pymodaq 5.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (154) hide show
  1. pymodaq/__init__.py +98 -0
  2. pymodaq/control_modules/__init__.py +1 -0
  3. pymodaq/control_modules/daq_move.py +1238 -0
  4. pymodaq/control_modules/daq_move_ui/__init__.py +0 -0
  5. pymodaq/control_modules/daq_move_ui/factory.py +48 -0
  6. pymodaq/control_modules/daq_move_ui/ui_base.py +359 -0
  7. pymodaq/control_modules/daq_move_ui/uis/__init__.py +0 -0
  8. pymodaq/control_modules/daq_move_ui/uis/binary.py +139 -0
  9. pymodaq/control_modules/daq_move_ui/uis/original.py +120 -0
  10. pymodaq/control_modules/daq_move_ui/uis/relative.py +124 -0
  11. pymodaq/control_modules/daq_move_ui/uis/simple.py +126 -0
  12. pymodaq/control_modules/daq_viewer.py +1517 -0
  13. pymodaq/control_modules/daq_viewer_ui.py +407 -0
  14. pymodaq/control_modules/mocks.py +57 -0
  15. pymodaq/control_modules/move_utility_classes.py +1141 -0
  16. pymodaq/control_modules/thread_commands.py +137 -0
  17. pymodaq/control_modules/ui_utils.py +72 -0
  18. pymodaq/control_modules/utils.py +591 -0
  19. pymodaq/control_modules/viewer_utility_classes.py +670 -0
  20. pymodaq/daq_utils/__init__.py +0 -0
  21. pymodaq/daq_utils/daq_utils.py +6 -0
  22. pymodaq/dashboard.py +2396 -0
  23. pymodaq/examples/Labview_TCP_Client/DAQ_TCP_Client.aliases +3 -0
  24. pymodaq/examples/Labview_TCP_Client/DAQ_TCP_Client.lvlps +3 -0
  25. pymodaq/examples/Labview_TCP_Client/DAQ_TCP_Client.lvproj +32 -0
  26. pymodaq/examples/Labview_TCP_Client/DAQ_TCP_Client.vi +0 -0
  27. pymodaq/examples/Labview_TCP_Client/DAQ_TCP_Server_1Dgaussian.vi +0 -0
  28. pymodaq/examples/Labview_TCP_Client/DAQ_TCP_Server_2Dgaussian.vi +0 -0
  29. pymodaq/examples/Labview_TCP_Client/DAQ_TCP_read_cmd.vi +0 -0
  30. pymodaq/examples/Labview_TCP_Client/DAQ_TCP_read_float.vi +0 -0
  31. pymodaq/examples/Labview_TCP_Client/DAQ_TCP_read_int.vi +0 -0
  32. pymodaq/examples/Labview_TCP_Client/DAQ_TCP_send_data.vi +0 -0
  33. pymodaq/examples/Labview_TCP_Client/DAQ_TCP_send_int.vi +0 -0
  34. pymodaq/examples/Labview_TCP_Client/DAQ_TCP_send_scalar.vi +0 -0
  35. pymodaq/examples/Labview_TCP_Client/DAQ_TCP_send_string.vi +0 -0
  36. pymodaq/examples/Labview_TCP_Client/client_state.ctl +0 -0
  37. pymodaq/examples/Labview_TCP_Client/cmd_types.ctl +0 -0
  38. pymodaq/examples/__init__.py +0 -0
  39. pymodaq/examples/function_plotter.py +160 -0
  40. pymodaq/examples/nonlinearscanner.py +126 -0
  41. pymodaq/examples/qt_less_standalone_module.py +165 -0
  42. pymodaq/examples/tcp_client.py +97 -0
  43. pymodaq/extensions/__init__.py +25 -0
  44. pymodaq/extensions/adaptive/__init__.py +2 -0
  45. pymodaq/extensions/adaptive/adaptive_optimization.py +179 -0
  46. pymodaq/extensions/adaptive/loss_function/_1d_loss_functions.py +73 -0
  47. pymodaq/extensions/adaptive/loss_function/_2d_loss_functions.py +73 -0
  48. pymodaq/extensions/adaptive/loss_function/__init__.py +3 -0
  49. pymodaq/extensions/adaptive/loss_function/loss_factory.py +110 -0
  50. pymodaq/extensions/adaptive/utils.py +123 -0
