pyg-nightly 2.6.0.dev20240704__py3-none-any.whl → 2.8.0.dev20251207__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pyg-nightly might be problematic. Click here for more details.
- {pyg_nightly-2.6.0.dev20240704.dist-info → pyg_nightly-2.8.0.dev20251207.dist-info}/METADATA +81 -58
- {pyg_nightly-2.6.0.dev20240704.dist-info → pyg_nightly-2.8.0.dev20251207.dist-info}/RECORD +265 -221
- {pyg_nightly-2.6.0.dev20240704.dist-info → pyg_nightly-2.8.0.dev20251207.dist-info}/WHEEL +1 -1
- pyg_nightly-2.8.0.dev20251207.dist-info/licenses/LICENSE +19 -0
- torch_geometric/__init__.py +34 -1
- torch_geometric/_compile.py +11 -3
- torch_geometric/_onnx.py +228 -0
- torch_geometric/config_mixin.py +8 -3
- torch_geometric/config_store.py +1 -1
- torch_geometric/contrib/__init__.py +1 -1
- torch_geometric/contrib/explain/pgm_explainer.py +1 -1
- torch_geometric/data/__init__.py +19 -1
- torch_geometric/data/batch.py +2 -2
- torch_geometric/data/collate.py +1 -3
- torch_geometric/data/data.py +110 -6
- torch_geometric/data/database.py +19 -5
- torch_geometric/data/dataset.py +14 -9
- torch_geometric/data/extract.py +1 -1
- torch_geometric/data/feature_store.py +17 -22
- torch_geometric/data/graph_store.py +3 -2
- torch_geometric/data/hetero_data.py +139 -7
- torch_geometric/data/hypergraph_data.py +2 -2
- torch_geometric/data/in_memory_dataset.py +2 -2
- torch_geometric/data/lightning/datamodule.py +42 -28
- torch_geometric/data/storage.py +9 -1
- torch_geometric/datasets/__init__.py +20 -1
- torch_geometric/datasets/actor.py +7 -9
- torch_geometric/datasets/airfrans.py +17 -20
- torch_geometric/datasets/airports.py +8 -10
- torch_geometric/datasets/amazon.py +8 -11
- torch_geometric/datasets/amazon_book.py +8 -9
- torch_geometric/datasets/amazon_products.py +7 -9
- torch_geometric/datasets/aminer.py +8 -9
- torch_geometric/datasets/aqsol.py +10 -13
- torch_geometric/datasets/attributed_graph_dataset.py +8 -10
- torch_geometric/datasets/ba_multi_shapes.py +10 -12
- torch_geometric/datasets/ba_shapes.py +5 -6
- torch_geometric/datasets/brca_tgca.py +1 -1
- torch_geometric/datasets/city.py +157 -0
- torch_geometric/datasets/dbp15k.py +1 -1
- torch_geometric/datasets/gdelt_lite.py +3 -2
- torch_geometric/datasets/ged_dataset.py +3 -2
- torch_geometric/datasets/git_mol_dataset.py +263 -0
- torch_geometric/datasets/gnn_benchmark_dataset.py +3 -2
- torch_geometric/datasets/hgb_dataset.py +2 -2
- torch_geometric/datasets/hm.py +1 -1
- torch_geometric/datasets/instruct_mol_dataset.py +134 -0
- torch_geometric/datasets/linkx_dataset.py +4 -3
- torch_geometric/datasets/lrgb.py +3 -5
- torch_geometric/datasets/malnet_tiny.py +2 -1
- torch_geometric/datasets/md17.py +3 -3
- torch_geometric/datasets/medshapenet.py +145 -0
- torch_geometric/datasets/mnist_superpixels.py +2 -3
- torch_geometric/datasets/modelnet.py +1 -1
- torch_geometric/datasets/molecule_gpt_dataset.py +492 -0
- torch_geometric/datasets/molecule_net.py +3 -2
- torch_geometric/datasets/neurograph.py +1 -3
- torch_geometric/datasets/ogb_mag.py +1 -1
- torch_geometric/datasets/opf.py +19 -5
- torch_geometric/datasets/pascal_pf.py +1 -1
- torch_geometric/datasets/pcqm4m.py +2 -1
- torch_geometric/datasets/ppi.py +2 -1
- torch_geometric/datasets/protein_mpnn_dataset.py +451 -0
- torch_geometric/datasets/qm7.py +1 -1
- torch_geometric/datasets/qm9.py +3 -2
- torch_geometric/datasets/shrec2016.py +2 -2
- torch_geometric/datasets/snap_dataset.py +8 -4
- torch_geometric/datasets/tag_dataset.py +462 -0
- torch_geometric/datasets/teeth3ds.py +269 -0
- torch_geometric/datasets/web_qsp_dataset.py +342 -0
- torch_geometric/datasets/wikics.py +2 -1
- torch_geometric/datasets/wikidata.py +2 -1
- torch_geometric/deprecation.py +1 -1
- torch_geometric/distributed/__init__.py +13 -0
- torch_geometric/distributed/dist_loader.py +2 -2
- torch_geometric/distributed/local_feature_store.py +3 -2
- torch_geometric/distributed/local_graph_store.py +2 -1
- torch_geometric/distributed/partition.py +9 -8
- torch_geometric/distributed/rpc.py +3 -3
- torch_geometric/edge_index.py +35 -22
- torch_geometric/explain/algorithm/attention_explainer.py +219 -29
- torch_geometric/explain/algorithm/base.py +2 -2
- torch_geometric/explain/algorithm/captum.py +1 -1
- torch_geometric/explain/algorithm/captum_explainer.py +2 -1
- torch_geometric/explain/algorithm/gnn_explainer.py +406 -69
- torch_geometric/explain/algorithm/graphmask_explainer.py +8 -8
- torch_geometric/explain/algorithm/pg_explainer.py +305 -47
- torch_geometric/explain/explainer.py +2 -2
- torch_geometric/explain/explanation.py +89 -5
- torch_geometric/explain/metric/faithfulness.py +1 -1
- torch_geometric/graphgym/checkpoint.py +2 -1
- torch_geometric/graphgym/config.py +3 -2
- torch_geometric/graphgym/imports.py +15 -4
- torch_geometric/graphgym/logger.py +1 -1
- torch_geometric/graphgym/loss.py +1 -1
- torch_geometric/graphgym/models/encoder.py +2 -2
- torch_geometric/graphgym/models/layer.py +1 -1
- torch_geometric/graphgym/utils/comp_budget.py +4 -3
- torch_geometric/hash_tensor.py +798 -0
- torch_geometric/index.py +16 -7
- torch_geometric/inspector.py +6 -2
