pyg-nightly 2.6.0.dev20240704__py3-none-any.whl → 2.8.0.dev20251207__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pyg-nightly might be problematic. Click here for more details.

Files changed (268) hide show
  1. {pyg_nightly-2.6.0.dev20240704.dist-info → pyg_nightly-2.8.0.dev20251207.dist-info}/METADATA +81 -58
  2. {pyg_nightly-2.6.0.dev20240704.dist-info → pyg_nightly-2.8.0.dev20251207.dist-info}/RECORD +265 -221
  3. {pyg_nightly-2.6.0.dev20240704.dist-info → pyg_nightly-2.8.0.dev20251207.dist-info}/WHEEL +1 -1
  4. pyg_nightly-2.8.0.dev20251207.dist-info/licenses/LICENSE +19 -0
  5. torch_geometric/__init__.py +34 -1
  6. torch_geometric/_compile.py +11 -3
  7. torch_geometric/_onnx.py +228 -0
  8. torch_geometric/config_mixin.py +8 -3
  9. torch_geometric/config_store.py +1 -1
  10. torch_geometric/contrib/__init__.py +1 -1
  11. torch_geometric/contrib/explain/pgm_explainer.py +1 -1
  12. torch_geometric/data/__init__.py +19 -1
  13. torch_geometric/data/batch.py +2 -2
  14. torch_geometric/data/collate.py +1 -3
  15. torch_geometric/data/data.py +110 -6
  16. torch_geometric/data/database.py +19 -5
  17. torch_geometric/data/dataset.py +14 -9
  18. torch_geometric/data/extract.py +1 -1
  19. torch_geometric/data/feature_store.py +17 -22
  20. torch_geometric/data/graph_store.py +3 -2
  21. torch_geometric/data/hetero_data.py +139 -7
  22. torch_geometric/data/hypergraph_data.py +2 -2
  23. torch_geometric/data/in_memory_dataset.py +2 -2
  24. torch_geometric/data/lightning/datamodule.py +42 -28
  25. torch_geometric/data/storage.py +9 -1
  26. torch_geometric/datasets/__init__.py +20 -1
  27. torch_geometric/datasets/actor.py +7 -9
  28. torch_geometric/datasets/airfrans.py +17 -20
  29. torch_geometric/datasets/airports.py +8 -10
  30. torch_geometric/datasets/amazon.py +8 -11
  31. torch_geometric/datasets/amazon_book.py +8 -9
  32. torch_geometric/datasets/amazon_products.py +7 -9
  33. torch_geometric/datasets/aminer.py +8 -9
  34. torch_geometric/datasets/aqsol.py +10 -13
  35. torch_geometric/datasets/attributed_graph_dataset.py +8 -10
  36. torch_geometric/datasets/ba_multi_shapes.py +10 -12
  37. torch_geometric/datasets/ba_shapes.py +5 -6
  38. torch_geometric/datasets/brca_tgca.py +1 -1
  39. torch_geometric/datasets/city.py +157 -0
  40. torch_geometric/datasets/dbp15k.py +1 -1
  41. torch_geometric/datasets/gdelt_lite.py +3 -2
  42. torch_geometric/datasets/ged_dataset.py +3 -2
  43. torch_geometric/datasets/git_mol_dataset.py +263 -0
  44. torch_geometric/datasets/gnn_benchmark_dataset.py +3 -2
  45. torch_geometric/datasets/hgb_dataset.py +2 -2
  46. torch_geometric/datasets/hm.py +1 -1
  47. torch_geometric/datasets/instruct_mol_dataset.py +134 -0
  48. torch_geometric/datasets/linkx_dataset.py +4 -3
  49. torch_geometric/datasets/lrgb.py +3 -5
  50. torch_geometric/datasets/malnet_tiny.py +2 -1
  51. torch_geometric/datasets/md17.py +3 -3
  52. torch_geometric/datasets/medshapenet.py +145 -0
  53. torch_geometric/datasets/mnist_superpixels.py +2 -3
  54. torch_geometric/datasets/modelnet.py +1 -1
  55. torch_geometric/datasets/molecule_gpt_dataset.py +492 -0
  56. torch_geometric/datasets/molecule_net.py +3 -2
  57. torch_geometric/datasets/neurograph.py +1 -3
  58. torch_geometric/datasets/ogb_mag.py +1 -1
  59. torch_geometric/datasets/opf.py +19 -5
  60. torch_geometric/datasets/pascal_pf.py +1 -1
  61. torch_geometric/datasets/pcqm4m.py +2 -1
  62. torch_geometric/datasets/ppi.py +2 -1
  63. torch_geometric/datasets/protein_mpnn_dataset.py +451 -0
  64. torch_geometric/datasets/qm7.py +1 -1
  65. torch_geometric/datasets/qm9.py +3 -2
  66. torch_geometric/datasets/shrec2016.py +2 -2
  67. torch_geometric/datasets/snap_dataset.py +8 -4
  68. torch_geometric/datasets/tag_dataset.py +462 -0
  69. torch_geometric/datasets/teeth3ds.py +269 -0
