pyg-nightly 2.6.0.dev20240704__py3-none-any.whl → 2.8.0.dev20251207__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pyg-nightly might be problematic. Click here for more details.

Files changed (268) hide show
  1. {pyg_nightly-2.6.0.dev20240704.dist-info → pyg_nightly-2.8.0.dev20251207.dist-info}/METADATA +81 -58
  2. {pyg_nightly-2.6.0.dev20240704.dist-info → pyg_nightly-2.8.0.dev20251207.dist-info}/RECORD +265 -221
  3. {pyg_nightly-2.6.0.dev20240704.dist-info → pyg_nightly-2.8.0.dev20251207.dist-info}/WHEEL +1 -1
  4. pyg_nightly-2.8.0.dev20251207.dist-info/licenses/LICENSE +19 -0
  5. torch_geometric/__init__.py +34 -1
  6. torch_geometric/_compile.py +11 -3
  7. torch_geometric/_onnx.py +228 -0
  8. torch_geometric/config_mixin.py +8 -3
  9. torch_geometric/config_store.py +1 -1
  10. torch_geometric/contrib/__init__.py +1 -1
  11. torch_geometric/contrib/explain/pgm_explainer.py +1 -1
  12. torch_geometric/data/__init__.py +19 -1
  13. torch_geometric/data/batch.py +2 -2
  14. torch_geometric/data/collate.py +1 -3
  15. torch_geometric/data/data.py +110 -6
  16. torch_geometric/data/database.py +19 -5
  17. torch_geometric/data/dataset.py +14 -9
  18. torch_geometric/data/extract.py +1 -1
  19. torch_geometric/data/feature_store.py +17 -22
  20. torch_geometric/data/graph_store.py +3 -2
  21. torch_geometric/data/hetero_data.py +139 -7
  22. torch_geometric/data/hypergraph_data.py +2 -2
  23. torch_geometric/data/in_memory_dataset.py +2 -2
  24. torch_geometric/data/lightning/datamodule.py +42 -28
  25. torch_geometric/data/storage.py +9 -1
  26. torch_geometric/datasets/__init__.py +20 -1
  27. torch_geometric/datasets/actor.py +7 -9
  28. torch_geometric/datasets/airfrans.py +17 -20
  29. torch_geometric/datasets/airports.py +8 -10
  30. torch_geometric/datasets/amazon.py +8 -11
  31. torch_geometric/datasets/amazon_book.py +8 -9
  32. torch_geometric/datasets/amazon_products.py +7 -9
  33. torch_geometric/datasets/aminer.py +8 -9
  34. torch_geometric/datasets/aqsol.py +10 -13
  35. torch_geometric/datasets/attributed_graph_dataset.py +8 -10
  36. torch_geometric/datasets/ba_multi_shapes.py +10 -12
  37. torch_geometric/datasets/ba_shapes.py +5 -6
  38. torch_geometric/datasets/brca_tgca.py +1 -1
  39. torch_geometric/datasets/city.py +157 -0
  40. torch_geometric/datasets/dbp15k.py +1 -1
  41. torch_geometric/datasets/gdelt_lite.py +3 -2
  42. torch_geometric/datasets/ged_dataset.py +3 -2
  43. torch_geometric/datasets/git_mol_dataset.py +263 -0
  44. torch_geometric/datasets/gnn_benchmark_dataset.py +3 -2
  45. torch_geometric/datasets/hgb_dataset.py +2 -2
  46. torch_geometric/datasets/hm.py +1 -1
  47. torch_geometric/datasets/instruct_mol_dataset.py +134 -0
  48. torch_geometric/datasets/linkx_dataset.py +4 -3
  49. torch_geometric/datasets/lrgb.py +3 -5
  50. torch_geometric/datasets/malnet_tiny.py +2 -1
  51. torch_geometric/datasets/md17.py +3 -3
  52. torch_geometric/datasets/medshapenet.py +145 -0
  53. torch_geometric/datasets/mnist_superpixels.py +2 -3
  54. torch_geometric/datasets/modelnet.py +1 -1
  55. torch_geometric/datasets/molecule_gpt_dataset.py +492 -0
  56. torch_geometric/datasets/molecule_net.py +3 -2
  57. torch_geometric/datasets/neurograph.py +1 -3
  58. torch_geometric/datasets/ogb_mag.py +1 -1
  59. torch_geometric/datasets/opf.py +19 -5
  60. torch_geometric/datasets/pascal_pf.py +1 -1
  61. torch_geometric/datasets/pcqm4m.py +2 -1
  62. torch_geometric/datasets/ppi.py +2 -1
  63. torch_geometric/datasets/protein_mpnn_dataset.py +451 -0
  64. torch_geometric/datasets/qm7.py +1 -1
  65. torch_geometric/datasets/qm9.py +3 -2
  66. torch_geometric/datasets/shrec2016.py +2 -2
  67. torch_geometric/datasets/snap_dataset.py +8 -4
  68. torch_geometric/datasets/tag_dataset.py +462 -0
  69. torch_geometric/datasets/teeth3ds.py +269 -0
  70. torch_geometric/datasets/web_qsp_dataset.py +342 -0
  71. torch_geometric/datasets/wikics.py +2 -1
  72. torch_geometric/datasets/wikidata.py +2 -1
  73. torch_geometric/deprecation.py +1 -1
  74. torch_geometric/distributed/__init__.py +13 -0
