.reduce_mean((1 - 2 * inter / (cardinality + eps))) * 0.5
214
+
215
+ # As described in the paper, we use the Dice loss for the text kernel map.
216
+ selected_masks = seg_target * seg_mask
217
+ inter = tf.reduce_sum(selected_masks * kernels * shrunken_kernel, axis=(0, 1, 2))
218
+ cardinality = tf.reduce_sum(selected_masks * (kernels + shrunken_kernel), axis=(0, 1, 2))
219
+ kernel_loss = tf.reduce_mean((1 - 2 * inter / (cardinality + eps)))
220
+
221
+ return text_loss + kernel_loss
222
+
223
+ def call(
224
+ self,
225
+ x: tf.Tensor,
226
+ target: Optional[List[Dict[str, np.ndarray]]] = None,
227
+ return_model_output: bool = False,
228
+ return_preds: bool = False,
229
+ **kwargs: Any,
230
+ ) -> Dict[str, Any]:
231
+ feat_maps = self.feat_extractor(x, **kwargs)
232
+ # Pass through the Neck & Head & Upsample
233
+ feat_concat = self.neck(feat_maps, **kwargs)
234
+ logits: tf.Tensor = self.head(feat_concat, **kwargs)
235
+ logits = layers.UpSampling2D(size=x.shape[-2] // logits.shape[-2], interpolation="bilinear")(logits, **kwargs)
236
+
237
+ out: Dict[str, tf.Tensor] = {}
238
+ if self.exportable:
239
+ out["logits"] = logits
240
+ return out
241
+
242
+ if return_model_output or target is None or return_preds:
243
+ prob_map = _bf16_to_float32(tf.math.sigmoid(self.pooling(logits, **kwargs)))
244
+
245
+ if return_model_output:
246
+ out["out_map"] = prob_map
247
+
248
+ if target is None or return_preds:
249
+ # Post-process boxes (keep only text predictions)
250
+ out["preds"] = [dict(zip(self.class_names, preds)) for preds in self.postprocessor(prob_map.numpy())]
251
+
252
+ if target is not None:
253
+ loss = self.compute_loss(logits, target)
254
+ out["loss"] = loss
255
+
256
+ return out
257
+
258
+
259
+ def reparameterize(model: Union[FAST, layers.Layer]) -> FAST:
260
+ """Fuse batchnorm and conv layers and reparameterize the model
261
+
262
+ args:
263
+ ----
264
+ model: the FAST model to reparameterize
265
+
266
+ Returns:
267
+ -------
268
+ the reparameterized model
269
+ """
270
+ last_conv = None
271
+ last_conv_idx = None
272
+
273
+ for idx, layer in enumerate(model.layers):
274
+ if hasattr(layer, "layers") or isinstance(
275
+ layer, (FASTConvLayer, FastNeck, FastHead, layers.BatchNormalization, layers.Conv2D)
276
+ ):
277
+ if isinstance(layer, layers.BatchNormalization):
278
+ # fuse batchnorm only if it is followed by a conv layer
279
+ if last_conv is None:
280
+ continue
281
+ conv_w = last_conv.kernel
282
+ conv_b = last_conv.bias if last_conv.use_bias else tf.zeros_like(layer.moving_mean)
283
+
284
+ factor = layer.gamma / tf.sqrt(layer.moving_variance + layer.epsilon)
285
+ last_conv.kernel = conv_w * factor.numpy().reshape([1, 1, 1, -1])
286
+ if last_conv.use_bias:
287
+ last_conv.bias.assign((conv_b - layer.moving_mean) * factor + layer.beta)
288
+ model.layers[last_conv_idx] = last_conv # Replace the last conv layer with the fused version
289
+ model.layers[idx] = layers.Lambda(lambda x: x)
290
+ last_conv = None
291
+ elif isinstance(layer, layers.Conv2D):
292
+ last_conv = layer
293
+ last_conv_idx = idx
294
+ elif isinstance(layer, FASTConvLayer):
295
+ layer.reparameterize_layer()
296
+ elif isinstance(layer, FastNeck):
297
+ for reduction in layer.reduction:
298
+ reduction.reparameterize_layer()
299
+ elif isinstance(layer, FastHead):
300
+ reparameterize(layer)
301
+ else:
302
+ reparameterize(layer)
303
+ return model
304
+
305
+
306
+ def _fast(
307
+ arch: str,
308
+ pretrained: bool,
309
+ backbone_fn,
310
+ feat_layers: List[str],
311
+ pretrained_backbone: bool = True,
312
+ input_shape: Optional[Tuple[int, int, int]] = None,
313
+ **kwargs: Any,
314
+ ) -> FAST:
315
+ pretrained_backbone = pretrained_backbone and not pretrained
316
+
317
+ # Patch the config
318
+ _cfg = deepcopy(default_cfgs[arch])
319
+ _cfg["input_shape"] = input_shape or _cfg["input_shape"]
320
+ if not kwargs.get("class_names", None):
321
+ kwargs["class_names"] = _cfg.get("class_names", [CLASS_NAME])
322
+ else:
323
+ kwargs["class_names"] = sorted(kwargs["class_names"])