  70. torch_geometric/datasets/web_qsp_dataset.py +342 -0
  71. torch_geometric/datasets/wikics.py +2 -1
  72. torch_geometric/datasets/wikidata.py +2 -1
  73. torch_geometric/deprecation.py +1 -1
  74. torch_geometric/distributed/__init__.py +13 -0
  75. torch_geometric/distributed/dist_loader.py +2 -2
  76. torch_geometric/distributed/local_feature_store.py +3 -2
  77. torch_geometric/distributed/local_graph_store.py +2 -1
  78. torch_geometric/distributed/partition.py +9 -8
  79. torch_geometric/distributed/rpc.py +3 -3
  80. torch_geometric/edge_index.py +35 -22
  81. torch_geometric/explain/algorithm/attention_explainer.py +219 -29
  82. torch_geometric/explain/algorithm/base.py +2 -2
  83. torch_geometric/explain/algorithm/captum.py +1 -1
  84. torch_geometric/explain/algorithm/captum_explainer.py +2 -1
  85. torch_geometric/explain/algorithm/gnn_explainer.py +406 -69
  86. torch_geometric/explain/algorithm/graphmask_explainer.py +8 -8
  87. torch_geometric/explain/algorithm/pg_explainer.py +305 -47
  88. torch_geometric/explain/explainer.py +2 -2
  89. torch_geometric/explain/explanation.py +89 -5
  90. torch_geometric/explain/metric/faithfulness.py +1 -1
  91. torch_geometric/graphgym/checkpoint.py +2 -1
  92. torch_geometric/graphgym/config.py +3 -2
  93. torch_geometric/graphgym/imports.py +15 -4
  94. torch_geometric/graphgym/logger.py +1 -1
  95. torch_geometric/graphgym/loss.py +1 -1
  96. torch_geometric/graphgym/models/encoder.py +2 -2
  97. torch_geometric/graphgym/models/layer.py +1 -1
  98. torch_geometric/graphgym/utils/comp_budget.py +4 -3
  99. torch_geometric/hash_tensor.py +798 -0
  100. torch_geometric/index.py +16 -7
  101. torch_geometric/inspector.py +6 -2
  102. torch_geometric/io/fs.py +27 -0
  103. torch_geometric/io/tu.py +2 -3
  104. torch_geometric/llm/__init__.py +9 -0
  105. torch_geometric/llm/large_graph_indexer.py +741 -0
  106. torch_geometric/llm/models/__init__.py +23 -0
  107. torch_geometric/llm/models/g_retriever.py +251 -0
  108. torch_geometric/llm/models/git_mol.py +336 -0
  109. torch_geometric/llm/models/glem.py +397 -0
  110. torch_geometric/llm/models/llm.py +470 -0
  111. torch_geometric/llm/models/llm_judge.py +158 -0
  112. torch_geometric/llm/models/molecule_gpt.py +222 -0
  113. torch_geometric/llm/models/protein_mpnn.py +333 -0
  114. torch_geometric/llm/models/sentence_transformer.py +188 -0
  115. torch_geometric/llm/models/txt2kg.py +353 -0
  116. torch_geometric/llm/models/vision_transformer.py +38 -0
  117. torch_geometric/llm/rag_loader.py +154 -0
  118. torch_geometric/llm/utils/__init__.py +10 -0
  119. torch_geometric/llm/utils/backend_utils.py +443 -0
  120. torch_geometric/llm/utils/feature_store.py +169 -0
  121. torch_geometric/llm/utils/graph_store.py +199 -0
  122. torch_geometric/llm/utils/vectorrag.py +125 -0
  123. torch_geometric/loader/cluster.py +6 -5
  124. torch_geometric/loader/graph_saint.py +2 -1
  125. torch_geometric/loader/ibmb_loader.py +4 -4
  126. torch_geometric/loader/link_loader.py +1 -1
  127. torch_geometric/loader/link_neighbor_loader.py +2 -1
  128. torch_geometric/loader/mixin.py +6 -5
  129. torch_geometric/loader/neighbor_loader.py +1 -1
  130. torch_geometric/loader/neighbor_sampler.py +2 -2
  131. torch_geometric/loader/prefetch.py +4 -3
  132. torch_geometric/loader/temporal_dataloader.py +2 -2
  133. torch_geometric/loader/utils.py +10 -10
  134. torch_geometric/metrics/__init__.py +23 -2
  135. torch_geometric/metrics/link_pred.py +755 -85
  136. torch_geometric/nn/__init__.py +1 -0
  137. torch_geometric/nn/aggr/__init__.py +2 -0
  138. torch_geometric/nn/aggr/base.py +1 -1
  139. torch_geometric/nn/aggr/equilibrium.py +1 -1
  140. torch_geometric/nn/aggr/fused.py +1 -1
  141. torch_geometric/nn/aggr/patch_transformer.py +149 -0
  142. torch_geometric/nn/aggr/set_transformer.py +1 -1