  75. torch_geometric/distributed/dist_loader.py +2 -2
  76. torch_geometric/distributed/local_feature_store.py +3 -2
  77. torch_geometric/distributed/local_graph_store.py +2 -1
  78. torch_geometric/distributed/partition.py +9 -8
  79. torch_geometric/distributed/rpc.py +3 -3
  80. torch_geometric/edge_index.py +35 -22
  81. torch_geometric/explain/algorithm/attention_explainer.py +219 -29
  82. torch_geometric/explain/algorithm/base.py +2 -2
  83. torch_geometric/explain/algorithm/captum.py +1 -1
  84. torch_geometric/explain/algorithm/captum_explainer.py +2 -1
  85. torch_geometric/explain/algorithm/gnn_explainer.py +406 -69
  86. torch_geometric/explain/algorithm/graphmask_explainer.py +8 -8
  87. torch_geometric/explain/algorithm/pg_explainer.py +305 -47
  88. torch_geometric/explain/explainer.py +2 -2
  89. torch_geometric/explain/explanation.py +89 -5
  90. torch_geometric/explain/metric/faithfulness.py +1 -1
  91. torch_geometric/graphgym/checkpoint.py +2 -1
  92. torch_geometric/graphgym/config.py +3 -2
  93. torch_geometric/graphgym/imports.py +15 -4
  94. torch_geometric/graphgym/logger.py +1 -1
  95. torch_geometric/graphgym/loss.py +1 -1
  96. torch_geometric/graphgym/models/encoder.py +2 -2
  97. torch_geometric/graphgym/models/layer.py +1 -1
  98. torch_geometric/graphgym/utils/comp_budget.py +4 -3
  99. torch_geometric/hash_tensor.py +798 -0
  100. torch_geometric/index.py +16 -7
  101. torch_geometric/inspector.py +6 -2
  102. torch_geometric/io/fs.py +27 -0
  103. torch_geometric/io/tu.py +2 -3
  104. torch_geometric/llm/__init__.py +9 -0
  105. torch_geometric/llm/large_graph_indexer.py +741 -0
  106. torch_geometric/llm/models/__init__.py +23 -0
  107. torch_geometric/llm/models/g_retriever.py +251 -0
  108. torch_geometric/llm/models/git_mol.py +336 -0
  109. torch_geometric/llm/models/glem.py +397 -0
  110. torch_geometric/llm/models/llm.py +470 -0
  111. torch_geometric/llm/models/llm_judge.py +158 -0
  112. torch_geometric/llm/models/molecule_gpt.py +222 -0
  113. torch_geometric/llm/models/protein_mpnn.py +333 -0
  114. torch_geometric/llm/models/sentence_transformer.py +188 -0
  115. torch_geometric/llm/models/txt2kg.py +353 -0
  116. torch_geometric/llm/models/vision_transformer.py +38 -0
  117. torch_geometric/llm/rag_loader.py +154 -0
  118. torch_geometric/llm/utils/__init__.py +10 -0
  119. torch_geometric/llm/utils/backend_utils.py +443 -0
  120. torch_geometric/llm/utils/feature_store.py +169 -0
  121. torch_geometric/llm/utils/graph_store.py +199 -0
  122. torch_geometric/llm/utils/vectorrag.py +125 -0
  123. torch_geometric/loader/cluster.py +6 -5
  124. torch_geometric/loader/graph_saint.py +2 -1
  125. torch_geometric/loader/ibmb_loader.py +4 -4
  126. torch_geometric/loader/link_loader.py +1 -1
  127. torch_geometric/loader/link_neighbor_loader.py +2 -1
  128. torch_geometric/loader/mixin.py +6 -5
  129. torch_geometric/loader/neighbor_loader.py +1 -1
  130. torch_geometric/loader/neighbor_sampler.py +2 -2
  131. torch_geometric/loader/prefetch.py +4 -3
  132. torch_geometric/loader/temporal_dataloader.py +2 -2
  133. torch_geometric/loader/utils.py +10 -10
  134. torch_geometric/metrics/__init__.py +23 -2
  135. torch_geometric/metrics/link_pred.py +755 -85
  136. torch_geometric/nn/__init__.py +1 -0
  137. torch_geometric/nn/aggr/__init__.py +2 -0
  138. torch_geometric/nn/aggr/base.py +1 -1
  139. torch_geometric/nn/aggr/equilibrium.py +1 -1
  140. torch_geometric/nn/aggr/fused.py +1 -1
  141. torch_geometric/nn/aggr/patch_transformer.py +149 -0
  142. torch_geometric/nn/aggr/set_transformer.py +1 -1
  143. torch_geometric/nn/aggr/utils.py +9 -4
  144. torch_geometric/nn/attention/__init__.py +9 -1
  145. torch_geometric/nn/attention/polynormer.py +107 -0
  146. torch_geometric/nn/attention/qformer.py +71 -0
  147. torch_geometric/nn/attention/sgformer.py +99 -0
  148. torch_geometric/nn/conv/__init__.py +2 -0
  149. torch_geometric/nn/conv/appnp.py +1 -1
  150. torch_geometric/nn/conv/collect.jinja +6 -3