324
+
325
+ # Feature extractor
326
+ feat_extractor = IntermediateLayerGetter(
327
+ backbone_fn(
328
+ input_shape=_cfg["input_shape"],
329
+ include_top=False,
330
+ pretrained=pretrained_backbone,
331
+ ),
332
+ feat_layers,
333
+ )
334
+
335
+ # Build the model
336
+ model = FAST(feat_extractor, cfg=_cfg, **kwargs)
337
+ # Load pretrained parameters
338
+ if pretrained:
339
+ load_pretrained_params(model, _cfg["url"])
340
+
341
+ # Build the model for reparameterization to access the layers
342
+ _ = model(tf.random.uniform(shape=[1, *_cfg["input_shape"]], maxval=1, dtype=tf.float32), training=False)
343
+
344
+ return model
345
+
346
+
347
+ def fast_tiny(pretrained: bool = False, **kwargs: Any) -> FAST:
348
+ """FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
349
+ <https://arxiv.org/pdf/2111.02394.pdf>`_, using a tiny TextNet backbone.
350
+
351
+ >>> import tensorflow as tf
352
+ >>> from doctr.models import fast_tiny
353
+ >>> model = fast_tiny(pretrained=True)
354
+ >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32)
355
+ >>> out = model(input_tensor)
356
+
357
+ Args:
358
+ ----
359
+ pretrained (bool): If True, returns a model pre-trained on our text detection dataset
360
+ **kwargs: keyword arguments of the DBNet architecture
361
+
362
+ Returns:
363
+ -------
364
+ text detection architecture
365
+ """
366
+ return _fast(
367
+ "fast_tiny",
368
+ pretrained,
369
+ textnet_tiny,
370
+ ["stage_0", "stage_1", "stage_2", "stage_3"],
371
+ **kwargs,
372
+ )
373
+
374
+
375
+ def fast_small(pretrained: bool = False, **kwargs: Any) -> FAST:
376
+ """FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
377
+ <https://arxiv.org/pdf/2111.02394.pdf>`_, using a small TextNet backbone.
378
+
379
+ >>> import tensorflow as tf
380
+ >>> from doctr.models import fast_small
381
+ >>> model = fast_small(pretrained=True)
382
+ >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32)
383
+ >>> out = model(input_tensor)
384
+
385
+ Args:
386
+ ----
387
+ pretrained (bool): If True, returns a model pre-trained on our text detection dataset
388
+ **kwargs: keyword arguments of the DBNet architecture
389
+
390
+ Returns:
391
+ -------
392
+ text detection architecture
393
+ """
394
+ return _fast(
395
+ "fast_small",
396
+ pretrained,
397
+ textnet_small,
398
+ ["stage_0", "stage_1", "stage_2", "stage_3"],
399
+ **kwargs,
400
+ )
401
+
402
+
403
+ def fast_base(pretrained: bool = False, **kwargs: Any) -> FAST:
404
+ """FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
405
+ <https://arxiv.org/pdf/2111.02394.pdf>`_, using a base TextNet backbone.
406
+
407
+ >>> import tensorflow as tf
408
+ >>> from doctr.models import fast_base
409
+ >>> model = fast_base(pretrained=True)
410
+ >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32)
411
+ >>> out = model(input_tensor)
412
+
413
+ Args:
414
+ ----
415
+ pretrained (bool): If True, returns a model pre-trained on our text detection dataset
416
+ **kwargs: keyword arguments of the DBNet architecture
417
+
418
+ Returns:
419
+ -------
420
+ text detection architecture
421
+ """
422
+ return _fast(
423
+ "fast_base",
424
+ pretrained,
425
+ textnet_base,
426
+ ["stage_0", "stage_1", "stage_2", "stage_3"],
427
+ **kwargs,
428
+ )
@@ -111,7 +111,7 @@ class LinkNetPostProcessor(DetectionPostProcessor):
111
111
  contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
112
112
  for contour in contours:
113
113
  # Check whether smallest enclosing bounding box is not too small
114
- if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2):
114
+ if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2): # type: ignore[index]
115
115
  continue
116
116
  # Compute objectness
117
117
  if self.assume_straight_pages:
@@ -138,10 +138,11 @@ class LinkNetPostProcessor(DetectionPostProcessor):
138
138
  # compute relative box to get rid of img shape
139
139
  _box[:, 0] /= width
140
140
  _box[:, 1] /= height
141
- boxes.append(_box)
141
+ # Add score to box as (0, score)
142
+ boxes.append(np.vstack([_box, np.array([0.0, score])]))
142
143
 