  143. torch_geometric/nn/aggr/utils.py +9 -4
  144. torch_geometric/nn/attention/__init__.py +9 -1
  145. torch_geometric/nn/attention/polynormer.py +107 -0
  146. torch_geometric/nn/attention/qformer.py +71 -0
  147. torch_geometric/nn/attention/sgformer.py +99 -0
  148. torch_geometric/nn/conv/__init__.py +2 -0
  149. torch_geometric/nn/conv/appnp.py +1 -1
  150. torch_geometric/nn/conv/collect.jinja +6 -3
  151. torch_geometric/nn/conv/cugraph/gat_conv.py +8 -2
  152. torch_geometric/nn/conv/cugraph/rgcn_conv.py +3 -0
  153. torch_geometric/nn/conv/cugraph/sage_conv.py +3 -0
  154. torch_geometric/nn/conv/dna_conv.py +1 -1
  155. torch_geometric/nn/conv/eg_conv.py +7 -7
  156. torch_geometric/nn/conv/gat_conv.py +33 -4
  157. torch_geometric/nn/conv/gatv2_conv.py +35 -4
  158. torch_geometric/nn/conv/gen_conv.py +1 -1
  159. torch_geometric/nn/conv/general_conv.py +1 -1
  160. torch_geometric/nn/conv/gravnet_conv.py +2 -1
  161. torch_geometric/nn/conv/hetero_conv.py +3 -2
  162. torch_geometric/nn/conv/meshcnn_conv.py +487 -0
  163. torch_geometric/nn/conv/message_passing.py +6 -5
  164. torch_geometric/nn/conv/mixhop_conv.py +1 -1
  165. torch_geometric/nn/conv/rgcn_conv.py +2 -1
  166. torch_geometric/nn/conv/sg_conv.py +1 -1
  167. torch_geometric/nn/conv/spline_conv.py +2 -1
  168. torch_geometric/nn/conv/ssg_conv.py +1 -1
  169. torch_geometric/nn/conv/transformer_conv.py +5 -3
  170. torch_geometric/nn/data_parallel.py +5 -4
  171. torch_geometric/nn/dense/linear.py +5 -24
  172. torch_geometric/nn/encoding.py +17 -3
  173. torch_geometric/nn/fx.py +17 -15
  174. torch_geometric/nn/model_hub.py +5 -16
  175. torch_geometric/nn/models/__init__.py +11 -0
  176. torch_geometric/nn/models/attentive_fp.py +1 -1
  177. torch_geometric/nn/models/attract_repel.py +148 -0
  178. torch_geometric/nn/models/basic_gnn.py +2 -1
  179. torch_geometric/nn/models/captum.py +1 -1
  180. torch_geometric/nn/models/deep_graph_infomax.py +1 -1
  181. torch_geometric/nn/models/dimenet.py +2 -2
  182. torch_geometric/nn/models/dimenet_utils.py +4 -2
  183. torch_geometric/nn/models/gpse.py +1083 -0
  184. torch_geometric/nn/models/graph_unet.py +13 -4
  185. torch_geometric/nn/models/lpformer.py +783 -0
  186. torch_geometric/nn/models/metapath2vec.py +1 -1
  187. torch_geometric/nn/models/mlp.py +4 -2
  188. torch_geometric/nn/models/node2vec.py +1 -1
  189. torch_geometric/nn/models/polynormer.py +206 -0
  190. torch_geometric/nn/models/rev_gnn.py +3 -3
  191. torch_geometric/nn/models/schnet.py +2 -1
  192. torch_geometric/nn/models/sgformer.py +219 -0
  193. torch_geometric/nn/models/signed_gcn.py +1 -1
  194. torch_geometric/nn/models/visnet.py +2 -2
  195. torch_geometric/nn/norm/batch_norm.py +17 -7
  196. torch_geometric/nn/norm/diff_group_norm.py +7 -2
  197. torch_geometric/nn/norm/graph_norm.py +9 -4
  198. torch_geometric/nn/norm/instance_norm.py +5 -1
  199. torch_geometric/nn/norm/layer_norm.py +15 -7
  200. torch_geometric/nn/norm/msg_norm.py +8 -2
  201. torch_geometric/nn/pool/__init__.py +15 -9
  202. torch_geometric/nn/pool/cluster_pool.py +144 -0
  203. torch_geometric/nn/pool/connect/base.py +1 -3
  204. torch_geometric/nn/pool/edge_pool.py +1 -1
  205. torch_geometric/nn/pool/knn.py +13 -10
  206. torch_geometric/nn/pool/select/base.py +1 -4
  207. torch_geometric/nn/summary.py +1 -1
  208. torch_geometric/nn/to_hetero_module.py +4 -3
  209. torch_geometric/nn/to_hetero_transformer.py +3 -3
  210. torch_geometric/nn/to_hetero_with_bases_transformer.py +5 -5
  211. torch_geometric/profile/__init__.py +2 -0
  212. torch_geometric/profile/nvtx.py +66 -0
  213. torch_geometric/profile/profiler.py +18 -9
  214. torch_geometric/profile/utils.py +20 -5
  215. torch_geometric/sampler/__init__.py +2 -1
  216. torch_geometric/sampler/base.py +337 -8