  151. torch_geometric/nn/conv/cugraph/gat_conv.py +8 -2
  152. torch_geometric/nn/conv/cugraph/rgcn_conv.py +3 -0
  153. torch_geometric/nn/conv/cugraph/sage_conv.py +3 -0
  154. torch_geometric/nn/conv/dna_conv.py +1 -1
  155. torch_geometric/nn/conv/eg_conv.py +7 -7
  156. torch_geometric/nn/conv/gat_conv.py +33 -4
  157. torch_geometric/nn/conv/gatv2_conv.py +35 -4
  158. torch_geometric/nn/conv/gen_conv.py +1 -1
  159. torch_geometric/nn/conv/general_conv.py +1 -1
  160. torch_geometric/nn/conv/gravnet_conv.py +2 -1
  161. torch_geometric/nn/conv/hetero_conv.py +3 -2
  162. torch_geometric/nn/conv/meshcnn_conv.py +487 -0
  163. torch_geometric/nn/conv/message_passing.py +6 -5
  164. torch_geometric/nn/conv/mixhop_conv.py +1 -1
  165. torch_geometric/nn/conv/rgcn_conv.py +2 -1
  166. torch_geometric/nn/conv/sg_conv.py +1 -1
  167. torch_geometric/nn/conv/spline_conv.py +2 -1
  168. torch_geometric/nn/conv/ssg_conv.py +1 -1
  169. torch_geometric/nn/conv/transformer_conv.py +5 -3
  170. torch_geometric/nn/data_parallel.py +5 -4
  171. torch_geometric/nn/dense/linear.py +5 -24
  172. torch_geometric/nn/encoding.py +17 -3
  173. torch_geometric/nn/fx.py +17 -15
  174. torch_geometric/nn/model_hub.py +5 -16
  175. torch_geometric/nn/models/__init__.py +11 -0
  176. torch_geometric/nn/models/attentive_fp.py +1 -1
  177. torch_geometric/nn/models/attract_repel.py +148 -0
  178. torch_geometric/nn/models/basic_gnn.py +2 -1
  179. torch_geometric/nn/models/captum.py +1 -1
  180. torch_geometric/nn/models/deep_graph_infomax.py +1 -1
  181. torch_geometric/nn/models/dimenet.py +2 -2
  182. torch_geometric/nn/models/dimenet_utils.py +4 -2
  183. torch_geometric/nn/models/gpse.py +1083 -0
  184. torch_geometric/nn/models/graph_unet.py +13 -4
  185. torch_geometric/nn/models/lpformer.py +783 -0
  186. torch_geometric/nn/models/metapath2vec.py +1 -1
  187. torch_geometric/nn/models/mlp.py +4 -2
  188. torch_geometric/nn/models/node2vec.py +1 -1
  189. torch_geometric/nn/models/polynormer.py +206 -0
  190. torch_geometric/nn/models/rev_gnn.py +3 -3
  191. torch_geometric/nn/models/schnet.py +2 -1
  192. torch_geometric/nn/models/sgformer.py +219 -0
  193. torch_geometric/nn/models/signed_gcn.py +1 -1
  194. torch_geometric/nn/models/visnet.py +2 -2
  195. torch_geometric/nn/norm/batch_norm.py +17 -7
  196. torch_geometric/nn/norm/diff_group_norm.py +7 -2
  197. torch_geometric/nn/norm/graph_norm.py +9 -4
  198. torch_geometric/nn/norm/instance_norm.py +5 -1
  199. torch_geometric/nn/norm/layer_norm.py +15 -7
  200. torch_geometric/nn/norm/msg_norm.py +8 -2
  201. torch_geometric/nn/pool/__init__.py +15 -9
  202. torch_geometric/nn/pool/cluster_pool.py +144 -0
  203. torch_geometric/nn/pool/connect/base.py +1 -3
  204. torch_geometric/nn/pool/edge_pool.py +1 -1
  205. torch_geometric/nn/pool/knn.py +13 -10
  206. torch_geometric/nn/pool/select/base.py +1 -4
  207. torch_geometric/nn/summary.py +1 -1
  208. torch_geometric/nn/to_hetero_module.py +4 -3
  209. torch_geometric/nn/to_hetero_transformer.py +3 -3
  210. torch_geometric/nn/to_hetero_with_bases_transformer.py +5 -5
  211. torch_geometric/profile/__init__.py +2 -0
  212. torch_geometric/profile/nvtx.py +66 -0
  213. torch_geometric/profile/profiler.py +18 -9
  214. torch_geometric/profile/utils.py +20 -5
  215. torch_geometric/sampler/__init__.py +2 -1
  216. torch_geometric/sampler/base.py +337 -8
  217. torch_geometric/sampler/hgt_sampler.py +11 -1
  218. torch_geometric/sampler/neighbor_sampler.py +298 -25
  219. torch_geometric/sampler/utils.py +93 -5
  220. torch_geometric/testing/__init__.py +4 -0
  221. torch_geometric/testing/decorators.py +35 -5
  222. torch_geometric/testing/distributed.py +1 -1
  223. torch_geometric/transforms/__init__.py +4 -0
  224. torch_geometric/transforms/add_gpse.py +49 -0
  225. torch_geometric/transforms/add_metapaths.py +10 -8
  226. torch_geometric/transforms/add_positional_encoding.py +2 -2
  227. torch_geometric/transforms/base_transform.py +2 -1
  228. torch_geometric/transforms/delaunay.py +65 -15
  229. torch_geometric/transforms/face_to_edge.py +32 -3