- torch_geometric/io/fs.py +27 -0
- torch_geometric/io/tu.py +2 -3
- torch_geometric/llm/__init__.py +9 -0
- torch_geometric/llm/large_graph_indexer.py +741 -0
- torch_geometric/llm/models/__init__.py +23 -0
- torch_geometric/llm/models/g_retriever.py +251 -0
- torch_geometric/llm/models/git_mol.py +336 -0
- torch_geometric/llm/models/glem.py +397 -0
- torch_geometric/llm/models/llm.py +470 -0
- torch_geometric/llm/models/llm_judge.py +158 -0
- torch_geometric/llm/models/molecule_gpt.py +222 -0
- torch_geometric/llm/models/protein_mpnn.py +333 -0
- torch_geometric/llm/models/sentence_transformer.py +188 -0
- torch_geometric/llm/models/txt2kg.py +353 -0
- torch_geometric/llm/models/vision_transformer.py +38 -0
- torch_geometric/llm/rag_loader.py +154 -0
- torch_geometric/llm/utils/__init__.py +10 -0
- torch_geometric/llm/utils/backend_utils.py +443 -0
- torch_geometric/llm/utils/feature_store.py +169 -0
- torch_geometric/llm/utils/graph_store.py +199 -0
- torch_geometric/llm/utils/vectorrag.py +125 -0
- torch_geometric/loader/cluster.py +6 -5
- torch_geometric/loader/graph_saint.py +2 -1
- torch_geometric/loader/ibmb_loader.py +4 -4
- torch_geometric/loader/link_loader.py +1 -1
- torch_geometric/loader/link_neighbor_loader.py +2 -1
- torch_geometric/loader/mixin.py +6 -5
- torch_geometric/loader/neighbor_loader.py +1 -1
- torch_geometric/loader/neighbor_sampler.py +2 -2
- torch_geometric/loader/prefetch.py +4 -3
- torch_geometric/loader/temporal_dataloader.py +2 -2
- torch_geometric/loader/utils.py +10 -10
- torch_geometric/metrics/__init__.py +23 -2
- torch_geometric/metrics/link_pred.py +755 -85
- torch_geometric/nn/__init__.py +1 -0
- torch_geometric/nn/aggr/__init__.py +2 -0
- torch_geometric/nn/aggr/base.py +1 -1
- torch_geometric/nn/aggr/equilibrium.py +1 -1
- torch_geometric/nn/aggr/fused.py +1 -1
- torch_geometric/nn/aggr/patch_transformer.py +149 -0
- torch_geometric/nn/aggr/set_transformer.py +1 -1
- torch_geometric/nn/aggr/utils.py +9 -4
- torch_geometric/nn/attention/__init__.py +9 -1
- torch_geometric/nn/attention/polynormer.py +107 -0
- torch_geometric/nn/attention/qformer.py +71 -0
- torch_geometric/nn/attention/sgformer.py +99 -0
- torch_geometric/nn/conv/__init__.py +2 -0
- torch_geometric/nn/conv/appnp.py +1 -1
- torch_geometric/nn/conv/collect.jinja +6 -3
- torch_geometric/nn/conv/cugraph/gat_conv.py +8 -2
- torch_geometric/nn/conv/cugraph/rgcn_conv.py +3 -0
- torch_geometric/nn/conv/cugraph/sage_conv.py +3 -0
- torch_geometric/nn/conv/dna_conv.py +1 -1
- torch_geometric/nn/conv/eg_conv.py +7 -7
- torch_geometric/nn/conv/gat_conv.py +33 -4
- torch_geometric/nn/conv/gatv2_conv.py +35 -4
- torch_geometric/nn/conv/gen_conv.py +1 -1
- torch_geometric/nn/conv/general_conv.py +1 -1
- torch_geometric/nn/conv/gravnet_conv.py +2 -1
- torch_geometric/nn/conv/hetero_conv.py +3 -2
- torch_geometric/nn/conv/meshcnn_conv.py +487 -0
- torch_geometric/nn/conv/message_passing.py +6 -5
- torch_geometric/nn/conv/mixhop_conv.py +1 -1
- torch_geometric/nn/conv/rgcn_conv.py +2 -1
- torch_geometric/nn/conv/sg_conv.py +1 -1
- torch_geometric/nn/conv/spline_conv.py +2 -1
- torch_geometric/nn/conv/ssg_conv.py +1 -1
- torch_geometric/nn/conv/transformer_conv.py +5 -3
- torch_geometric/nn/data_parallel.py +5 -4
- torch_geometric/nn/dense/linear.py +5 -24
- torch_geometric/nn/encoding.py +17 -3
- torch_geometric/nn/fx.py +17 -15
- torch_geometric/nn/model_hub.py +5 -16
- torch_geometric/nn/models/__init__.py +11 -0
- torch_geometric/nn/models/attentive_fp.py +1 -1
- torch_geometric/nn/models/attract_repel.py +148 -0
- torch_geometric/nn/models/basic_gnn.py +2 -1
- torch_geometric/nn/models/captum.py +1 -1
- torch_geometric/nn/models/deep_graph_infomax.py +1 -1
- torch_geometric/nn/models/dimenet.py +2 -2
- torch_geometric/nn/models/dimenet_utils.py +4 -2
- torch_geometric/nn/models/gpse.py +1083 -0
- torch_geometric/nn/models/graph_unet.py +13 -4
- torch_geometric/nn/models/lpformer.py +783 -0
- torch_geometric/nn/models/metapath2vec.py +1 -1
- torch_geometric/nn/models/mlp.py +4 -2
- torch_geometric/nn/models/node2vec.py +1 -1
- torch_geometric/nn/models/polynormer.py +206 -0
- torch_geometric/nn/models/rev_gnn.py +3 -3
- torch_geometric/nn/models/schnet.py +2 -1
- torch_geometric/nn/models/sgformer.py +219 -0
- torch_geometric/nn/models/signed_gcn.py +1 -1
- torch_geometric/nn/models/visnet.py +2 -2
- torch_geometric/nn/norm/batch_norm.py +17 -7
- torch_geometric/nn/norm/diff_group_norm.py +7 -2
- torch_geometric/nn/norm/graph_norm.py +9 -4
- torch_geometric/nn/norm/instance_norm.py +5 -1
- torch_geometric/nn/norm/layer_norm.py +15 -7
- torch_geometric/nn/norm/msg_norm.py +8 -2
- torch_geometric/nn/pool/__init__.py +15 -9
- torch_geometric/nn/pool/cluster_pool.py +144 -0
- torch_geometric/nn/pool/connect/base.py +1 -3
- torch_geometric/nn/pool/edge_pool.py +1 -1
- torch_geometric/nn/pool/knn.py +13 -10
- torch_geometric/nn/pool/select/base.py +1 -4
- torch_geometric/nn/summary.py +1 -1
- torch_geometric/nn/to_hetero_module.py +4 -3
- torch_geometric/nn/to_hetero_transformer.py +3 -3
- torch_geometric/nn/to_hetero_with_bases_transformer.py +5 -5