143
144
  if not self.assume_straight_pages:
144
- return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 4, 2), dtype=pred.dtype)
145
+ return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5, 2), dtype=pred.dtype)
145
146
  else:
146
147
  return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype)
147
148
 
@@ -9,6 +9,7 @@ import numpy as np
9
9
  import torch
10
10
  from torch import nn
11
11
 
12
+ from doctr.models.detection._utils import _remove_padding
12
13
  from doctr.models.preprocessor import PreProcessor
13
14
  from doctr.models.utils import set_device_and_dtype
14
15
 
@@ -40,6 +41,11 @@ class DetectionPredictor(nn.Module):
40
41
  return_maps: bool = False,
41
42
  **kwargs: Any,
42
43
  ) -> Union[List[Dict[str, np.ndarray]], Tuple[List[Dict[str, np.ndarray]], List[np.ndarray]]]:
44
+ # Extract parameters from the preprocessor
45
+ preserve_aspect_ratio = self.pre_processor.resize.preserve_aspect_ratio
46
+ symmetric_pad = self.pre_processor.resize.symmetric_pad
47
+ assume_straight_pages = self.model.assume_straight_pages
48
+
43
49
  # Dimension check
44
50
  if any(page.ndim != 3 for page in pages):
45
51
  raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.")
@@ -52,7 +58,15 @@ class DetectionPredictor(nn.Module):
52
58
  predicted_batches = [
53
59
  self.model(batch, return_preds=True, return_model_output=True, **kwargs) for batch in processed_batches
54
60
  ]
55
- preds = [pred for batch in predicted_batches for pred in batch["preds"]]
61
+ # Remove padding from loc predictions
62
+ preds = _remove_padding(
63
+ pages, # type: ignore[arg-type]
64
+ [pred for batch in predicted_batches for pred in batch["preds"]],
65
+ preserve_aspect_ratio=preserve_aspect_ratio,
66
+ symmetric_pad=symmetric_pad,
67
+ assume_straight_pages=assume_straight_pages,
68
+ )
69
+
56
70
  if return_maps:
57
71
  seg_maps = [
58
72
  pred.permute(1, 2, 0).detach().cpu().numpy() for batch in predicted_batches for pred in batch["out_map"]
@@ -9,6 +9,7 @@ import numpy as np
9
9
  import tensorflow as tf
10
10
  from tensorflow import keras
11
11
 
12
+ from doctr.models.detection._utils import _remove_padding
12
13
  from doctr.models.preprocessor import PreProcessor
13
14
  from doctr.utils.repr import NestedObject
14
15
 
@@ -40,6 +41,11 @@ class DetectionPredictor(NestedObject):
40
41
  return_maps: bool = False,
41
42
  **kwargs: Any,
42
43
  ) -> Union[List[Dict[str, np.ndarray]], Tuple[List[Dict[str, np.ndarray]], List[np.ndarray]]]:
44
+ # Extract parameters from the preprocessor
45
+ preserve_aspect_ratio = self.pre_processor.resize.preserve_aspect_ratio
46
+ symmetric_pad = self.pre_processor.resize.symmetric_pad
47
+ assume_straight_pages = self.model.assume_straight_pages
48
+
43
49
  # Dimension check
44
50
  if any(page.ndim != 3 for page in pages):
45
51
  raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.")
@@ -50,7 +56,15 @@ class DetectionPredictor(NestedObject):
50
56
  for batch in processed_batches
51
57
  ]
52
58
 