  230. torch_geometric/transforms/gdc.py +8 -9
  231. torch_geometric/transforms/largest_connected_components.py +1 -1
  232. torch_geometric/transforms/mask.py +5 -1
  233. torch_geometric/transforms/node_property_split.py +1 -1
  234. torch_geometric/transforms/normalize_features.py +3 -3
  235. torch_geometric/transforms/pad.py +1 -1
  236. torch_geometric/transforms/random_link_split.py +1 -1
  237. torch_geometric/transforms/remove_duplicated_edges.py +4 -2
  238. torch_geometric/transforms/remove_self_loops.py +36 -0
  239. torch_geometric/transforms/rooted_subgraph.py +1 -1
  240. torch_geometric/transforms/svd_feature_reduction.py +1 -1
  241. torch_geometric/transforms/virtual_node.py +2 -1
  242. torch_geometric/typing.py +82 -17
  243. torch_geometric/utils/__init__.py +6 -1
  244. torch_geometric/utils/_lexsort.py +0 -9
  245. torch_geometric/utils/_negative_sampling.py +28 -13
  246. torch_geometric/utils/_normalize_edge_index.py +46 -0
  247. torch_geometric/utils/_scatter.py +126 -164
  248. torch_geometric/utils/_sort_edge_index.py +0 -2
  249. torch_geometric/utils/_spmm.py +16 -14
  250. torch_geometric/utils/_subgraph.py +4 -0
  251. torch_geometric/utils/_tree_decomposition.py +1 -1
  252. torch_geometric/utils/_trim_to_layer.py +2 -2
  253. torch_geometric/utils/augmentation.py +1 -1
  254. torch_geometric/utils/convert.py +17 -10
  255. torch_geometric/utils/cross_entropy.py +34 -13
  256. torch_geometric/utils/embedding.py +91 -2
  257. torch_geometric/utils/geodesic.py +28 -25
  258. torch_geometric/utils/influence.py +279 -0
  259. torch_geometric/utils/map.py +14 -10
  260. torch_geometric/utils/nested.py +1 -1
  261. torch_geometric/utils/smiles.py +3 -3
  262. torch_geometric/utils/sparse.py +32 -24
  263. torch_geometric/visualization/__init__.py +2 -1
  264. torch_geometric/visualization/graph.py +250 -5
  265. torch_geometric/warnings.py +11 -2
  266. torch_geometric/nn/nlp/__init__.py +0 -7
  267. torch_geometric/nn/nlp/llm.py +0 -283
  268. torch_geometric/nn/nlp/sentence_transformer.py +0 -94
@@ -0,0 +1,222 @@
1
+ from typing import List, Optional
2
+
3
+ import torch
4
+ from torch import Tensor
5
+
6
+ from torch_geometric.llm.models.llm import BOS, LLM, MAX_NEW_TOKENS
7
+ from torch_geometric.nn.attention import QFormer
8
+ from torch_geometric.utils import to_dense_batch
9
+
10
+
11
+ def pad_or_truncate(embeddings: Tensor, max_seq_len: int,
12
+ padding_value: int = 0) -> Tensor:
13
+ batch_size, current_seq_len, d = embeddings.size()
14
+
15
+ if current_seq_len > max_seq_len:
16
+ return embeddings[:, :max_seq_len, :]
17
+ elif current_seq_len < max_seq_len:
18
+ pad_tensor = torch.full((batch_size, max_seq_len - current_seq_len, d),
19
+ padding_value, dtype=embeddings.dtype,
20
+ device=embeddings.device)
21
+ return torch.cat([embeddings, pad_tensor], dim=1)
22
+ else:
23
+ return embeddings
24
+
25
+
26
+ class MoleculeGPT(torch.nn.Module):
27
+ r"""The MoleculeGPT model from the `"MoleculeGPT: Instruction
28
+ Following Large Language Models for Molecular Property Prediction"
29
+ <https://ai4d3.github.io/papers/34.pdf>`_ paper.
30
+
31
+ Args:
32
+ llm (LLM): The LLM to use.
33
+ graph_encoder (torch.nn.Module): Encode 2D molecule graph.
34
+ smiles_encoder (torch.nn.Module): Encode 1D SMILES.
35
+ mlp_out_channels (int, optional): The size of each embedding
36
+ after qformer encoding. (default: :obj:`32`)
37
+ max_tokens (int, optional): Max output tokens of 1D/2D encoder.
38
+ (default: :obj:`20`)
39
+
40
+ .. warning::
41
+ This module has been tested with the following HuggingFace models
42
+
43
+ * :obj:`llm_to_use="lmsys/vicuna-7b-v1.5"`
44
+
45
+ and may not work with other models. See other models at `HuggingFace
46
+ Models <https://huggingface.co/models>`_ and let us know if you
47
+ encounter any issues.
48
+
49
+ .. note::
50
+ For an example of using :class:`MoleculeGPT`, see
51
+ `examples/llm/molecule_gpt.py <https://github.com/pyg-team/
52
+ pytorch_geometric/blob/master/examples/llm/molecule_gpt.py>`_.