- torch_geometric/profile/__init__.py +2 -0
- torch_geometric/profile/nvtx.py +66 -0
- torch_geometric/profile/profiler.py +18 -9
- torch_geometric/profile/utils.py +20 -5
- torch_geometric/sampler/__init__.py +2 -1
- torch_geometric/sampler/base.py +337 -8
- torch_geometric/sampler/hgt_sampler.py +11 -1
- torch_geometric/sampler/neighbor_sampler.py +298 -25
- torch_geometric/sampler/utils.py +93 -5
- torch_geometric/testing/__init__.py +4 -0
- torch_geometric/testing/decorators.py +35 -5
- torch_geometric/testing/distributed.py +1 -1
- torch_geometric/transforms/__init__.py +4 -0
- torch_geometric/transforms/add_gpse.py +49 -0
- torch_geometric/transforms/add_metapaths.py +10 -8
- torch_geometric/transforms/add_positional_encoding.py +2 -2
- torch_geometric/transforms/base_transform.py +2 -1
- torch_geometric/transforms/delaunay.py +65 -15
- torch_geometric/transforms/face_to_edge.py +32 -3
- torch_geometric/transforms/gdc.py +8 -9
- torch_geometric/transforms/largest_connected_components.py +1 -1
- torch_geometric/transforms/mask.py +5 -1
- torch_geometric/transforms/node_property_split.py +1 -1
- torch_geometric/transforms/normalize_features.py +3 -3
- torch_geometric/transforms/pad.py +1 -1
- torch_geometric/transforms/random_link_split.py +1 -1
- torch_geometric/transforms/remove_duplicated_edges.py +4 -2
- torch_geometric/transforms/remove_self_loops.py +36 -0
- torch_geometric/transforms/rooted_subgraph.py +1 -1
- torch_geometric/transforms/svd_feature_reduction.py +1 -1
- torch_geometric/transforms/virtual_node.py +2 -1
- torch_geometric/typing.py +82 -17
- torch_geometric/utils/__init__.py +6 -1
- torch_geometric/utils/_lexsort.py +0 -9
- torch_geometric/utils/_negative_sampling.py +28 -13
- torch_geometric/utils/_normalize_edge_index.py +46 -0
- torch_geometric/utils/_scatter.py +126 -164
- torch_geometric/utils/_sort_edge_index.py +0 -2
- torch_geometric/utils/_spmm.py +16 -14
- torch_geometric/utils/_subgraph.py +4 -0
- torch_geometric/utils/_tree_decomposition.py +1 -1
- torch_geometric/utils/_trim_to_layer.py +2 -2
- torch_geometric/utils/augmentation.py +1 -1
- torch_geometric/utils/convert.py +17 -10
- torch_geometric/utils/cross_entropy.py +34 -13
- torch_geometric/utils/embedding.py +91 -2
- torch_geometric/utils/geodesic.py +28 -25
- torch_geometric/utils/influence.py +279 -0
- torch_geometric/utils/map.py +14 -10
- torch_geometric/utils/nested.py +1 -1
- torch_geometric/utils/smiles.py +3 -3
- torch_geometric/utils/sparse.py +32 -24
- torch_geometric/visualization/__init__.py +2 -1
- torch_geometric/visualization/graph.py +250 -5
- torch_geometric/warnings.py +11 -2
- torch_geometric/nn/nlp/__init__.py +0 -7
- torch_geometric/nn/nlp/llm.py +0 -283
- torch_geometric/nn/nlp/sentence_transformer.py +0 -94
|
@@ -0,0 +1,470 @@
|
|
|
1
|
+
import warnings
|
|
2
|
+
from contextlib import nullcontext
|
|
3
|
+
from typing import Any, Dict, List, Optional
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
from torch import Tensor
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
from transformers.tokenization_utils_base import BatchEncoding
|
|
10
|
+
except ImportError:
|
|
11
|
+
BatchEncoding = Dict
|
|
12
|
+
|
|
13
|
+
IGNORE_INDEX = -100
|
|
14
|
+
MAX_TXT_LEN = 512
|
|
15
|
+
MAX_NEW_TOKENS = 128
|
|
16
|
+
PAD_TOKEN_ID = 0
|
|
17
|
+
PADDING_SIDE = 'left'
|
|
18
|
+
|
|
19
|
+
# legacy constants - used for Llama 2 style prompting
|
|
20
|
+
BOS = '<s>[INST]'
|
|
21
|
+
EOS_USER = '[/INST]'
|
|
22
|
+
EOS = '[/s]'
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def get_llm_kwargs(required_memory: int, dtype=torch.dtype) -> Dict[str, Any]:
|
|
26
|
+
torch.cuda.empty_cache()
|
|
27
|
+
|
|
28
|
+
gpu_memory: List[int] = []
|
|
29
|
+
for i in range(torch.cuda.device_count()):
|
|
30
|
+
gpu_memory.append(torch.cuda.mem_get_info(i)[0] // 1024**3)
|
|
31
|
+
# Use the minimum number of GPUs to fit the LLM on.
|
|
32
|
+
if sum(gpu_memory) >= required_memory:
|
|
33
|
+
break
|
|
34
|
+
|
|
35
|
+
if sum(gpu_memory) < required_memory:
|
|
36
|
+
gpu_memory = [] # If not enough VRAM, use pure CPU.
|
|
37
|
+
|
|
38
|
+
kwargs = dict(revision='main')
|
|
39
|
+
if len(gpu_memory) > 0:
|
|
40
|
+
kwargs['max_memory'] = {
|
|
41
|
+
i: f'{memory}GiB'
|
|
42
|
+
for i, memory in enumerate(gpu_memory)
|
|
43
|
+
}
|
|
44
|
+
kwargs['low_cpu_mem_usage'] = True
|
|
45
|
+
kwargs['device_map'] = 'auto'
|
|
46
|
+
kwargs['torch_dtype'] = dtype
|
|
47
|
+
|
|
48
|
+
return kwargs
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
class LLM(torch.nn.Module):
|
|
52
|
+
r"""A wrapper around a Large Language Model (LLM) from HuggingFace.
|
|
53
|
+
|
|
54
|
+
Args:
|
|
55
|
+
model_name (str): The HuggingFace model name
|
|
56
|
+
num_params (float, optional): An integer representing how many params
|
|
57
|
+
the HuggingFace model has, in billions. This is used to
|
|
58
|
+
automatically allocate the correct number of GPUs needed (using a
|
|
59
|
+
rough heuristic), given the available GPU memory of your GPUs. If
|
|
60
|
+
not specified, the number of parameters is determined using the
|
|
61
|
+
`huggingface_hub` module.