  51. pymodaq/extensions/bayesian/__init__.py +2 -0
  52. pymodaq/extensions/bayesian/acquisition/__init__.py +2 -0
  53. pymodaq/extensions/bayesian/acquisition/acquisition_function_factory.py +80 -0
  54. pymodaq/extensions/bayesian/acquisition/base_acquisition_function.py +105 -0
  55. pymodaq/extensions/bayesian/bayesian_optimization.py +143 -0
  56. pymodaq/extensions/bayesian/utils.py +180 -0
  57. pymodaq/extensions/console.py +73 -0
  58. pymodaq/extensions/daq_logger/__init__.py +1 -0
  59. pymodaq/extensions/daq_logger/abstract.py +52 -0
  60. pymodaq/extensions/daq_logger/daq_logger.py +519 -0
  61. pymodaq/extensions/daq_logger/db/__init__.py +0 -0
  62. pymodaq/extensions/daq_logger/db/db_logger.py +300 -0
  63. pymodaq/extensions/daq_logger/db/db_logger_models.py +100 -0
  64. pymodaq/extensions/daq_logger/h5logging.py +84 -0
  65. pymodaq/extensions/daq_scan.py +1218 -0
  66. pymodaq/extensions/daq_scan_ui.py +241 -0
  67. pymodaq/extensions/data_mixer/__init__.py +0 -0
  68. pymodaq/extensions/data_mixer/daq_0Dviewer_DataMixer.py +97 -0
  69. pymodaq/extensions/data_mixer/data_mixer.py +262 -0
  70. pymodaq/extensions/data_mixer/model.py +108 -0
  71. pymodaq/extensions/data_mixer/models/__init__.py +0 -0
  72. pymodaq/extensions/data_mixer/models/equation_model.py +91 -0
  73. pymodaq/extensions/data_mixer/models/gaussian_fit_model.py +65 -0
  74. pymodaq/extensions/data_mixer/parser.py +53 -0
  75. pymodaq/extensions/data_mixer/utils.py +23 -0
  76. pymodaq/extensions/h5browser.py +9 -0
  77. pymodaq/extensions/optimizers_base/__init__.py +0 -0
  78. pymodaq/extensions/optimizers_base/optimizer.py +1016 -0
  79. pymodaq/extensions/optimizers_base/thread_commands.py +22 -0
  80. pymodaq/extensions/optimizers_base/utils.py +427 -0
  81. pymodaq/extensions/pid/__init__.py +16 -0
  82. pymodaq/extensions/pid/actuator_controller.py +14 -0
  83. pymodaq/extensions/pid/daq_move_PID.py +154 -0
  84. pymodaq/extensions/pid/pid_controller.py +1016 -0
  85. pymodaq/extensions/pid/utils.py +189 -0
  86. pymodaq/extensions/utils.py +111 -0
  87. pymodaq/icon.ico +0 -0
  88. pymodaq/post_treatment/__init__.py +6 -0
  89. pymodaq/post_treatment/load_and_plot.py +352 -0
  90. pymodaq/resources/__init__.py +0 -0
  91. pymodaq/resources/config_template.toml +57 -0
  92. pymodaq/resources/preset_default.xml +1 -0
  93. pymodaq/resources/setup_plugin.py +73 -0
  94. pymodaq/splash.png +0 -0
  95. pymodaq/utils/__init__.py +0 -0
  96. pymodaq/utils/array_manipulation.py +6 -0
  97. pymodaq/utils/calibration_camera.py +180 -0
  98. pymodaq/utils/chrono_timer.py +203 -0
  99. pymodaq/utils/config.py +53 -0
  100. pymodaq/utils/conftests.py +5 -0
  101. pymodaq/utils/daq_utils.py +158 -0
  102. pymodaq/utils/data.py +128 -0
  103. pymodaq/utils/enums.py +6 -0
  104. pymodaq/utils/exceptions.py +38 -0
  105. pymodaq/utils/gui_utils/__init__.py +10 -0
  106. pymodaq/utils/gui_utils/loader_utils.py +75 -0
  107. pymodaq/utils/gui_utils/utils.py +18 -0
  108. pymodaq/utils/gui_utils/widgets/lcd.py +8 -0