53
+ """
54
+ def __init__(
55
+ self,
56
+ llm: LLM,
57
+ graph_encoder: torch.nn.Module,
58
+ smiles_encoder: torch.nn.Module,
59
+ mlp_out_channels: int = 32,
60
+ max_tokens: Optional[int] = 20,
61
+ ) -> None:
62
+ super().__init__()
63
+ self.llm = llm
64
+ self.graph_encoder = graph_encoder.to(self.llm.device)
65
+ self.smiles_encoder = smiles_encoder.to(self.llm.device)
66
+
67
+ self.graph_qformer = QFormer(
68
+ input_dim=self.graph_encoder.nn[-1].out_features,
69
+ hidden_dim=mlp_out_channels,
70
+ output_dim=mlp_out_channels,
71
+ num_heads=4,
72
+ num_layers=2,
73
+ ).to(self.llm.device)
74
+
75
+ self.smiles_qformer = QFormer(
76
+ input_dim=self.smiles_encoder.model.pooler.dense.out_features,
77
+ hidden_dim=mlp_out_channels,
78
+ output_dim=mlp_out_channels,
79
+ num_heads=4,
80
+ num_layers=2,
81
+ ).to(self.llm.device)
82
+
83
+ self.max_tokens = max_tokens
84
+
85
+ self.word_embedding = self.llm.word_embedding
86
+ self.llm_generator = self.llm.llm
87
+
88
+ # LLMs
89
+ in_dim = 2 * mlp_out_channels * max_tokens
90
+ out_dim = self.llm.llm.model.embed_tokens.embedding_dim
91
+ self.projector = torch.nn.Sequential(
92
+ torch.nn.Linear(in_dim, in_dim),
93
+ torch.nn.Sigmoid(),
94
+ torch.nn.Linear(in_dim, out_dim),
95
+ ).to(self.llm.device)
96
+
97
+ def encode(
98
+ self,
99
+ x: Tensor,
100
+ edge_index: Tensor,
101
+ batch: Tensor,
102
+ edge_attr: Optional[Tensor],
103
+ smiles: List[str],
104
+ ) -> Tensor:
105
+ batch_size = len(smiles)
106
+ # 2D Graph Branch: [bs, node_len, d]
107
+ x = x.to(self.llm.device)
108
+ edge_index = edge_index.to(self.llm.device)
109
+ if edge_attr is not None:
110
+ edge_attr = edge_attr.to(self.llm.device)
111
+ batch = batch.to(self.llm.device)
112
+
113
+ x_graph = self.graph_encoder(x, edge_index, edge_attr=edge_attr)
114
+ x_graph = to_dense_batch(x_graph, batch)[0]
115
+ out_graph = self.graph_qformer(x_graph)
116
+ out_graph = pad_or_truncate(out_graph, max_seq_len=self.max_tokens,
117
+ padding_value=0)
118
+ out_graph = out_graph.view(batch_size, -1)
119
+
120
+ # 1D SMILES Branch: [bs, seq_len, d]
121
+ x_smiles = self.smiles_encoder.encode(smiles,
122
+ output_device=self.llm.device)
123
+ out_smiles = self.smiles_qformer(x_smiles)
124
+ out_smiles = pad_or_truncate(out_smiles, max_seq_len=self.max_tokens,
125
+ padding_value=0)
126
+ out_smiles = out_smiles.view(batch_size, -1)
127
+
128
+ # Merge into LLMs
129
+ x_cat = torch.cat([out_graph, out_smiles], dim=1)
130
+ return x_cat
131
+
132
+ def forward(
133
+ self,
134
+ x: Tensor,
135
+ edge_index: Tensor,
136
+ batch: Tensor,
137
+ edge_attr: Optional[Tensor],
138
+ smiles: List[str],
139
+ instructions: List[str],
140
+ label: List[str],
141
+ additional_text_context: Optional[List[str]] = None,
142
+ ):
143
+ x = self.encode(x, edge_index, batch, edge_attr, smiles)
144
+ x = self.projector(x)
145
+ xs = x.split(1, dim=0)
146
+
147
+ batch_unique = batch.unique()
148
+ batch_size = len(instructions)
149
+ if len(batch_unique) < batch_size:
150
+ xs = [
151
+ xs[i] if i in batch_unique else None for i in range(batch_size)
152
+ ]
153
+
154
+ (
155
+ inputs_embeds,
156
+ attention_mask,
157
+ label_input_ids,
158
+ ) = self.llm._get_embeds(instructions, additional_text_context, xs,
159
+ label)
160
+
161
+ with self.llm.autocast_context:
162
+ outputs = self.llm_generator(
163
+ inputs_embeds=inputs_embeds,
164
+ attention_mask=attention_mask,
165
+ return_dict=True,
166
+ labels=label_input_ids,
167
+ )
168
+
169
+ return outputs.loss
170
+
171
+ @torch.no_grad()
172
+ def inference(
173
+ self,
174
+ x: Tensor,
175
+ edge_index: Tensor,
176
+ batch: Tensor,
177
+ edge_attr: Optional[Tensor],
178
+ smiles: List[str],
179
+ instructions: List[str],
180
+ additional_text_context: Optional[List[str]] = None,
181
+ max_out_tokens: Optional[int] = MAX_NEW_TOKENS,
182
+ ):
183
+ x = self.encode(x, edge_index, batch, edge_attr, smiles)
184
+ x = self.projector(x)
185
+ xs = x.split(1, dim=0)
186
+
187
+ # Handle questions without node features:
188
+ batch_unique = batch.unique()
189
+ batch_size = len(instructions)
190
+ if len(batch_unique) < batch_size:
191
+ xs = [
192
+ xs[i] if i in batch_unique else None for i in range(batch_size)
193
+ ]
194
+
195
+ inputs_embeds, attention_mask, _ = self.llm._get_embeds(
196
+ instructions, additional_text_context, xs)
197
+
198
+ bos_token = self.llm.tokenizer(
199
+ BOS,
200
+ add_special_tokens=False,
201
+ ).input_ids[0]
202
+
203
+ with self.llm.autocast_context:
204
+ outputs = self.llm_generator.generate(
205
+ inputs_embeds=inputs_embeds,
206
+ max_new_tokens=max_out_tokens,
207
+ attention_mask=attention_mask,
208
+ bos_token_id=bos_token,
209
+ use_cache=True # Important to set!