|
|
62
|
+
n_gpus (int, optional): Number of GPUs to use. Designed for advanced
|
|
63
|
+
users to select how many GPU's they want to set this manually and
|
|
64
|
+
override the automatic set up mechanism.
|
|
65
|
+
dtype (torch.dtype, optional): The data type to use for the LLM.
|
|
66
|
+
(default :obj: `torch.bfloat16`)
|
|
67
|
+
sys_prompt (str, optional): A system prompt to use for the LLM.
|
|
68
|
+
(default: :obj: `None`)
|
|
69
|
+
"""
|
|
70
|
+
def __init__(
|
|
71
|
+
self,
|
|
72
|
+
model_name: str,
|
|
73
|
+
num_params: Optional[float] = None,
|
|
74
|
+
n_gpus: Optional[int] = None,
|
|
75
|
+
dtype: Optional[torch.dtype] = torch.bfloat16,
|
|
76
|
+
sys_prompt: Optional[str] = None,
|
|
77
|
+
) -> None:
|
|
78
|
+
super().__init__()
|
|
79
|
+
|
|
80
|
+
self.model_name = model_name
|
|
81
|
+
|
|
82
|
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
83
|
+
if n_gpus is None:
|
|
84
|
+
if num_params is None:
|
|
85
|
+
from huggingface_hub import get_safetensors_metadata
|
|
86
|
+
safetensors_metadata = get_safetensors_metadata(model_name)
|
|
87
|
+
param_count = safetensors_metadata.parameter_count
|
|
88
|
+
num_params = float(list(param_count.values())[0] // 10**9)
|
|
89
|
+
|
|
90
|
+
# A rough heuristic on GPU memory requirements, e.g., we found that
|
|
91
|
+
# LLAMA3 (8B parameters) fits on a 96GB GPU.
|
|
92
|
+
required_memory = 96.0 * num_params / 8.0
|
|
93
|
+
kwargs = get_llm_kwargs(required_memory, dtype)
|
|
94
|
+
else:
|
|
95
|
+
gpu_memory: List[int] = []
|
|
96
|
+
for i in range(n_gpus):
|
|
97
|
+
gpu_memory.append(torch.cuda.mem_get_info(i)[0] // 1024**3)
|
|
98
|
+
kwargs = dict(revision='main')
|
|
99
|
+
kwargs['max_memory'] = {
|
|
100
|
+
i: f'{memory}GiB'
|
|
101
|
+
for i, memory in enumerate(gpu_memory)
|
|
102
|
+
}
|
|
103
|
+
kwargs['low_cpu_mem_usage'] = True
|
|
104
|
+
kwargs['device_map'] = 'auto'
|
|
105
|
+
kwargs['torch_dtype'] = dtype
|
|
106
|
+
|
|
107
|
+
print(f"Setting up '{model_name}' with configuration: {kwargs}")
|
|
108
|
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
109
|
+
model_name,
|
|
110
|
+
use_fast=False,
|
|
111
|
+
)
|
|
112
|
+
if self.tokenizer.chat_template and self.tokenizer.bos_token is None:
|
|
113
|
+
dummy_convo = [
|
|
114
|
+
{
|
|
115
|
+
"role": "system",
|
|
116
|
+
"content": "dummy"
|
|
117
|
+
},
|
|
118
|
+
{
|
|
119
|
+
"role": "user",
|
|
120
|
+
"content": "convo"
|
|
121
|
+
},
|
|
122
|
+
]
|
|
123
|
+
text = self.tokenizer.apply_chat_template(
|
|
124
|
+
dummy_convo,
|
|
125
|
+
tokenize=True,
|
|
126
|
+
)
|
|
127
|
+
self.tokenizer.bos_token = self.tokenizer.decode(text[0])
|
|
128
|
+
if self.tokenizer.pad_token_id is None:
|
|
129
|
+
self.tokenizer.pad_token_id = PAD_TOKEN_ID
|
|
130
|
+
if self.tokenizer.padding_side is None:
|
|
131
|
+
self.tokenizer.padding_side = PADDING_SIDE
|
|
132
|
+
self.llm = AutoModelForCausalLM.from_pretrained(model_name, **kwargs)
|
|
133
|
+
self.word_embedding = self.llm.model.get_input_embeddings()
|
|
134
|
+
if sys_prompt is not None:
|
|
135
|
+
self.sys_prompt = sys_prompt
|
|
136
|
+
else:
|
|
137
|
+
self.sys_prompt = ""
|
|
138
|
+
if 'max_memory' not in kwargs: # Pure CPU:
|
|
139
|
+
warnings.warn(
|
|
140
|
+
"LLM is being used on CPU, which may be slow. This decision "
|
|
141
|
+
"was made by a rough hueristic that assumes your GPU set up "
|
|
142
|
+
"does not have enough GPU RAM. This is done to avoid GPU OOM "
|
|
143
|
+
"errors. If you think this is a mistake, please initialize "
|
|
144
|
+
"your LLM with the n_gpus param to dictate how many gpus to "
|
|
145
|
+
"use for the LLM.", stacklevel=2)
|
|
146
|
+
self.device = torch.device('cpu')
|
|
147
|
+
self.autocast_context = nullcontext()
|
|
148
|
+
else:
|
|
149
|
+
self.device = self.llm.device
|
|
150
|
+
if dtype == torch.float32:
|
|
151
|
+
self.autocast_context = nullcontext()
|
|
152
|
+
else:
|
|
153
|
+
self.autocast_context = torch.amp.autocast('cuda', dtype=dtype)
|
|
154
|
+
|
|
155
|
+
# legacy function - used for Llama 2 style prompting
|
|
156
|
+
def _encode_inputs(
|
|
157
|
+
self,
|
|
158
|
+
question: List[str],
|
|
159
|
+
context: Optional[List[str]] = None,
|
|
160
|
+
) -> tuple:
|
|
161
|
+
batch_size = len(question)
|
|
162
|
+
questions = self.tokenizer(question, add_special_tokens=False)
|
|
163
|
+
if context is not None:
|
|
164
|
+
context = self.tokenizer(context, add_special_tokens=False)
|
|
165
|
+
|
|
166
|
+
eos_user_tokens = self.tokenizer(EOS_USER, add_special_tokens=False)
|
|
167
|
+
bos_token = self.tokenizer(
|
|
168
|
+
BOS,
|
|
169
|
+
add_special_tokens=False,
|
|
170
|
+
return_tensors='pt',
|
|
171
|
+
).input_ids[0].to(self.device)
|
|
172
|
+