  217. torch_geometric/sampler/hgt_sampler.py +11 -1
  218. torch_geometric/sampler/neighbor_sampler.py +298 -25
  219. torch_geometric/sampler/utils.py +93 -5
  220. torch_geometric/testing/__init__.py +4 -0
  221. torch_geometric/testing/decorators.py +35 -5
  222. torch_geometric/testing/distributed.py +1 -1
  223. torch_geometric/transforms/__init__.py +4 -0
  224. torch_geometric/transforms/add_gpse.py +49 -0
  225. torch_geometric/transforms/add_metapaths.py +10 -8
  226. torch_geometric/transforms/add_positional_encoding.py +2 -2
  227. torch_geometric/transforms/base_transform.py +2 -1
  228. torch_geometric/transforms/delaunay.py +65 -15
  229. torch_geometric/transforms/face_to_edge.py +32 -3
  230. torch_geometric/transforms/gdc.py +8 -9
  231. torch_geometric/transforms/largest_connected_components.py +1 -1
  232. torch_geometric/transforms/mask.py +5 -1
  233. torch_geometric/transforms/node_property_split.py +1 -1
  234. torch_geometric/transforms/normalize_features.py +3 -3
  235. torch_geometric/transforms/pad.py +1 -1
  236. torch_geometric/transforms/random_link_split.py +1 -1
  237. torch_geometric/transforms/remove_duplicated_edges.py +4 -2
  238. torch_geometric/transforms/remove_self_loops.py +36 -0
  239. torch_geometric/transforms/rooted_subgraph.py +1 -1
  240. torch_geometric/transforms/svd_feature_reduction.py +1 -1
  241. torch_geometric/transforms/virtual_node.py +2 -1
  242. torch_geometric/typing.py +82 -17
  243. torch_geometric/utils/__init__.py +6 -1
  244. torch_geometric/utils/_lexsort.py +0 -9
  245. torch_geometric/utils/_negative_sampling.py +28 -13
  246. torch_geometric/utils/_normalize_edge_index.py +46 -0
  247. torch_geometric/utils/_scatter.py +126 -164
  248. torch_geometric/utils/_sort_edge_index.py +0 -2
  249. torch_geometric/utils/_spmm.py +16 -14
  250. torch_geometric/utils/_subgraph.py +4 -0
  251. torch_geometric/utils/_tree_decomposition.py +1 -1
  252. torch_geometric/utils/_trim_to_layer.py +2 -2
  253. torch_geometric/utils/augmentation.py +1 -1
  254. torch_geometric/utils/convert.py +17 -10
  255. torch_geometric/utils/cross_entropy.py +34 -13
  256. torch_geometric/utils/embedding.py +91 -2
  257. torch_geometric/utils/geodesic.py +28 -25
  258. torch_geometric/utils/influence.py +279 -0
  259. torch_geometric/utils/map.py +14 -10
  260. torch_geometric/utils/nested.py +1 -1
  261. torch_geometric/utils/smiles.py +3 -3
  262. torch_geometric/utils/sparse.py +32 -24
  263. torch_geometric/visualization/__init__.py +2 -1
  264. torch_geometric/visualization/graph.py +250 -5
  265. torch_geometric/warnings.py +11 -2
  266. torch_geometric/nn/nlp/__init__.py +0 -7
  267. torch_geometric/nn/nlp/llm.py +0 -283
  268. torch_geometric/nn/nlp/sentence_transformer.py +0 -94
@@ -0,0 +1,23 @@
1
+ from .sentence_transformer import SentenceTransformer
2
+ from .vision_transformer import VisionTransformer
3
+ from .llm import LLM
4
+ from .txt2kg import TXT2KG
5
+ from .llm_judge import LLMJudge
6
+ from .g_retriever import GRetriever
7
+ from .molecule_gpt import MoleculeGPT
8
+ from .glem import GLEM
9
+ from .protein_mpnn import ProteinMPNN
10
+ from .git_mol import GITMol
11
+
12
+ __all__ = classes = [
13
+ 'SentenceTransformer',
14
+ 'VisionTransformer',
15
+ 'LLM',
16
+ 'LLMJudge',
17
+ 'TXT2KG',
18
+ 'GRetriever',
19
+ 'MoleculeGPT',
20
+ 'GLEM',
21
+ 'ProteinMPNN',
22
+ 'GITMol',
23
+ ]
@@ -0,0 +1,251 @@
1
+ from typing import List, Optional
2
+
3
+ import torch
4
+ from torch import Tensor
5
+
6
+ from torch_geometric.llm.models.llm import LLM, MAX_NEW_TOKENS
7
+ from torch_geometric.utils import scatter
8
+
9
+
10
+ class GRetriever(torch.nn.Module):
11
+ r"""The G-Retriever model from the `"G-Retriever: Retrieval-Augmented
12
+ Generation for Textual Graph Understanding and Question Answering"
13
+ <https://arxiv.org/abs/2402.07630>`_ paper.