210
+ )
211
+
212
+ return self.llm.tokenizer.batch_decode(
213
+ outputs,
214
+ skip_special_tokens=True,
215
+ )
216
+
217
+ def __repr__(self) -> str:
218
+ return (f'{self.__class__.__name__}(\n'
219
+ f' llm={self.llm},\n'
220
+ f' graph={self.graph_encoder.__class__.__name__},\n'
221
+ f' smiles={self.smiles_encoder},\n'
222
+ f')')
@@ -0,0 +1,333 @@
1
+ from itertools import product
2
+ from typing import Tuple
3
+
4
+ import torch
5
+ import torch.nn.functional as F
6
+
7
+ from torch_geometric.nn import knn_graph
8
+ from torch_geometric.nn.conv import MessagePassing
9
+ from torch_geometric.utils import to_dense_adj, to_dense_batch
10
+
11
+
12
+ class PositionWiseFeedForward(torch.nn.Module):
13
+ def __init__(self, in_channels: int, hidden_channels: int) -> None:
14
+ super().__init__()
15
+ self.out = torch.nn.Sequential(
16
+ torch.nn.Linear(in_channels, hidden_channels),
17
+ torch.nn.GELU(),
18
+ torch.nn.Linear(hidden_channels, in_channels),
19
+ )
20
+
21
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
22
+ return self.out(x)
23
+
24
+
25
+ class PositionalEncoding(torch.nn.Module):
26
+ def __init__(self, hidden_channels: int,
27
+ max_relative_feature: int = 32) -> None:
28
+ super().__init__()
29
+ self.max_relative_feature = max_relative_feature
30
+ self.emb = torch.nn.Embedding(2 * max_relative_feature + 2,
31
+ hidden_channels)
32
+
33
+ def forward(self, offset, mask) -> torch.Tensor:
34
+ d = torch.clip(offset + self.max_relative_feature, 0,
35
+ 2 * self.max_relative_feature) * mask + (1 - mask) * (
36
+ 2 * self.max_relative_feature + 1) # noqa: E501
37
+ return self.emb(d.long())
38
+
39
+
40
+ class Encoder(MessagePassing):
41
+ def __init__(
42
+ self,
43
+ in_channels: int,
44
+ hidden_channels: int,
45
+ dropout: float = 0.1,
46
+ scale: float = 30,
47
+ ) -> None:
48
+ super().__init__()
49
+ self.out_v = torch.nn.Sequential(
50
+ torch.nn.Linear(in_channels, hidden_channels),
51
+ torch.nn.GELU(),
52
+ torch.nn.Linear(hidden_channels, hidden_channels),
53
+ torch.nn.GELU(),
54
+ torch.nn.Linear(hidden_channels, hidden_channels),
55
+ )
56
+ self.out_e = torch.nn.Sequential(
57
+ torch.nn.Linear(in_channels, hidden_channels),
58
+ torch.nn.GELU(),
59
+ torch.nn.Linear(hidden_channels, hidden_channels),
60
+ torch.nn.GELU(),
61
+ torch.nn.Linear(hidden_channels, hidden_channels),
62
+ )
63
+ self.dropout1 = torch.nn.Dropout(dropout)
64
+ self.dropout2 = torch.nn.Dropout(dropout)
65
+ self.dropout3 = torch.nn.Dropout(dropout)
66
+ self.norm1 = torch.nn.LayerNorm(hidden_channels)
67
+ self.norm2 = torch.nn.LayerNorm(hidden_channels)
68
+ self.norm3 = torch.nn.LayerNorm(hidden_channels)
69
+ self.scale = scale
70
+ self.dense = PositionWiseFeedForward(hidden_channels,
71
+ hidden_channels * 4)
72
+
73
+ def forward(
74
+ self,
75
+ x: torch.Tensor,
76
+ edge_index: torch.Tensor,
77
+ edge_attr: torch.Tensor,
78
+ ) -> torch.Tensor:
79
+ # x: [N, d_v]
80
+ # edge_index: [2, E]
81
+ # edge_attr: [E, d_e]
82
+ # update node features
83
+ h_message = self.propagate(x=x, edge_index=edge_index,
84
+ edge_attr=edge_attr)
85
+ dh = h_message / self.scale
86
+ x = self.norm1(x + self.dropout1(dh))
87
+ dh = self.dense(x)
88
+ x = self.norm2(x + self.dropout2(dh))
89
+ # update edge features
90
+ row, col = edge_index
91
+ x_i, x_j = x[row], x[col]
92
+ h_e = torch.cat([x_i, x_j, edge_attr], dim=-1)