53
- preds = [pred for batch in predicted_batches for pred in batch["preds"]]
59
+ # Remove padding from loc predictions
60
+ preds = _remove_padding(
61
+ pages,
62
+ [pred for batch in predicted_batches for pred in batch["preds"]],
63
+ preserve_aspect_ratio=preserve_aspect_ratio,
64
+ symmetric_pad=symmetric_pad,
65
+ assume_straight_pages=assume_straight_pages,
66
+ )
67
+
54
68
  if return_maps:
55
69
  seg_maps = [pred.numpy() for batch in predicted_batches for pred in batch["out_map"]]
56
70
  return preds, seg_maps
@@ -8,6 +8,7 @@ from typing import Any, List
8
8
  from doctr.file_utils import is_tf_available, is_torch_available
9
9
 
10
10
  from .. import detection
11
+ from ..detection.fast import reparameterize
11
12
  from ..preprocessor import PreProcessor
12
13
  from .predictor import DetectionPredictor
13
14
 
@@ -17,7 +18,16 @@ ARCHS: List[str]
17
18
 
18
19
 
19
20
  if is_tf_available():
20
- ARCHS = ["db_resnet50", "db_mobilenet_v3_large", "linknet_resnet18", "linknet_resnet34", "linknet_resnet50"]
21
+ ARCHS = [
22
+ "db_resnet50",
23
+ "db_mobilenet_v3_large",
24
+ "linknet_resnet18",
25
+ "linknet_resnet34",
26
+ "linknet_resnet50",
27
+ "fast_tiny",
28
+ "fast_small",
29
+ "fast_base",
30
+ ]
21
31
  elif is_torch_available():
22
32
  ARCHS = [
23
33
  "db_resnet34",
@@ -26,6 +36,9 @@ elif is_torch_available():
26
36
  "linknet_resnet18",
27
37
  "linknet_resnet34",
28
38
  "linknet_resnet50",
39
+ "fast_tiny",
40
+ "fast_small",
41
+ "fast_base",
29
42
  ]
30
43
 
31
44
 
@@ -39,18 +52,22 @@ def _predictor(arch: Any, pretrained: bool, assume_straight_pages: bool = True,
39
52
  pretrained_backbone=kwargs.get("pretrained_backbone", True),
40
53
  assume_straight_pages=assume_straight_pages,
41
54
  )
55
+ # Reparameterize FAST models by default to lower inference latency and memory usage
56
+ if isinstance(_model, detection.FAST):
57
+ _model = reparameterize(_model)
42
58
  else:
43
- if not isinstance(arch, (detection.DBNet, detection.LinkNet)):
59
+ if not isinstance(arch, (detection.DBNet, detection.LinkNet, detection.FAST)):
44
60
  raise ValueError(f"unknown architecture: {type(arch)}")
45
61
 
46
62
  _model = arch
47
63
  _model.assume_straight_pages = assume_straight_pages
64
+ _model.postprocessor.assume_straight_pages = assume_straight_pages
48
65
 
49
66
  kwargs.pop("pretrained_backbone", None)
50
67
 
51
68
  kwargs["mean"] = kwargs.get("mean", _model.cfg["mean"])
52
69
  kwargs["std"] = kwargs.get("std", _model.cfg["std"])
53
- kwargs["batch_size"] = kwargs.get("batch_size", 1)
70
+ kwargs["batch_size"] = kwargs.get("batch_size", 2)
54
71
  predictor = DetectionPredictor(
55
72
  PreProcessor(_model.cfg["input_shape"][:-1] if is_tf_available() else _model.cfg["input_shape"][1:], **kwargs),
56
73
  _model,
@@ -59,7 +76,7 @@ def _predictor(arch: Any, pretrained: bool, assume_straight_pages: bool = True,
59
76
 
60
77
 
61
78
  def detection_predictor(
62
- arch: Any = "db_resnet50",
79
+ arch: Any = "fast_base",
63
80
  pretrained: bool = False,
64
81
  assume_straight_pages: bool = True,
65
82
  **kwargs: Any,
@@ -36,7 +36,6 @@ AVAILABLE_ARCHS = {
36
36
  "classification": models.classification.zoo.ARCHS,
37
37
  "detection": models.detection.zoo.ARCHS,
38
38
  "recognition": models.recognition.zoo.ARCHS,
39
- "obj_detection": ["fasterrcnn_mobilenet_v3_large_fpn"] if is_torch_available() else None,
40
39
  }
41
40
 