14
+
15
+ Args:
16
+ llm (LLM): The LLM to use.
17
+ gnn (torch.nn.Module): The GNN to use.
18
+ use_lora (bool, optional): If set to :obj:`True`, will use LORA from
19
+ :obj:`peft` for training the LLM, see
20
+ `here <https://huggingface.co/docs/peft/en/index>`_ for details.
21
+ (default: :obj:`False`)
22
+ mlp_out_tokens (int, optional): Number of LLM prefix tokens to
23
+ reserve for GNN output. (default: :obj:`1`)
24
+
25
+ .. warning::
26
+ This module has been tested with the following HuggingFace models
27
+ * :obj:`llm_to_use="meta-llama/Meta-Llama-3.1-8B-Instruct"`
28
+ * :obj:`llm_to_use="Qwen/Qwen3-0.6B"`
29
+
30
+
31
+ This module should work with any HuggingFace model.
32
+ See other models at `HuggingFace
33
+ Models <https://huggingface.co/models>`_
34
+ and let us know if you
35
+ encounter any issues.
36
+
37
+ .. note::
38
+ For an example of using :class:`GRetriever`, see
39
+ `examples/llm/g_retriever.py <https://github.com/pyg-team/
40
+ pytorch_geometric/blob/master/examples/llm/g_retriever.py>`_.
41
+ """
42
+ def __init__(
43
+ self,
44
+ llm: LLM,
45
+ gnn: torch.nn.Module = None,
46
+ use_lora: bool = False,
47
+ mlp_out_tokens: int = 1,
48
+ ) -> None:
49
+ super().__init__()
50
+
51
+ self.llm = llm
52
+ self.gnn = gnn.to(self.llm.device) if gnn is not None else None
53
+
54
+ self.word_embedding = self.llm.word_embedding
55
+ self.llm_generator = self.llm.llm
56
+ if use_lora:
57
+ from peft import (
58
+ LoraConfig,
59
+ get_peft_model,
60
+ prepare_model_for_kbit_training,
61
+ )
62
+ self.llm_generator = prepare_model_for_kbit_training(
63
+ self.llm_generator)
64
+ lora_r: int = 8
65
+ lora_alpha: int = 16
66
+ lora_dropout: float = 0.05
67
+ lora_target_modules = ['q_proj', 'v_proj']
68
+ config = LoraConfig(
69
+ r=lora_r,
70
+ lora_alpha=lora_alpha,
71
+ target_modules=lora_target_modules,
72
+ lora_dropout=lora_dropout,
73
+ bias='none',
74
+ task_type='CAUSAL_LM',
75
+ )
76
+ self.llm_generator = get_peft_model(self.llm_generator, config)
77
+
78
+ if self.gnn is not None:
79
+ mlp_out_channels = llm.word_embedding.embedding_dim
80
+ mlp_hidden_channels = self.gnn.out_channels
81
+ self.projector = torch.nn.Sequential(
82
+ torch.nn.Linear(mlp_hidden_channels, mlp_hidden_channels),
83
+ torch.nn.Sigmoid(),
84
+ torch.nn.Linear(mlp_hidden_channels,
85
+ mlp_out_channels * mlp_out_tokens),
86
+ torch.nn.Unflatten(-1, (mlp_out_tokens, mlp_out_channels)),
87
+ ).to(self.llm.device)
88
+
89
+ self.seq_length_stats = []
90
+
91
+ def encode(
92
+ self,
93
+ x: Tensor,
94
+ edge_index: Tensor,
95
+ batch: Tensor,
96
+ edge_attr: Optional[Tensor],
97
+ ) -> Tensor:
98
+ x = x.to(self.llm.device)
99
+ edge_index = edge_index.to(self.llm.device)
100
+ if edge_attr is not None:
101
+ edge_attr = edge_attr.to(self.llm.device)
102
+ batch = batch.to(self.llm.device)
103
+
104
+ model_specific_kwargs = {}
105
+
106
+ # duck typing for SGFormer to get around circular import
107
+ if (hasattr(self.gnn, 'trans_conv')
108
+ and hasattr(self.gnn, 'graph_conv')):
109
+ model_specific_kwargs['batch'] = batch
110
+ else:
111
+ model_specific_kwargs['edge_attr'] = edge_attr
112
+
113
+ out = self.gnn(x, edge_index, **model_specific_kwargs)
114
+ return scatter(out, batch, dim=0, reduce='mean')
115
+
116
+ def forward(
117
+ self,
118
+ question: List[str],
119
+ x: Tensor,
120
+ edge_index: Tensor,
121
+ batch: Tensor,
122
+ label: List[str],
123
+ edge_attr: Optional[Tensor] = None,
124
+ additional_text_context: Optional[List[str]] = None,
125
+ ):
126
+ r"""The forward pass.