bos_embeds = self.word_embedding(bos_token)
|
|
173
|
+
pad_token = torch.tensor(self.tokenizer.pad_token_id,
|
|
174
|
+
device=self.device)
|
|
175
|
+
pad_embeds = self.word_embedding(pad_token).unsqueeze(0)
|
|
176
|
+
return (batch_size, questions, context, eos_user_tokens, bos_embeds,
|
|
177
|
+
pad_embeds)
|
|
178
|
+
|
|
179
|
+
def _label_input_ids(
|
|
180
|
+
self,
|
|
181
|
+
i: int,
|
|
182
|
+
label: BatchEncoding,
|
|
183
|
+
eos_tokens: BatchEncoding,
|
|
184
|
+
) -> List[int]:
|
|
185
|
+
label_input_ids = label.input_ids[i][:MAX_NEW_TOKENS]
|
|
186
|
+
label_input_ids = label_input_ids + eos_tokens.input_ids
|
|
187
|
+
return label_input_ids
|
|
188
|
+
|
|
189
|
+
# legacy function - used for Llama 2 style prompting
|
|
190
|
+
def _input_ids(
|
|
191
|
+
self,
|
|
192
|
+
i: int,
|
|
193
|
+
context: BatchEncoding,
|
|
194
|
+
question: BatchEncoding,
|
|
195
|
+
eos_user_tokens: BatchEncoding,
|
|
196
|
+
) -> List[int]:
|
|
197
|
+
input_ids: List[int] = []
|
|
198
|
+
if context is not None:
|
|
199
|
+
input_ids += context.input_ids[i][:MAX_TXT_LEN]
|
|
200
|
+
input_ids += question.input_ids[i]
|
|
201
|
+
input_ids += eos_user_tokens.input_ids
|
|
202
|
+
return input_ids
|
|
203
|
+
|
|
204
|
+
# legacy function - used for Llama 2 style prompting
|
|
205
|
+
def _inputs_embeds(
|
|
206
|
+
self,
|
|
207
|
+
i: int,
|
|
208
|
+
input_ids: List[int],
|
|
209
|
+
bos_embeds: Tensor,
|
|
210
|
+
embedding: Optional[List[Tensor]] = None,
|
|
211
|
+
) -> Tensor:
|
|
212
|
+
inputs_embeds = self.word_embedding(
|
|
213
|
+
torch.tensor(input_ids, device=self.device))
|
|
214
|
+
|
|
215
|
+
to_cat = [bos_embeds]
|
|
216
|
+
if embedding is not None and embedding[i] is not None:
|
|
217
|
+
to_cat.append(embedding[i])
|
|
218
|
+
to_cat.append(inputs_embeds)
|
|
219
|
+
return torch.cat(to_cat, dim=0).to(self.device)
|
|
220
|
+
|
|
221
|
+
def _append_embeds(
|
|
222
|
+
self,
|
|
223
|
+
inputs_embeds: Tensor,
|
|
224
|
+
batch_inputs_embeds: List[Tensor],
|
|
225
|
+
batch_attention_mask: List[List[int]],
|
|
226
|
+
label_input_ids: List[int] = None,
|
|
227
|
+
batch_label_input_ids: Optional[List[List[int]]] = None,
|
|
228
|
+
) -> tuple:
|
|
229
|
+
batch_inputs_embeds.append(inputs_embeds)
|
|
230
|
+
batch_attention_mask.append([1] * inputs_embeds.size(0))
|
|
231
|
+
if label_input_ids is not None:
|
|
232
|
+
pad = inputs_embeds.size(0) - len(label_input_ids)
|
|
233
|
+
label_input_ids = [IGNORE_INDEX] * pad + label_input_ids
|
|
234
|
+
batch_label_input_ids.append(label_input_ids)
|
|
235
|
+
return batch_inputs_embeds, batch_attention_mask, batch_label_input_ids
|
|
236
|
+
|
|
237
|
+
def _pad_embeds(
|
|
238
|
+
self,
|
|
239
|
+
pad_embeds: Tensor,
|
|
240
|
+
batch_inputs_embeds: List[Tensor],
|
|
241
|
+
batch_attention_mask: List[List[int]],
|
|
242
|
+
batch_label_input_ids: Optional[List[List[int]]] = None,
|
|
243
|
+
) -> tuple:
|
|
244
|
+
max_length = max([x.size(0) for x in batch_inputs_embeds])
|
|
245
|
+
batch_size = len(batch_inputs_embeds)
|
|
246
|
+
for i in range(batch_size):
|
|
247
|
+
pad = max_length - batch_inputs_embeds[i].size(0)
|
|
248
|
+
batch_inputs_embeds[i] = torch.cat([
|
|
249
|
+
pad_embeds.repeat(pad, 1),
|
|
250
|
+
batch_inputs_embeds[i],
|
|
251
|
+
])
|
|
252
|
+
batch_attention_mask[i] = [0] * pad + batch_attention_mask[i]
|
|
253
|
+
if batch_label_input_ids is not None:
|
|
254
|
+
tmp = [IGNORE_INDEX] * pad + batch_label_input_ids[i]
|
|
255
|
+
batch_label_input_ids[i] = tmp
|
|
256
|
+
inputs_embeds = torch.stack(batch_inputs_embeds, dim=0)
|
|
257
|
+
attention_mask = torch.tensor(batch_attention_mask, device=self.device)
|
|
258
|
+
label_input_ids = None
|
|
259
|
+
if batch_label_input_ids is not None:
|
|
260
|
+
label_input_ids = torch.tensor(batch_label_input_ids,
|
|
261
|
+
device=self.device)
|
|
262
|
+
return inputs_embeds, attention_mask, label_input_ids
|
|
263
|
+
|
|
264
|
+
# legacy function - used for Llama 2 style prompting
|
|
265
|
+
def _get_embeds_old(
|
|
266
|
+
self,
|
|
267
|
+
question: List[str],
|
|
268
|
+
context: Optional[List[str]] = None,
|
|
269
|
+
embedding: Optional[List[Tensor]] = None,
|
|
270
|
+
answer: Optional[List[str]] = None,
|
|
271
|
+
) -> tuple:
|
|
272
|
+
(batch_size, question, context, eos_user_tokens, bos_embeds,
|
|
273
|
+
pad_embeds) = self._encode_inputs(question, context)
|
|
274
|
+
|
|
275
|
+
batch_label_input_ids = None
|
|
276
|
+
if answer is not None:
|
|
277
|
+
label = self.tokenizer(answer, add_special_tokens=False)
|
|
278
|
+
eos_tokens = self.tokenizer(EOS, add_special_tokens=False)
|
|
279
|
+
batch_label_input_ids = []
|
|
280
|
+
|
|
281
|
+
batch_inputs_embeds = []
|
|
282
|
+
batch_attention_mask = []