  109. pymodaq/utils/h5modules/__init__.py +2 -0
  110. pymodaq/utils/h5modules/module_saving.py +526 -0
  111. pymodaq/utils/leco/__init__.py +25 -0
  112. pymodaq/utils/leco/daq_move_LECODirector.py +217 -0
  113. pymodaq/utils/leco/daq_xDviewer_LECODirector.py +163 -0
  114. pymodaq/utils/leco/director_utils.py +74 -0
  115. pymodaq/utils/leco/leco_director.py +166 -0
  116. pymodaq/utils/leco/pymodaq_listener.py +364 -0
  117. pymodaq/utils/leco/rpc_method_definitions.py +43 -0
  118. pymodaq/utils/leco/utils.py +74 -0
  119. pymodaq/utils/logger.py +6 -0
  120. pymodaq/utils/managers/__init__.py +0 -0
  121. pymodaq/utils/managers/batchscan_manager.py +346 -0
  122. pymodaq/utils/managers/modules_manager.py +589 -0
  123. pymodaq/utils/managers/overshoot_manager.py +242 -0
  124. pymodaq/utils/managers/preset_manager.py +229 -0
  125. pymodaq/utils/managers/preset_manager_utils.py +262 -0
  126. pymodaq/utils/managers/remote_manager.py +484 -0
  127. pymodaq/utils/math_utils.py +6 -0
  128. pymodaq/utils/messenger.py +6 -0
  129. pymodaq/utils/parameter/__init__.py +10 -0
  130. pymodaq/utils/parameter/utils.py +6 -0
  131. pymodaq/utils/scanner/__init__.py +5 -0
  132. pymodaq/utils/scanner/scan_config.py +16 -0
  133. pymodaq/utils/scanner/scan_factory.py +259 -0
  134. pymodaq/utils/scanner/scan_selector.py +477 -0
  135. pymodaq/utils/scanner/scanner.py +324 -0
  136. pymodaq/utils/scanner/scanners/_1d_scanners.py +174 -0
  137. pymodaq/utils/scanner/scanners/_2d_scanners.py +299 -0
  138. pymodaq/utils/scanner/scanners/__init__.py +1 -0
  139. pymodaq/utils/scanner/scanners/sequential.py +224 -0
  140. pymodaq/utils/scanner/scanners/tabular.py +319 -0
  141. pymodaq/utils/scanner/utils.py +110 -0
  142. pymodaq/utils/svg/__init__.py +6 -0
  143. pymodaq/utils/svg/svg_renderer.py +20 -0
  144. pymodaq/utils/svg/svg_view.py +35 -0
  145. pymodaq/utils/svg/svg_viewer2D.py +50 -0
  146. pymodaq/utils/tcp_ip/__init__.py +6 -0
  147. pymodaq/utils/tcp_ip/mysocket.py +12 -0
  148. pymodaq/utils/tcp_ip/serializer.py +13 -0
  149. pymodaq/utils/tcp_ip/tcp_server_client.py +772 -0
  150. pymodaq-5.1.6.dist-info/METADATA +238 -0
  151. pymodaq-5.1.6.dist-info/RECORD +154 -0
  152. pymodaq-5.1.6.dist-info/WHEEL +4 -0
  153. pymodaq-5.1.6.dist-info/entry_points.txt +7 -0
  154. pymodaq-5.1.6.dist-info/licenses/LICENSE +21 -0
@@ -0,0 +1,105 @@
1
+ from bayes_opt.acquisition import UpperConfidenceBound, ExpectedImprovement, ProbabilityOfImprovement
2
+ from pymodaq.extensions.bayesian.acquisition import GenericAcquisitionFunctionFactory, GenericAcquisitionFunctionBase
3
+
4
+
5
+ @GenericAcquisitionFunctionFactory.register()
6
+ class GenericUpperConfidenceBound(GenericAcquisitionFunctionBase):
7
+ usual_name = "Upper Confidence Bound"
8
+ short_name = "ucb"
9
+ params = [
10
+ {'title': 'Kappa:', 'name': 'kappa', 'type': 'slide', 'value': 2.576,
11
+ 'min': 0.001, 'max': 100, 'subtype': 'log',
12
+ 'tip': 'Parameter to indicate how closed are the next parameters sampled.'
13
+ 'Higher value = favors spaces that are least explored.'