127
+
128
+ Args:
129
+ question (List[str]): The questions/prompts.
130
+ x (torch.Tensor): The input node features.
131
+ edge_index (torch.Tensor): The edge indices.
132
+ batch (torch.Tensor): The batch vector
133
+ :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns
134
+ each element to a specific example.
135
+ label (List[str]): The answers/labels.
136
+ edge_attr (torch.Tensor, optional): The edge features (if supported
137
+ by the GNN). (default: :obj:`None`)
138
+ additional_text_context (List[str], optional): Additional context
139
+ to give to the LLM, such as textified knowledge graphs.
140
+ (default: :obj:`None`)
141
+ """
142
+ xs = None
143
+ if self.gnn is not None:
144
+ x = self.encode(x, edge_index, batch, edge_attr)
145
+ x = self.projector(x)
146
+ xs = x.split(1, dim=0)
147
+
148
+ # Handle case where theres more than one embedding for each sample
149
+ xs = [x.squeeze(0) for x in xs]
150
+
151
+ # Handle questions without node features:
152
+ batch_unique = batch.unique()
153
+ batch_size = len(question)
154
+ if len(batch_unique) < batch_size:
155
+ xs = [
156
+ xs[i] if i in batch_unique else None
157
+ for i in range(batch_size)
158
+ ]
159
+ (
160
+ inputs_embeds,
161
+ attention_mask,
162
+ label_input_ids,
163
+ ) = self.llm._get_embeds(question, additional_text_context, xs, label)
164
+
165
+ max_seq_len = inputs_embeds.size(1)
166
+ self.seq_length_stats.append(max_seq_len)
167
+
168
+ with self.llm.autocast_context:
169
+ outputs = self.llm_generator(
170
+ inputs_embeds=inputs_embeds,
171
+ attention_mask=attention_mask,
172
+ return_dict=True,
173
+ labels=label_input_ids,
174
+ )
175
+
176
+ return outputs.loss
177
+
178
+ @torch.no_grad()
179
+ def inference(
180
+ self,
181
+ question: List[str],
182
+ x: Tensor,
183
+ edge_index: Tensor,
184
+ batch: Tensor,
185
+ edge_attr: Optional[Tensor] = None,
186
+ additional_text_context: Optional[List[str]] = None,
187
+ max_out_tokens: Optional[int] = MAX_NEW_TOKENS,
188
+ ):
189
+ r"""The inference pass.
190
+
191
+ Args:
192
+ question (List[str]): The questions/prompts.
193
+ x (torch.Tensor): The input node features.
194
+ edge_index (torch.Tensor): The edge indices.
195
+ batch (torch.Tensor): The batch vector
196
+ :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns
197
+ each element to a specific example.
198
+ edge_attr (torch.Tensor, optional): The edge features (if supported
199
+ by the GNN). (default: :obj:`None`)
200
+ additional_text_context (List[str], optional): Additional context
201
+ to give to the LLM, such as textified knowledge graphs.