|
|
283
|
+
for i in range(batch_size):
|
|
284
|
+
input_ids = self._input_ids(i, context, question, eos_user_tokens)
|
|
285
|
+
if answer is not None:
|
|
286
|
+
label_input_ids = self._label_input_ids(i, label, eos_tokens)
|
|
287
|
+
input_ids += label_input_ids
|
|
288
|
+
else:
|
|
289
|
+
label_input_ids = None
|
|
290
|
+
|
|
291
|
+
inputs_embeds = self._inputs_embeds(i, input_ids, bos_embeds,
|
|
292
|
+
embedding)
|
|
293
|
+
|
|
294
|
+
(
|
|
295
|
+
batch_inputs_embeds,
|
|
296
|
+
batch_attention_mask,
|
|
297
|
+
batch_label_input_ids,
|
|
298
|
+
) = self._append_embeds(
|
|
299
|
+
inputs_embeds,
|
|
300
|
+
batch_inputs_embeds,
|
|
301
|
+
batch_attention_mask,
|
|
302
|
+
label_input_ids,
|
|
303
|
+
batch_label_input_ids,
|
|
304
|
+
)
|
|
305
|
+
|
|
306
|
+
inputs_embeds, attention_mask, label_input_ids = self._pad_embeds(
|
|
307
|
+
pad_embeds, batch_inputs_embeds, batch_attention_mask,
|
|
308
|
+
batch_label_input_ids)
|
|
309
|
+
|
|
310
|
+
return inputs_embeds, attention_mask, label_input_ids
|
|
311
|
+
|
|
312
|
+
def _get_embeds(
|
|
313
|
+
self,
|
|
314
|
+
question: List[str],
|
|
315
|
+
context: Optional[List[str]] = None,
|
|
316
|
+
embedding: Optional[List[Tensor]] = None,
|
|
317
|
+
answer: Optional[List[str]] = None,
|
|
318
|
+
) -> tuple:
|
|
319
|
+
if not self.tokenizer.chat_template or not self.sys_prompt:
|
|
320
|
+
warnings.warn(
|
|
321
|
+
f"HuggingFace model {self.model_name} is not using a "
|
|
322
|
+
"chat template, using Llama 2 style prompting. Please "
|
|
323
|
+
"consider using a more recent model and initialize the "
|
|
324
|
+
"LLM with `sys_prompt`.", stacklevel=2)
|
|
325
|
+
return self._get_embeds_old(question, context, embedding, answer)
|
|
326
|
+
batch_label_input_ids = None
|
|
327
|
+
if answer is not None:
|
|
328
|
+
label = self.tokenizer(answer, add_special_tokens=False)
|
|
329
|
+
eos_tokens = self.tokenizer(self.tokenizer.eos_token,
|
|
330
|
+
add_special_tokens=False)
|
|
331
|
+
batch_label_input_ids = []
|
|
332
|
+
|
|
333
|
+
batch_inputs_embeds = []
|
|
334
|
+
batch_attention_mask = []
|
|
335
|
+
for i in range(len(question)):
|
|
336
|
+
ctx = f"{context[i]} - " if context else ""
|
|
337
|
+
messages = [
|
|
338
|
+
{
|
|
339
|
+
"role": "system",
|
|
340
|
+
"content": self.sys_prompt
|
|
341
|
+
},
|
|
342
|
+
{
|
|
343
|
+
"role": "user",
|
|
344
|
+
"content": f"{ctx} - {question[i]}"
|
|
345
|
+
},
|
|
346
|
+
]
|
|
347
|
+
text = self.tokenizer.apply_chat_template(
|
|
348
|
+
messages,
|
|
349
|
+
tokenize=False,
|
|
350
|
+
add_generation_prompt=True,
|
|
351
|
+
enable_thinking=True,
|
|
352
|
+
)
|
|
353
|
+
text = text[len(self.tokenizer.bos_token):]
|
|
354
|
+
input_ids = self.tokenizer(text,
|
|
355
|
+
add_special_tokens=False).input_ids
|
|
356
|
+
if answer is not None:
|
|
357
|
+
label_input_ids = self._label_input_ids(i, label, eos_tokens)
|
|
358
|
+
input_ids += label_input_ids
|
|
359
|
+
else:
|
|
360
|
+
label_input_ids = None
|
|
361
|
+
|
|
362
|
+
bos_token = self.tokenizer(
|
|
363
|
+
self.tokenizer.bos_token,
|
|
364
|
+
add_special_tokens=False,
|
|
365
|
+
return_tensors='pt',
|
|
366
|
+
).input_ids[0].to(self.device)
|
|
367
|
+
|
|
368
|
+
bos_embeds = self.word_embedding(bos_token)
|
|
369
|
+
|
|
370
|
+
inputs_embeds = self.word_embedding(
|
|
371
|
+
torch.tensor(input_ids, device=self.device))
|
|
372
|
+
|
|
373
|
+
to_cat = [bos_embeds]
|
|
374
|
+
if embedding is not None and embedding[i] is not None:
|
|
375
|
+
to_cat.append(embedding[i])
|
|
376
|
+
to_cat.append(inputs_embeds)
|
|
377
|
+
inputs_embeds = torch.cat(to_cat, dim=0).to(self.device)
|
|
378
|
+
|
|
379
|
+
(
|
|
380
|
+
batch_inputs_embeds,
|
|
381
|
+
batch_attention_mask,
|
|
382
|
+
batch_label_input_ids,
|
|
383
|
+
) = self._append_embeds(
|
|
384
|
+
inputs_embeds,
|
|
385
|
+
batch_inputs_embeds,
|
|
386
|
+
batch_attention_mask,
|
|
387
|
+
label_input_ids,
|
|
388
|
+
batch_label_input_ids,
|
|
389
|
+
)
|
|
390
|
+
|
|
391
|
+
pad_token = torch.tensor(self.tokenizer.pad_token_id,
|
|
392
|
+
device=self.device)
|
|
393
|
+
pad_embeds = self.word_embedding(pad_token).unsqueeze(0)
|
|
394
|
+
|
|
395
|
+
inputs_embeds, attention_mask, label_input_ids = self._pad_embeds(
|
|
396
|
+
pad_embeds, batch_inputs_embeds, batch_attention_mask,
|
|
397
|
+
batch_label_input_ids)
|
|
398
|
+
|
|
399
|
+
return inputs_embeds, attention_mask, label_input_ids
|
|
400
|
+
|
|
401
|
+
def forward(
|
|
402
|
+
self,
|
|
403
|
+
question: List[str],
|
|
404
|
+
answer: List[str],
|
|
405
|
+
context: Optional[List[str]] = None,
|
|
406
|
+
embedding: Optional[List[Tensor]] = None,
|
|
407
|
+
) -> Tensor:
|
|
408
|
+
r"""The forward pass.