14
+ 'Lower value = favors spaces where the regression function is the '
15
+ 'highest.'},
16
+ {'title': 'Kappa actual:', 'name': 'tradeoff_actual', 'type': 'float', 'value': 2.576,
17
+ 'tip': 'Current value of the kappa parameter', 'readonly': True},
18
+ {'title': 'Exploration decay:', 'name': 'exploration_decay', 'type': 'float', 'value': 0.9,
19
+ 'tip': 'kappa is multiplied by this factor every iteration.'},
20
+ {'title': 'Exploration decay delay:', 'name': 'exploration_decay_delay', 'type': 'int', 'value': 20,
21
+ 'tip': 'Number of iterations that must have passed before applying the decay to kappa.'}
22
+ ]
23
+
24
+
25
+ def __init__(self, **kwargs):
26
+ super().__init__()
27
+ self._function = UpperConfidenceBound(
28
+ kappa=kwargs.get('kappa', 2.576),
29
+ exploration_decay=kwargs.get('exploration_decay', None),
30
+ exploration_decay_delay=kwargs.get('exploration_decay_delay', None),
31
+ random_state=kwargs.get('random_state', None),
32
+ )
33
+
34
+ @property
35
+ def tradeoff(self):
36
+ return self._function.kappa
37
+
38
+ @tradeoff.setter
39
+ def tradeoff(self, tradeoff):
40
+ self._function.kappa = tradeoff
41
+
42
+ @GenericAcquisitionFunctionFactory.register()
43
+ class GenericProbabilityOfImprovement(GenericAcquisitionFunctionBase):
44
+ usual_name = "Probability of Improvement"
45
+ short_name = "poi"
46
+ params = [
47
+ {'title': 'Xi:', 'name': 'xi', 'type': 'slide', 'value': 0,
48
+ 'tip': 'Governs the exploration/exploitation tradeoff.'
49
+ 'Lower prefers exploitation, higher prefers exploration.'},
50
+ {'title': 'Xi actual:', 'name': 'tradeoff_actual', 'type': 'float', 'value': 2.576,
51
+ 'tip': 'Current value of the xi parameter', 'readonly': True},
52
+ {'title': 'Exploration decay:', 'name': 'exploration_decay', 'type': 'float', 'value': 0.9,
53
+ 'tip': 'Xi is multiplied by this factor every iteration.'},
54
+ {'title': 'Exploration decay delay:', 'name': 'exploration_decay_delay', 'type': 'int', 'value': 20,
55
+ 'tip': 'Number of iterations that must have passed before applying the decay to xi.'}
56
+ ]
57
+
58
+ def __init__(self, **kwargs):
59
+ super().__init__()
60
+ self._function = ProbabilityOfImprovement(
61
+ xi=kwargs.get('xi'),
62
+ exploration_decay=kwargs.get('exploration_decay', None),
63
+ exploration_decay_delay=kwargs.get('exploration_decay_delay', None),
64
+ random_state=kwargs.get('random_state', None),
65
+ )
66
+
67
+ @property
68
+ def tradeoff(self):
69
+ return self._function.xi
70
+
71
+ @tradeoff.setter
72
+ def tradeoff(self, tradeoff):
73
+ self._function.xi = tradeoff
74
+
75
+ @GenericAcquisitionFunctionFactory.register()
76
+ class GenericExpectedImprovement(GenericAcquisitionFunctionBase):
77
+ usual_name = "Expected Improvement"
78
+ short_name = "ei"
79
+ params = [
80
+ {'title': 'Xi:', 'name': 'xi', 'type': 'slide', 'value': 0,
81
+ 'tip': 'Governs the exploration/exploitation tradeoff.'
82
+ 'Lower prefers exploitation, higher prefers exploration.'},
83
+ {'title': 'Xi actual:', 'name': 'tradeoff_actual', 'type': 'float', 'value': 2.576,
84
+ 'tip': 'Current value of the xi parameter', 'readonly': True},
85
+ {'title': 'Exploration decay:', 'name': 'exploration_decay', 'type': 'float', 'value': 0.9,
86
+ 'tip': 'Xi is multiplied by this factor every iteration.'},
87
+ {'title': 'Exploration decay delay:', 'name': 'exploration_decay_delay', 'type': 'int', 'value': 20,
88
+ 'tip': 'Number of iterations that must have passed before applying the decay to xi.'}
89
+ ]
90
+ def __init__(self, **kwargs):
91
+ super().__init__()
92
+ self._function = ExpectedImprovement(
93
+ xi=kwargs.get('xi'),
94
+ exploration_decay=kwargs.get('exploration_decay', None),
95
+ exploration_decay_delay=kwargs.get('exploration_decay_delay', None),
96
+ random_state=kwargs.get('random_state', None),
97