93
+ h_e = self.out_e(h_e)
94
+ edge_attr = self.norm3(edge_attr + self.dropout3(h_e))
95
+ return x, edge_attr
96
+
97
+ def message(self, x_i: torch.Tensor, x_j: torch.Tensor,
98
+ edge_attr: torch.Tensor) -> torch.Tensor:
99
+ h = torch.cat([x_i, x_j, edge_attr], dim=-1) # [E, 2*d_v + d_e]
100
+ h = self.out_e(h) # [E, d_e]
101
+ return h
102
+
103
+
104
+ class Decoder(MessagePassing):
105
+ def __init__(
106
+ self,
107
+ in_channels: int,
108
+ hidden_channels: int,
109
+ dropout: float = 0.1,
110
+ scale: float = 30,
111
+ ) -> None:
112
+ super().__init__()
113
+ self.out_v = torch.nn.Sequential(
114
+ torch.nn.Linear(in_channels, hidden_channels),
115
+ torch.nn.GELU(),
116
+ torch.nn.Linear(hidden_channels, hidden_channels),
117
+ torch.nn.GELU(),
118
+ torch.nn.Linear(hidden_channels, hidden_channels),
119
+ )
120
+ self.dropout1 = torch.nn.Dropout(dropout)
121
+ self.dropout2 = torch.nn.Dropout(dropout)
122
+ self.norm1 = torch.nn.LayerNorm(hidden_channels)
123
+ self.norm2 = torch.nn.LayerNorm(hidden_channels)
124
+ self.scale = scale
125
+ self.dense = PositionWiseFeedForward(hidden_channels,
126
+ hidden_channels * 4)
127
+
128
+ def forward(
129
+ self,
130
+ x: torch.Tensor,
131
+ edge_index: torch.Tensor,
132
+ edge_attr: torch.Tensor,
133
+ x_label: torch.Tensor,
134
+ mask: torch.Tensor,
135
+ ) -> torch.Tensor:
136
+ # x: [N, d_v]
137
+ # edge_index: [2, E]
138
+ # edge_attr: [E, d_e]
139
+ h_message = self.propagate(x=x, x_label=x_label, edge_index=edge_index,
140
+ edge_attr=edge_attr, mask=mask)
141
+ dh = h_message / self.scale
142
+ x = self.norm1(x + self.dropout1(dh))
143
+ dh = self.dense(x)
144
+ x = self.norm2(x + self.dropout2(dh))
145
+ return x
146
+
147
+ def message(self, x_i: torch.Tensor, x_j: torch.Tensor,
148
+ x_label_j: torch.Tensor, edge_attr: torch.Tensor,
149
+ mask: torch.Tensor) -> torch.Tensor:
150
+ h_1 = torch.cat([x_j, edge_attr, x_label_j], dim=-1)
151
+ h_0 = torch.cat([x_j, edge_attr, torch.zeros_like(x_label_j)], dim=-1)
152
+ h = h_1 * mask + h_0 * (1 - mask)
153
+ h = torch.concat([x_i, h], dim=-1)
154
+ h = self.out_v(h)
155
+ return h
156
+
157
+
158
+ class ProteinMPNN(torch.nn.Module):
159
+ r"""The ProteinMPNN model from the `"Robust deep learning--based
160
+ protein sequence design using ProteinMPNN"
161
+ <https://www.biorxiv.org/content/10.1101/2022.06.03.494563v1>`_ paper.
162
+
163
+ Args:
164
+ hidden_dim (int): Hidden channels.
165
+ (default: :obj:`128`)
166
+ num_encoder_layers (int): Number of encode layers.
167
+ (default: :obj:`3`)
168
+ num_decoder_layers (int): Number of decode layers.
169
+ (default: :obj:`3`)
170
+ num_neighbors (int): Number of neighbors for each atom.
171
+ (default: :obj:`30`)
172
+ num_rbf (int): Number of radial basis functions.
173
+ (default: :obj:`16`)
174
+ dropout (float): Dropout rate.
175
+ (default: :obj:`0.1`)
176
+ augment_eps (float): Augmentation epsilon for input coordinates.
177
+ (default: :obj:`0.2`)
178
+ num_positional_embedding (int): Number of positional embeddings.
179
+ (default: :obj:`16`)
180
+ vocab_size (int): Number of vocabulary.
181
+ (default: :obj:`21`)
182
+
183
+ .. note::
184
+ For an example of using :class:`ProteinMPNN`, see
185
+ `examples/llm/protein_mpnn.py <https://github.com/pyg-team/
186
+ pytorch_geometric/blob/master/examples/llm/protein_mpnn.py>`_.