|
|
409
|
+
|
|
410
|
+
Args:
|
|
411
|
+
question (list[str]): The questions/prompts.
|
|
412
|
+
answer (list[str]): The answers/labels.
|
|
413
|
+
context (list[str], optional): Additional context to give to the
|
|
414
|
+
LLM, such as textified knowledge graphs. (default: :obj:`None`)
|
|
415
|
+
embedding (list[torch.Tensor], optional): RAG embedding
|
|
416
|
+
tensors, *i.e.* the embedded form of :obj:`context`. Either
|
|
417
|
+
:obj:`context` or :obj:`embedding` should be used, not
|
|
418
|
+
both. (default: :obj:`None`)
|
|
419
|
+
"""
|
|
420
|
+
inputs_embeds, attention_mask, label_input_ids = self._get_embeds(
|
|
421
|
+
question, context, embedding, answer)
|
|
422
|
+
|
|
423
|
+
with self.autocast_context:
|
|
424
|
+
outputs = self.llm(
|
|
425
|
+
inputs_embeds=inputs_embeds,
|
|
426
|
+
attention_mask=attention_mask,
|
|
427
|
+
return_dict=True,
|
|
428
|
+
labels=label_input_ids,
|
|
429
|
+
)
|
|
430
|
+
return outputs.loss
|
|
431
|
+
|
|
432
|
+
@torch.no_grad()
|
|
433
|
+
def inference(
|
|
434
|
+
self,
|
|
435
|
+
question: List[str],
|
|
436
|
+
context: Optional[List[str]] = None,
|
|
437
|
+
embedding: Optional[List[Tensor]] = None,
|
|
438
|
+
max_tokens: Optional[int] = MAX_NEW_TOKENS,
|
|
439
|
+
) -> List[str]:
|
|
440
|
+
r"""The inference pass.
|
|
441
|
+
|
|
442
|
+
Args:
|
|
443
|
+
question (list[str]): The questions/prompts.
|
|
444
|
+
answer (list[str]): The answers/labels.
|
|
445
|
+
context (list[str], optional): Additional context to give to the
|
|
446
|
+
LLM, such as textified knowledge graphs. (default: :obj:`None`)
|
|
447
|
+
embedding (list[torch.Tensor], optional): RAG embedding
|
|
448
|
+
tensors, *i.e.* the embedded form of :obj:`context`. Either
|
|
449
|
+
:obj:`context` or :obj:`embedding` should be used, not
|
|
450
|
+
both. (default: :obj:`None`)
|
|
451
|
+
max_tokens (int, optional): How many tokens for the LLM to
|
|
452
|
+
generate. (default: :obj:`32`)
|
|
453
|
+
"""
|
|
454
|
+
inputs_embeds, attention_mask, _ = self._get_embeds(
|
|
455
|
+
question, context, embedding)
|
|
456
|
+
|
|
457
|
+
with self.autocast_context:
|
|
458
|
+
outputs = self.llm.generate(
|
|
459
|
+
inputs_embeds=inputs_embeds,
|
|
460
|
+
bos_token_id=self.tokenizer.bos_token_id,
|
|
461
|
+
max_new_tokens=max_tokens,
|
|
462
|
+
attention_mask=attention_mask,
|
|
463
|
+
pad_token_id=self.tokenizer.eos_token_id,
|
|
464
|
+
use_cache=True,
|
|
465
|
+
)
|
|
466
|
+
|
|
467
|
+
return self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
468
|
+
|
|
469
|
+
def __repr__(self) -> str:
|
|
470
|
+
return f'{self.__class__.__name__}({self.model_name})'
|
|
@@ -0,0 +1,158 @@
|
|
|
1
|
+
from math import isnan
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
from torch_geometric.llm.models.txt2kg import \
|
|
5
|
+
_chunk_to_triples_str_cloud as call_NIM
|
|
6
|
+
|
|
7
|
+
# Credit for original "Marlin Accuracy" system goes to:
|
|
8
|
+
# Gilberto Titericz (NVIDIA)
|
|
9
|
+
# This work is an adaptation of his for PyG
|
|
10
|
+
SYSTEM_PROMPT_1 = (
|
|
11
|
+
"Instruction: You are a world class state of the art " +
|
|
12
|
+
"assistant for rating " +
|
|
13
|
+
"a User Answer given a Question. The Question is completely" +
|
|
14
|
+
" answered by the Reference Answer.\n" +
|
|
15
|
+
"Say 4, if User Answer is full contained and equivalent to" +
|
|
16
|
+
" Reference Answer" +
|
|
17
|
+
"in all terms, topics, numbers, metrics, dates and units.\n" +
|
|
18
|
+
"Say 2, if User Answer is partially contained and almost " +
|
|
19
|
+
"equivalent to Reference Answer" +
|
|
20
|
+
"in all terms, topics, numbers, metrics, dates and units.\n" +
|
|
21
|
+
"Say 0, if User Answer is not contained in Reference Answer" +
|
|
22
|
+
" or not accurate in all terms, topics," +
|
|
23
|
+
"numbers, metrics, dates and units or the User Answer do not" +
|
|
24
|
+
" answer the question.\n" +
|
|
25
|
+
"Do not explain or justify your rating. Your rating must be " +
|
|
26
|
+
"only 4, 2 or 0 according to the instructions above.\n" +
|
|
27
|
+
"### Question: \"{question}\"\n" + "### User Answer: \"{model_pred}\"\n" +
|
|
28
|
+
"### Reference Answer: \"{correct_answer}\"\n" + "The rating is:\n")
|
|
29
|
+
|
|
30
|
+
SYSTEM_PROMPT_2 = (
|
|
31
|
+
"I will rate the User Answer in comparison to the Reference " +
|
|
32
|
+
"Answer for a given Question.\n" +
|
|
33
|
+
"A rating of 4 indicates that the User Answer is entirely " +
|
|
34
|
+
"consistent with the Reference Answer, covering all aspects," +
|
|
35
|
+
" topics, numbers, metrics, dates, and units.\n" +
|
|
36
|
+
"A rating of 2 signifies that the User Answer is mostly " +
|
|
37
|
+
"aligned with the Reference Answer, with minor discrepancies" +
|
|
38
|
+
" in some areas.\n" +
|
|
39
|
+
"A rating of 0 means that the User Answer is either " +
|
|
40
|
+
"inaccurate, incomplete, or unrelated to the Reference " +
|
|
41
|
+
"Answer, or it fails to address the Question.\n" +
|
|
42
|
+
"I will provide the rating without any explanation or " +
|
|
43
|
+
"justification, adhering to the following scale: " +
|
|
44
|
+
"0 (no match), 2 (partial match), 4 (exact match).\n" +
|
|
45
|
+
"Do not explain or justify my rating. My rating must" +
|
|
46
|
+
" be only 4, 2 or 0 only.\n\n" + "Question: \"{question}\"\n\n" +
|
|
47
|
+
"Reference Answer: \"{model_pred}\"\n\n" +
|
|
48
|
+
"User Answer: \"{correct_answer}\"\n\n" + "Rating: ")
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
# TODO: add support for Local LM
|
|
52
|
+
# TODO: add multiproc support like txt2kg
|
|
53
|
+
class LLMJudge():
|
|
54
|
+
"""Uses NIMs to score a triple of (question, model_pred, correct_answer)
|
|
55
|
+
This whole class is an adaptation of Gilberto's work for PyG.