202
+ (default: :obj:`None`)
203
+ max_out_tokens (int, optional): How many tokens for the LLM to
204
+ generate. (default: :obj:`32`)
205
+ """
206
+ xs = None
207
+ if self.gnn is not None:
208
+ x = self.encode(x, edge_index, batch, edge_attr)
209
+ x = self.projector(x)
210
+ xs = x.split(1, dim=0)
211
+
212
+ # Handle case where theres more than one embedding for each sample
213
+ xs = [x.squeeze(0) for x in xs]
214
+
215
+ # Handle questions without node features:
216
+ batch_unique = batch.unique()
217
+ batch_size = len(question)
218
+ if len(batch_unique) < batch_size:
219
+ xs = [
220
+ xs[i] if i in batch_unique else None
221
+ for i in range(batch_size)
222
+ ]
223
+
224
+ inputs_embeds, attention_mask, _ = self.llm._get_embeds(
225
+ question, additional_text_context, xs)
226
+
227
+ # bos_token = self.llm.tokenizer(
228
+ # self.llm.tokenizer.bos_token_id,
229
+ # add_special_tokens=False,
230
+ # ).input_ids[0]
231
+
232
+ with self.llm.autocast_context:
233
+ outputs = self.llm_generator.generate(
234
+ inputs_embeds=inputs_embeds,
235
+ max_new_tokens=max_out_tokens,
236
+ attention_mask=attention_mask,
237
+ bos_token_id=self.llm.tokenizer.bos_token_id,
238
+ pad_token_id=self.llm.tokenizer.eos_token_id,
239
+ use_cache=True # Important to set!
240
+ )
241
+
242
+ return self.llm.tokenizer.batch_decode(
243
+ outputs,
244
+ skip_special_tokens=True,
245
+ )
246
+
247
+ def __repr__(self) -> str:
248
+ return (f'{self.__class__.__name__}(\n'
249
+ f' llm={self.llm},\n'
250
+ f' gnn={self.gnn},\n'
251
+ f')')
@@ -0,0 +1,336 @@
1
+ from typing import List, Optional
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import Tensor
6
+ from torch.nn import BatchNorm1d, LayerNorm, Linear, ReLU, Sequential
7
+
8
+ from torch_geometric.llm.models import SentenceTransformer, VisionTransformer
9
+ from torch_geometric.nn import GINEConv
10
+ from torch_geometric.utils import add_self_loops, to_dense_batch
11
+
12
+
13
+ class GraphEncoder(torch.nn.Module):
14
+ def __init__(
15
+ self,
16
+ num_layers: int,
17
+ in_channels: int,
18
+ dropout: float = 0.,
19
+ num_atom_type: int = 120,
20
+ num_chirality_tag: int = 3,
21
+ num_bond_type: int = 6,
22
+ num_bond_direction: int = 3,
23
+ ) -> None:
24
+ super().__init__()
25
+
26
+ self.num_layers = num_layers
27
+ self.dropout = dropout
28
+
29
+ self.x_embed1 = torch.nn.Embedding(num_atom_type, in_channels)
30
+ self.x_embed2 = torch.nn.Embedding(num_chirality_tag, in_channels)
31
+ self.edge_embed1 = torch.nn.Embedding(num_bond_type, in_channels)
32
+ self.edge_embed2 = torch.nn.Embedding(num_bond_direction, in_channels)
33
+
34
+ self.gnns = torch.nn.ModuleList()
35
+ self.batch_norms = torch.nn.ModuleList()
36
+ for _ in range(num_layers):
37
+ self.gnns.append(
38
+ GINEConv(
39
+ nn=Sequential(
40
+ Linear(in_channels, in_channels * 2),
41
+ ReLU(),
42
+ Linear(in_channels * 2, in_channels),
43
+ ),
44
+ train_eps=True,
45
+ edge_dim=in_channels,
46
+ ))
47
+ self.batch_norms.append(BatchNorm1d(in_channels))
48
+ self.reset_parameters()
49
+
50
+ def reset_parameters(self):
51
+ torch.nn.init.xavier_uniform_(self.x_embed1.weight.data)
52
+ torch.nn.init.xavier_uniform_(self.x_embed2.weight.data)
53
+ torch.nn.init.xavier_uniform_(self.edge_embed1.weight.data)
54
+ torch.nn.init.xavier_uniform_(self.edge_embed2.weight.data)
55
+
56
+ def forward(
57
+ self,
58
+ x: Tensor,
59
+ edge_index: Tensor,
60
+ batch: Tensor,
61
+ edge_attr: Tensor,
62
+ ) -> Tensor:
63
+ x = self.x_embed1(x[:, 0].long()) + self.x_embed2(x[:, 1].long())
64
+ edge_index, edge_attr = add_self_loops(
65
+ edge_index,
66
+ edge_attr,
67
+ fill_value=0,
68
+ num_nodes=x.size(0),
69
+ )
70
+ edge_attr = self.edge_embed1(edge_attr[:, 0]) + self.edge_embed2(
71
+ edge_attr[:, 1])
72
+ for i, (gnn, bn) in enumerate(zip(self.gnns, self.batch_norms)):