+ )
98
+
99
+ @property
100
+ def tradeoff(self):
101
+ return self._function.xi
102
+
103
+ @tradeoff.setter
104
+ def tradeoff(self, tradeoff):
105
+ self._function.xi = tradeoff
@@ -0,0 +1,143 @@
1
+
2
+
3
+ from pymodaq_utils import config as config_mod, utils
4
+ from pymodaq_utils.logger import set_logger, get_module_name
5
+ from pymodaq_utils.utils import ThreadCommand
6
+
7
+
8
+ from pymodaq.extensions.bayesian.utils import BayesianAlgorithm, BayesianConfig
9
+
10
+ from pymodaq.extensions.bayesian.acquisition import GenericAcquisitionFunctionFactory
11
+
12
+ from pymodaq.extensions.optimizers_base.optimizer import (
13
+ GenericOptimization, OptimizationRunner, optimizer_params, OptimizerAction)
14
+ from pymodaq.extensions.optimizers_base.utils import OptimizerModelDefault, find_key_in_nested_dict
15
+ from pymodaq.extensions.optimizers_base.thread_commands import OptimizerToRunner, OptimizerThreadStatus
16
+
17
+
18
+ logger = set_logger(get_module_name(__file__))
19
+ config = config_mod.Config()
20
+
21
+
22
+ EXTENSION_NAME = 'BayesianOptimization'
23
+ CLASS_NAME = 'BayesianOptimization'
24
+
25
+ PREDICTION_NAMES = GenericAcquisitionFunctionFactory.usual_names()
26
+ PREDICTION_SHORT_NAMES = GenericAcquisitionFunctionFactory.short_names()
27
+ PREDICTION_PARAMS = ([{'title': 'Kind', 'name': 'kind', 'type': 'list',
28
+ 'value': PREDICTION_NAMES[0],
29
+ 'limits': {name: short_name for name, short_name in zip(PREDICTION_NAMES, PREDICTION_SHORT_NAMES)}}
30
+ ] +
31
+ [{'title': 'Options', 'name': 'options', 'type': 'group',
32
+ 'children': GenericAcquisitionFunctionFactory.get(PREDICTION_SHORT_NAMES[0]).params}]
33
+ )
34
+
35
+
36
+ class BayesianOptimizationRunner(OptimizationRunner):
37
+
38
+ def __init__(self, *args, **kwargs):
39
+ super().__init__(*args, **kwargs)
40
+
41
+ def queue_command(self, command: ThreadCommand):
42
+ """
43
+ """
44
+ if command.command == OptimizerToRunner.PREDICTION:
45
+ kind = command.attribute.pop('kind')
46
+ self.optimization_algorithm.set_acquisition_function(
47
+ kind,
48
+ **command.attribute)
49
+ else:
50
+ super().queue_command(command)
51
+
52
+
53
+ class BayesianOptimization(GenericOptimization):
54
+ """ PyMoDAQ extension of the DashBoard to perform the optimization of a target signal
55
+ taken form the detectors as a function of one or more parameters controlled by the actuators.
56
+ """
57
+
58
+ runner = BayesianOptimizationRunner
59
+ params = optimizer_params(PREDICTION_PARAMS)
60
+ config_saver = BayesianConfig
61
+
62
+ def ini_custom_attributes(self):
63
+ """ Here you can reimplement specific attributes"""
64
+ self._base_name: str = 'Bayesian'
65
+
66
+ def update_after_actuators_changed(self, actuators: list[str]):
67
+ """ Actions to do after the actuators have been updated
68
+ """
69
+ pass
70
+
71
+ def update_prediction_function(self):
72
+ """ Get the selected prediction function options and pass them to the Runner
73
+
74
+ Should be reimplemented in real Optimizer implementation
75
+ """
76
+ utility_settings = self.settings.child('main_settings', 'prediction')
77
+
78
+ kind = utility_settings.child('kind').value()
79
+ uparams = {child.name() : child.value() for child in utility_settings.child('options').children()}
80
+ uparams['kind'] = kind
81
+ self.command_runner.emit(
82
+ utils.ThreadCommand(OptimizerToRunner.PREDICTION, uparams))
83
+
84
+
85
+ def validate_config(self) -> bool:
86
+ utility = find_key_in_nested_dict(self.optimizer_config.to_dict(), 'prediction')
87
+ if utility:
88
+ try:
89
+ kind = utility.pop('kind', None)
90
+ if kind is not None:
91
+ GenericAcquisitionFunctionFactory.create(kind, **utility)
92
+ except ValueError:
93
+ return False
94
+
95
+ return True
96
+
97
+ def value_changed(self, param):
98