42
41
 
@@ -110,8 +109,8 @@ def push_to_hf_hub(model: Any, model_name: str, task: str, **kwargs) -> None: #
110
109
 
111
110
  if run_config is None and arch is None:
112
111
  raise ValueError("run_config or arch must be specified")
113
- if task not in ["classification", "detection", "recognition", "obj_detection"]:
114
- raise ValueError("task must be one of classification, detection, recognition, obj_detection")
112
+ if task not in ["classification", "detection", "recognition"]:
113
+ raise ValueError("task must be one of classification, detection, recognition")
115
114
 
116
115
  # default readme
117
116
  readme = textwrap.dedent(
@@ -165,7 +164,7 @@ def push_to_hf_hub(model: Any, model_name: str, task: str, **kwargs) -> None: #
165
164
  \n{json.dumps(vars(run_config), indent=2, ensure_ascii=False)}"""
166
165
  )
167
166
 
168
- if arch not in AVAILABLE_ARCHS[task]: # type: ignore
167
+ if arch not in AVAILABLE_ARCHS[task]:
169
168
  raise ValueError(
170
169
  f"Architecture: {arch} for task: {task} not found.\
171
170
  \nAvailable architectures: {AVAILABLE_ARCHS}"
@@ -217,14 +216,6 @@ def from_hub(repo_id: str, **kwargs: Any):
217
216
  model = models.detection.__dict__[arch](pretrained=False)
218
217
  elif task == "recognition":
219
218
  model = models.recognition.__dict__[arch](pretrained=False, input_shape=cfg["input_shape"], vocab=cfg["vocab"])
220
- elif task == "obj_detection" and is_torch_available():
221
- model = models.obj_detection.__dict__[arch](
222
- pretrained=False,
223
- image_mean=cfg["mean"],
224
- image_std=cfg["std"],
225
- max_size=cfg["input_shape"][-1],
226
- num_classes=len(cfg["classes"]),
227
- )
228
219
 
229
220
  # update model cfg
230
221
  model.cfg = cfg
@@ -7,7 +7,7 @@ from typing import Any, Optional
7
7
 
8
8
  from doctr.models.builder import KIEDocumentBuilder
9
9
 
10
- from ..classification.predictor import CropOrientationPredictor
10
+ from ..classification.predictor import OrientationPredictor
11
11
  from ..predictor.base import _OCRPredictor
12
12
 
13
13
  __all__ = ["_KIEPredictor"]
@@ -25,10 +25,13 @@ class _KIEPredictor(_OCRPredictor):
25
25
  accordingly. Doing so will improve performances for documents with page-uniform rotations.
26
26
  preserve_aspect_ratio: if True, resize preserving the aspect ratio (with padding)
27
27
  symmetric_pad: if True and preserve_aspect_ratio is True, pas the image symmetrically.
28
+ detect_orientation: if True, the estimated general page orientation will be added to the predictions for each
29
+ page. Doing so will slightly deteriorate the overall latency.
28
30
  kwargs: keyword args of `DocumentBuilder`
29
31
  """
30
32
 
31
- crop_orientation_predictor: Optional[CropOrientationPredictor]
33
+ crop_orientation_predictor: Optional[OrientationPredictor]
34
+ page_orientation_predictor: Optional[OrientationPredictor]
32
35
 
33
36
  def __init__(
34
37
  self,
@@ -36,8 +39,11 @@ class _KIEPredictor(_OCRPredictor):
36
39
  straighten_pages: bool = False,
37
40
  preserve_aspect_ratio: bool = True,
38
41
  symmetric_pad: bool = True,
42
+ detect_orientation: bool = False,
39
43
  **kwargs: Any,
40
44
  ) -> None:
41
- super().__init__(assume_straight_pages, straighten_pages, preserve_aspect_ratio, symmetric_pad, **kwargs)
45
+ super().__init__(
46
+ assume_straight_pages, straighten_pages, preserve_aspect_ratio, symmetric_pad, detect_orientation, **kwargs
47
+ )
42
48
 
43
49
  self.doc_builder: KIEDocumentBuilder = KIEDocumentBuilder(**kwargs)