187
+ """
188
+ def __init__(
189
+ self,
190
+ hidden_dim: int = 128,
191
+ num_encoder_layers: int = 3,
192
+ num_decoder_layers: int = 3,
193
+ num_neighbors: int = 30,
194
+ num_rbf: int = 16,
195
+ dropout: float = 0.1,
196
+ augment_eps: float = 0.2,
197
+ num_positional_embedding: int = 16,
198
+ vocab_size: int = 21,
199
+ ) -> None:
200
+ super().__init__()
201
+ self.augment_eps = augment_eps
202
+ self.hidden_dim = hidden_dim
203
+ self.num_neighbors = num_neighbors
204
+ self.num_rbf = num_rbf
205
+ self.embedding = PositionalEncoding(num_positional_embedding)
206
+ self.edge_mlp = torch.nn.Sequential(
207
+ torch.nn.Linear(num_positional_embedding + 400, hidden_dim),
208
+ torch.nn.LayerNorm(hidden_dim),
209
+ torch.nn.Linear(hidden_dim, hidden_dim),
210
+ )
211
+ self.label_embedding = torch.nn.Embedding(vocab_size, hidden_dim)
212
+ self.encoder_layers = torch.nn.ModuleList([
213
+ Encoder(hidden_dim * 3, hidden_dim, dropout)
214
+ for _ in range(num_encoder_layers)
215
+ ])
216
+
217
+ self.decoder_layers = torch.nn.ModuleList([
218
+ Decoder(hidden_dim * 4, hidden_dim, dropout)
219
+ for _ in range(num_decoder_layers)
220
+ ])
221
+ self.output = torch.nn.Linear(hidden_dim, vocab_size)
222
+
223
+ self.reset_parameters()
224
+
225
+ def reset_parameters(self):
226
+ for p in self.parameters():
227
+ if p.dim() > 1:
228
+ torch.nn.init.xavier_uniform_(p)
229
+
230
+ def _featurize(
231
+ self,
232
+ x: torch.Tensor,
233
+ mask: torch.Tensor,
234
+ batch: torch.Tensor,
235
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
236
+ N, Ca, C, O = (x[:, i, :] for i in range(4)) # noqa: E741
237
+ b = Ca - N
238
+ c = C - Ca
239
+ a = torch.cross(b, c, dim=-1)
240
+ Cb = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + Ca
241
+
242
+ valid_mask = mask.bool()
243
+ valid_Ca = Ca[valid_mask]
244
+ valid_batch = batch[valid_mask]
245
+
246
+ edge_index = knn_graph(valid_Ca, k=self.num_neighbors,
247
+ batch=valid_batch, loop=True)
248
+
249
+ row, col = edge_index
250
+ original_indices = torch.arange(Ca.size(0),
251
+ device=x.device)[valid_mask]
252
+ edge_index_original = torch.stack(
253
+ [original_indices[row], original_indices[col]], dim=0)
254
+ row, col = edge_index_original
255
+
256
+ rbf_all = []
257
+ for A, B in list(product([N, Ca, C, O, Cb], repeat=2)):
258
+ distances = torch.sqrt(torch.sum((A[row] - B[col])**2, 1) + 1e-6)
259
+ rbf = self._rbf(distances)
260
+ rbf_all.append(rbf)
261
+
262
+ return edge_index_original, torch.cat(rbf_all, dim=-1)
263
+
264
+ def _rbf(self, D: torch.Tensor) -> torch.Tensor:
265
+ D_min, D_max, D_count = 2., 22., self.num_rbf
266
+ D_mu = torch.linspace(D_min, D_max, D_count, device=D.device)
267
+ D_mu = D_mu.view([1, -1])
268
+ D_sigma = (D_max - D_min) / D_count
269
+ D_expand = torch.unsqueeze(D, -1)
270
+ RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
271
+ return RBF
272
+
273
+ def forward(
274
+ self,
275
+ x: torch.Tensor,
276
+ chain_seq_label: torch.Tensor,
277
+ mask: torch.Tensor,
278
+ chain_mask_all: torch.Tensor,
279
+ residue_idx: torch.Tensor,
280
+ chain_encoding_all: torch.Tensor,
281
+ batch: torch.Tensor,
282
+ ) -> torch.Tensor:
283
+ device = x.device
284
+ if self.training and self.augment_eps > 0:
285
+ x = x + self.augment_eps * torch.randn_like(x)
286
+
287
+ edge_index, edge_attr = self._featurize(x, mask, batch)
288
+
289
+ row, col = edge_index
290
+ offset = residue_idx[row] - residue_idx[col]
291
+ # find self vs non-self interaction
292
+ e_chains = ((chain_encoding_all[row] -
293
+ chain_encoding_all[col]) == 0).long()
294
+ e_pos = self.embedding(offset, e_chains)
295
+ h_e = self.edge_mlp(torch.cat([edge_attr, e_pos], dim=-1))
296
+ h_v = torch.zeros(x.size(0), self.hidden_dim, device=x.device)
297
+
298
+ # encoder
299
+ for encoder in self.encoder_layers:
300
+ h_v, h_e = encoder(h_v, edge_index, h_e)
301
+
302
+ # mask
303
+ h_label = self.label_embedding(chain_seq_label)
304
+ batch_chain_mask_all, _ = to_dense_batch(chain_mask_all * mask,
305
+ batch) # [B, N]
306
+ # 0 - visible - encoder, 1 - masked - decoder
307
+ decoding_order = torch.argsort(
308
+ (batch_chain_mask_all + 1e-4) * (torch.abs(
309
+ torch.randn(batch_chain_mask_all.shape, device=device))))
310
+ mask_size = batch_chain_mask_all.size(1)
311
+ permutation_matrix_reverse = F.one_hot(decoding_order,
312
+ num_classes=mask_size).float()
313
+ order_mask_backward = torch.einsum(
314
+ 'ij, biq, bjp->bqp',
315
+ 1 - torch.triu(torch.ones(mask_size, mask_size, device=device)),
316
+ permutation_matrix_reverse,
317
+ permutation_matrix_reverse,
318
+ )
319
+ adj = to_dense_adj(edge_index, batch)
320
+ mask_attend = order_mask_backward[adj.bool()].unsqueeze(-1)
321
+
322
+ # decoder
323
+ for decoder in self.decoder_layers:
324
+ h_v = decoder(
325
+ h_v,
326
+ edge_index,
327
+ h_e,
328
+ h_label,
329
+ mask_attend,
330
+ )
331
+
332
+ logits = self.output(h_v)
333
+ return F.log_softmax(logits, dim=-1)