+ """ to be subclassed for actions to perform when one of the param's value in self.settings is changed
99
+
100
+ For instance:
101
+ if param.name() == 'do_something':
102
+ if param.value():
103
+ print('Do something')
104
+ self.settings.child('main_settings', 'something_done').setValue(False)
105
+
106
+ Parameters
107
+ ----------
108
+ param: (Parameter) the parameter whose value just changed
109
+ """
110
+ super().value_changed(param)
111
+ if param.name() == 'kind':
112
+ param.parent().child('options').clearChildren()
113
+ param.parent().child('options').addChildren(
114
+ GenericAcquisitionFunctionFactory.get(param.value()).params)
115
+
116
+ def set_algorithm(self):
117
+ self.algorithm = BayesianAlgorithm(
118
+ ini_random=self.settings['main_settings', 'ini_random'],
119
+ bounds=self.format_bounds(),
120
+ actuators=self.modules_manager.selected_actuators_name)
121
+
122
+ def thread_status(self, status: utils.ThreadCommand):
123
+ super().thread_status(status)
124
+ if status.command == OptimizerThreadStatus.TRADE_OFF:
125
+ self.settings.child('main_settings', 'prediction', 'options', 'tradeoff_actual').setValue(status.attribute)
126
+
127
+
128
+ def main():
129
+ from pymodaq_gui.utils.utils import mkQApp
130
+ from pymodaq.utils.gui_utils.loader_utils import load_dashboard_with_preset
131
+
132
+ app = mkQApp('Bayesian Optimiser')
133
+ #preset_file_name = config('presets', f'beam_steering')
134
+
135
+ dashboard, extension, win = load_dashboard_with_preset('beam_steering', 'Bayesian')
136
+
137
+ app.exec()
138
+
139
+ return dashboard, extension, win
140
+
141
+ if __name__ == '__main__':
142
+ main()
143
+
@@ -0,0 +1,180 @@
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Created the 31/08/2023
4
+
5
+ @author: Sebastien Weber
6
+ """
7
+
8
+ from typing import List, TYPE_CHECKING, Union, Dict, Tuple, Iterable
9
+
10
+ import bayes_opt.exception
11
+ import numpy as np
12
+ from collections import namedtuple
13
+
14
+ from bayes_opt import BayesianOptimization
15
+ from bayes_opt.exception import TargetSpaceEmptyError
16
+
17
+
18
+ from pymodaq_utils.logger import set_logger, get_module_name
19
+
20
+
21
+ from pymodaq_data.data import (DataToExport, DataCalculated,
22
+ DataRaw, Axis)
23
+
24
+
25
+ from pymodaq.extensions.bayesian.acquisition import GenericAcquisitionFunctionFactory
26
+
27
+ from pymodaq.extensions.optimizers_base.utils import (
28
+ GenericAlgorithm, OptimizerModelDefault, StopType, StoppingParameters,
29
+ OptimizerConfig, PredictionError)
30
+
31
+
32
+ logger = set_logger(get_module_name(__file__))
33
+
34
+
35
+ class BayesianConfig(OptimizerConfig):
36
+ config_name = f"bayesian_settings"
37
+
38
+
39
+
40
+ class BayesianAlgorithm(GenericAlgorithm):
41
+
42
+ def __init__(self, ini_random: int, bounds: dict[str, tuple[float, float]], actuators: list[str], **kwargs):
43
+ super().__init__(ini_random, bounds, actuators)
44
+ self._algo = BayesianOptimization(f=None,
45
+ pbounds=bounds,
46
+ **kwargs
47
+ )
48
+ self.sorting_index: list = None
49
+
50
+ def set_prediction_function(self, kind: str = '', **kwargs):
51
+ self._prediction = GenericAcquisitionFunctionFactory.create(kind, **kwargs)
52
+
53
+ def update_prediction_function(self):
54
+ """ Update the parameters of the acquisition function (kappa decay for instance)"""
55
+ self._prediction.decay_exploration()
56
+
57
+ @property
58
+ def tradeoff(self):
59
+ return self._prediction.tradeoff
60
+
61
+ def get_random_point(self) -> dict[str, float]:
62
+ """ Get a random point coordinates in the defined bounds"""
63
+ point = dict()
64
+ for key, vals in self.bounds.items():
65
+ point[key] = (np.max(vals) - np.min(vals)) * np.random.random_sample() + np.min(vals)
66
+ return point
67
+
68
+ @property
69
+ def bounds(self) -> dict[str, float]:
70
+ """ Return bounds as a dict.