|
|
56
|
+
|
|
57
|
+
Args:
|
|
58
|
+
NVIDIA_NIM_MODEL : (str, optional)
|
|
59
|
+
The name of the NVIDIA NIM model to use.
|
|
60
|
+
(default: "nvidia/llama-3.1-nemotron-70b-instruct").
|
|
61
|
+
NVIDIA_API_KEY : (str, optional)
|
|
62
|
+
The API key for accessing NVIDIA's NIM models.
|
|
63
|
+
(default: "").
|
|
64
|
+
ENDPOINT_URL : (str, optional)
|
|
65
|
+
The URL hosting your model, in case you are not using
|
|
66
|
+
the public NIM.
|
|
67
|
+
(default: "https://integrate.api.nvidia.com/v1").
|
|
68
|
+
"""
|
|
69
|
+
def __init__(
|
|
70
|
+
self,
|
|
71
|
+
NVIDIA_NIM_MODEL: Optional[
|
|
72
|
+
str] = "nvidia/llama-3.1-nemotron-70b-instruct",
|
|
73
|
+
NVIDIA_API_KEY: Optional[str] = "",
|
|
74
|
+
ENDPOINT_URL: Optional[str] = "https://integrate.api.nvidia.com/v1",
|
|
75
|
+
) -> None:
|
|
76
|
+
self.NVIDIA_API_KEY = NVIDIA_API_KEY
|
|
77
|
+
self.NIM_MODEL = NVIDIA_NIM_MODEL
|
|
78
|
+
self.ENDPOINT_URL = ENDPOINT_URL
|
|
79
|
+
|
|
80
|
+
def _process_score(self, response: str) -> float:
|
|
81
|
+
"""Uses 3 and 1 even though prompt says only 0, 2, 4.
|
|
82
|
+
This is because LLMs don't always follow instructions.
|
|
83
|
+
Credit to Gilberto.
|
|
84
|
+
"""
|
|
85
|
+
for i in [4, 3, 2, 1, 0]:
|
|
86
|
+
if str(i) in response:
|
|
87
|
+
return i / 4
|
|
88
|
+
return float("nan")
|
|
89
|
+
|
|
90
|
+
def _average_scores(self, score0: float, score1: float):
|
|
91
|
+
"""Take the average of score0 and score1.
|
|
92
|
+
Sometimes the LLM fail to respond or have no score in the response.
|
|
93
|
+
In those cases the failed score is discarded.
|
|
94
|
+
Credit to Gilberto.
|
|
95
|
+
|
|
96
|
+
Args:
|
|
97
|
+
score0 (float): judge accuracy score.
|
|
98
|
+
score1 (float): judge accuracy score by permuting agent answer and
|
|
99
|
+
ground truth.
|
|
100
|
+
|
|
101
|
+
Returns:
|
|
102
|
+
(float) average of score0 and score1 of both contains scores,
|
|
103
|
+
otherwise pick the max.
|
|
104
|
+
"""
|
|
105
|
+
score = float("nan")
|
|
106
|
+
if score0 >= 0 and score1 >= 0:
|
|
107
|
+
score = (score0 + score1) / 2
|
|
108
|
+
else:
|
|
109
|
+
score = max(score0, score1)
|
|
110
|
+
return score
|
|
111
|
+
|
|
112
|
+
def score(
|
|
113
|
+
self,
|
|
114
|
+
question: str,
|
|
115
|
+
model_pred: str,
|
|
116
|
+
correct_answer: str,
|
|
117
|
+
) -> float:
|
|
118
|
+
"""Args:
|
|
119
|
+
question (str): The original question asked to the model.
|
|
120
|
+
model_pred (str): The prediction made by the model.
|
|
121
|
+
correct_answer (str): The actual correct answer to the question.
|
|
122
|
+
|
|
123
|
+
Returns:
|
|
124
|
+
score (float): score of 0-1, may be nan due to LLM judge failure.
|
|
125
|
+
Evals should skip nan's when aggregating score.
|
|
126
|
+
"""
|
|
127
|
+
prompt1 = SYSTEM_PROMPT_1.format(question=question,
|
|
128
|
+
model_pred=model_pred,
|
|
129
|
+
correct_answer=correct_answer)
|
|
130
|
+
prompt2 = SYSTEM_PROMPT_2.format(question=question,
|
|
131
|
+
model_pred=model_pred,
|
|
132
|
+
correct_answer=correct_answer)
|
|
133
|
+
score1 = float("nan")
|
|
134
|
+
score2 = float("nan")
|
|
135
|
+
for _retry in range(200):
|
|
136
|
+
try:
|
|
137
|
+
score1 = self._process_score(
|
|
138
|
+
call_NIM(prompt1, self.NVIDIA_API_KEY, self.NIM_MODEL,
|
|
139
|
+
self.ENDPOINT_URL, post_text=""))
|
|
140
|
+
if not isnan(score1):
|
|
141
|
+
break
|
|
142
|
+
except ImportError:
|
|
143
|
+
raise
|
|
144
|
+
except: # noqa
|
|
145
|
+
pass
|
|
146
|
+
for _retry in range(20):
|
|
147
|
+
try:
|
|
148
|
+
score2 = self._process_score(
|
|
149
|
+
call_NIM(prompt2, self.NVIDIA_API_KEY, self.NIM_MODEL,
|
|
150
|
+
self.ENDPOINT_URL, post_text=""))
|
|
151
|
+
if not isnan(score2):
|
|
152
|
+
break
|
|
153
|
+
except ImportError:
|
|
154
|
+
raise
|
|
155
|
+
except: # noqa
|
|
156
|
+
pass
|
|
157
|
+
|
|
158
|
+
return self._average_scores(score1, score2)
|