71
+ """
72
+ return self._algo.space.array_to_params(self._algo.space.bounds)
73
+
74
+ @bounds.setter
75
+ def bounds(self, bounds: Dict[str, Tuple[float, float]]):
76
+ if isinstance(bounds, dict):
77
+ self._algo.set_bounds(bounds)
78
+ else:
79
+ raise TypeError('Bounds should be defined as a dictionary')
80
+
81
+ def prediction_ask(self) -> dict[str, float]:
82
+ """ Ask the prediction function or algo to provide the next point to probe
83
+
84
+ Warning the space algo object is sorting by name the bounds...
85
+ """
86
+ try:
87
+ return self._algo.space.array_to_params(self._prediction.suggest(self._algo._gp, self._algo.space))
88
+ except TargetSpaceEmptyError as e:
89
+ raise PredictionError(str(e))
90
+
91
+
92
+ def tell(self, function_value: float):
93
+ self._algo.register(params=self._next_point, target=function_value)
94
+
95
+ @property
96
+ def best_fitness(self) -> float:
97
+ if self._algo.max is None:
98
+ return 0.001
99
+ else:
100
+ return self._algo.max['target']
101
+
102
+ @property
103
+ def best_individual(self) -> Union[dict[str, float], None]:
104
+ if self._algo.max is None:
105
+ return None
106
+ else:
107
+ max_param = self._algo.max.get('params', None)
108
+ if max_param is None:
109
+ return None
110
+ return max_param
111
+
112
+ def stopping(self, ind_iter: int, stopping_parameters: StoppingParameters):
113
+ if stopping_parameters.stop_type != StopType.NONE:
114
+ if ind_iter >= stopping_parameters.niter: # For instance StopType.ITER
115
+ return True
116
+ if ind_iter > stopping_parameters.npoints:
117
+ if stopping_parameters.stop_type == StopType.PREDICT:
118
+ coordinates = np.atleast_1d([
119
+ [coordinates[act] for coordinates in self._suggested_coordinates[-stopping_parameters.npoints:]]
120
+ for act in self.actuators])
121
+ return np.all(np.abs((np.std(coordinates, axis=1) / np.mean(coordinates, axis=1)))
122
+ < stopping_parameters.tolerance)
123
+ elif stopping_parameters.stop_type == StopType.BEST:
124
+ coordinates = np.atleast_1d(
125
+ [[best['params'][act] for best in
126
+ sorted(self._algo.res, key=lambda x: x['target'])[-stopping_parameters.npoints:]]
127
+ for act in self.actuators])
128
+ return np.all(np.abs((np.std(coordinates, axis=1) / np.mean(coordinates, axis=1)))
129
+ < stopping_parameters.tolerance)
130
+ return False
131
+
132
+ def _posterior(self, x_obs, y_obs, grid):
133
+
134
+ if len(x_obs.shape) == 1:
135
+ x_obs = x_obs.reshape(-1, 1)
136
+ y_obs = y_obs.reshape(-1, 1)
137
+ grid = grid.reshape(-1, 1)
138
+
139
+ self._algo._gp.fit(x_obs, y_obs)
140
+
141
+ mu, sigma = self._algo._gp.predict(grid, return_std=True)
142
+ return mu, sigma
143
+
144
+ def get_dwa_obervations(self, actuators_name):
145
+ try:
146
+ axes = [Axis(act, data=np.array([res['params'][act] for res in self._algo.res])) for
147
+ act in actuators_name]
148
+ data_arrays = [np.array([res['target'] for res in self._algo.res])]
149
+
150
+ return DataRaw('Observations', data=data_arrays, labels=actuators_name,
151
+ axes=axes)
152
+
153
+ except Exception as e:
154
+ pass
155
+
156
+ def get_1D_dwa_gp(self, x: np.ndarray, actuator_name: str):
157
+ """ Get Measurements and predictions as DataWithAxes
158
+
159
+ Parameters
160
+ ----------
161
+ x: np.ndarray
162
+ linear grid to get the Bayesian Optimisation On
163
+ """
164
+
165
+ dwa_obervation = self.get_dwa_obervations([actuator_name])
166
+
167
+ mu, sigma = self._posterior(dwa_obervation.axes[0].get_data(),
168
+ dwa_obervation.data[0], x)
169
+
170
+ dwa_measured = DataCalculated('Measurements', data=[dwa_obervation.data[0]],
171
+ axes=[Axis('measured_axis',
172
+ data=dwa_obervation.axes[0].get_data())],
173
+ labels=['Sampled'])
174
+ dwa_prediction = DataCalculated('Prediction', data=[mu],
175
+ axes=[Axis('tested_pos', data=x)],
176
+ errors=[1.96 * sigma])
177
+ return dwa_measured, dwa_prediction
178
+
179
+
180
+
@@ -0,0 +1,73 @@
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Created the 25/10/2022
4
+
5
+ @author: Sebastien Weber
6
+ """
7
+
8
+ from qtconsole.rich_jupyter_widget import RichJupyterWidget
9
+ from qtconsole.inprocess import QtInProcessKernelManager
10
+
11
+ from pymodaq_utils import config as configmod
12
+ from pymodaq_utils.utils import get_version
13
+
14
+
15
+ config = configmod.Config()
16
+
17
+ BANNER = f'PyMoDAQ v{get_version("pymodaq")}\n' \
18
+ 'Main objects available for interaction:\n'\
19
+ '* dashboard: Main Dashboard Object\n'\
20
+ '* mods: ModuleManager of the dashboard\'s Control Modules\n'\
21
+ '* np: numpy module\n\n'\
22
+ 'For inline plotting use: %matplotlib\n\n'
23
+
24
+
25
+ class QtConsole(RichJupyterWidget):
26
+ """Live IPython console widget.
27
+ .. image:: img/IPythonWidget.png
28
+ :param custom_banner: Custom welcome message to be printed at the top of
29
+ the console.
30
+ """
31
+
32
+ def __init__(self, parent=None, custom_banner=None, *args, **kwargs):
33
+ if parent is not None:
34
+ kwargs["parent"] = parent
35
+ super().__init__(*args, **kwargs)
36
+ if custom_banner is not None:
37
+ self.banner = custom_banner
38
+ self.kernel_manager = kernel_manager = QtInProcessKernelManager()
39
+ kernel_manager.start_kernel()
40
+
41
+ self.kernel_client = kernel_client = self._kernel_manager.client()
42
+ kernel_client.start_channels()
43
+
44
+ def stop():
45
+ kernel_client.stop_channels()
46
+ kernel_manager.shutdown_kernel()
47
+ self.exit_requested.connect(stop)
48
+
49
+ def push_variables(self, variable_dict):
50
+ """ Given a dictionary containing name / value pairs, push those
51
+ variables to the IPython console widget.
52
+ :param variable_dict: Dictionary of variables to be pushed to the
53
+ console's interactive namespace (```{variable_name: object, …}```)
54
+ """
55
+ self.kernel_manager.kernel.shell.push(variable_dict)
56
+
57
+
58
+ def main():
59
+ from pymodaq_gui.utils.utils import mkQApp
60
+
61
+ app = mkQApp('Console')
62
+
63
+ prog = QtConsole(style_sheet=config('style', 'syntax_highlighting'),
64
+ syntax_style=config('style', 'syntax_highlighting'),
65
+ custom_banner=BANNER,
66
+ )
67
+ prog.show()
68
+ app.exec()
69
+ return prog
70
+
71
+
72
+ if __name__ == '__main__':
73
+ main()
@@ -0,0 +1 @@
1
+ from .daq_logger import main
@@ -0,0 +1,52 @@
1
+ from abc import ABC, abstractmethod
2
+
3
+
4
+ class AbstractLogger(ABC):
5
+ """
6
+ Minimal set of methods a class should implement to be considered as a logger in PyMoDAQ and used by the DAQ_Logger
7
+ extension
8
+
9
+ See Also
10
+ --------
11
+ pymodaq.utils.h5modules.H5Logger or pymodaq.utils.db.db_logger.DbLoggerGUI
12
+ """
13
+ @abstractmethod
14
+ def close(self):
15
+ pass
16
+
17
+ @property
18
+ @abstractmethod
19
+ def settings_tree(self):
20
+ pass
21
+
22
+ @property
23
+ @abstractmethod
24
+ def settings(self):
25
+ pass
26
+
27
+ @abstractmethod
28
+ def init_logger(self, settings):
29
+ pass
30
+
31
+ @abstractmethod
32
+ def get_handler(self):
33
+ """
34
+ returns a log handler to save the output of the error log into the particular implementation of the Logger object
35
+ """
36
+ pass
37
+
38
+ @abstractmethod
39
+ def add_detector(self, module_name, settings):
40
+ pass
41
+
42
+ @abstractmethod
43
+ def add_actuator(self, module_name, settings):
44
+ pass
45
+
46
+ @abstractmethod
47
+ def add_data(self, data):
48
+ pass
49
+
50
+ @abstractmethod
51
+ def stop_logger(self):
52
+ pass