73
+ x = gnn(x, edge_index, edge_attr)
74
+ x = bn(x)
75
+ if i < self.num_layers - 1:
76
+ x = F.relu(x)
77
+ x = F.dropout(x, self.dropout, training=self.training)
78
+
79
+ x, mask = to_dense_batch(x, batch)
80
+ return x, mask
81
+
82
+
83
+ class GITFormer(torch.nn.Module):
84
+ def __init__(
85
+ self,
86
+ num_query_token: int,
87
+ vision_graph_width: int,
88
+ cross_attention_freq: int = 2,
89
+ ):
90
+ super().__init__()
91
+ from transformers import AutoConfig, AutoModel
92
+
93
+ config = AutoConfig.from_pretrained("allenai/scibert_scivocab_uncased")
94
+ config.encoder_width = vision_graph_width
95
+ # insert cross-attention layer every other block
96
+ config.add_cross_attention = True
97
+ config.is_decoder = True
98
+ config.cross_attention_freq = cross_attention_freq
99
+ config.query_length = num_query_token
100
+ self.Qformer = AutoModel.from_pretrained(
101
+ "allenai/scibert_scivocab_uncased", config=config)
102
+ self.query_tokens = torch.nn.Parameter(
103
+ torch.zeros(1, num_query_token, config.hidden_size))
104
+ self.query_tokens.data.normal_(mean=0.0, std=config.initializer_range)
105
+
106
+
107
+ class GITMol(torch.nn.Module):
108
+ r"""The GITMol model from the `"GIT-Mol: A Multi-modal Large Language
109
+ Model for Molecular Science with Graph, Image, and Text"
110
+ <https://arxiv.org/pdf/2308.06911>`_ paper.
111
+
112
+ .. note::
113
+ For an example of using :class:`GITMol`, see
114
+ `examples/llm/git_mol.py <https://github.com/pyg-team/
115
+ pytorch_geometric/blob/master/examples/llm/git_mol.py>`_.
116
+ """
117
+ def __init__(self) -> None:
118
+ super().__init__()
119
+ # graph
120
+ self.graph_encoder = GraphEncoder(num_layers=2, in_channels=16)
121
+ self.graph_proj = Linear(16, 768)
122
+ self.ln_graph = LayerNorm(768)
123
+ # text
124
+ self.text_encoder = SentenceTransformer(
125
+ model_name='allenai/scibert_scivocab_uncased',
126
+ pooling_strategy='last_hidden_state',
127
+ )
128
+ self.text_proj = Linear(768, 768)
129
+ self.ln_text = LayerNorm(768)
130
+ # vision
131
+ self.vision_encoder = VisionTransformer(
132
+ model_name='microsoft/swin-base-patch4-window7-224', )
133
+ self.vision_proj = Linear(1024, 768)
134
+ self.ln_vision = LayerNorm(768)
135
+ # cross-attention
136
+ self.gitformer = GITFormer(384, 768)
137
+
138
+ self.xtm_head = torch.nn.ModuleDict({
139
+ 'image':
140
+ Linear(self.gitformer.Qformer.config.hidden_size, 2),
141
+ 'graph':
142
+ Linear(self.gitformer.Qformer.config.hidden_size, 2),
143
+ 'cs_text':
144
+ Linear(self.gitformer.Qformer.config.hidden_size, 2),
145
+ })
146
+
147
+ self.xtc_proj = torch.nn.ModuleDict({
148
+ 'image':
149
+ Linear(self.gitformer.Qformer.config.hidden_size, 768),
150
+ 'graph':
151
+ Linear(self.gitformer.Qformer.config.hidden_size, 768),
152
+ 'cs_text':
153
+ Linear(self.gitformer.Qformer.config.hidden_size, 768),
154
+ })
155
+ self.temp = torch.nn.Parameter(0.07 * torch.ones([]))
156
+ self.model_freeze()
157
+
158
+ def model_freeze(self) -> None:
159
+ for param in self.graph_encoder.parameters():
160
+ param.requires_grad = False
161
+
162
+ for param in self.vision_encoder.parameters():
163
+ param.requires_grad = False
164
+
165
+ def forward(
166
+ self,
167
+ x: Tensor,
168
+ edge_index: Tensor,
169
+ batch: Tensor,
170
+ edge_attr: Optional[Tensor],
171
+ smiles: List[str],
172
+ images: Tensor,
173
+ captions: List[str],
174
+ ) -> Tensor:
175
+ batch_size = len(smiles)
176
+
177
+ x_vision = self.vision_encoder(images)
178
+ x_vision = self.vision_proj(x_vision)
179
+ x_vision = self.ln_vision(x_vision) # [bs, patch_len, d]
180
+ vision_atts = torch.ones(x_vision.size()[:-1],
181
+ dtype=torch.long).to(x_vision.device)
182
+ vision_targets = torch.arange(batch_size).to(x_vision.device)
183
+
184
+ x_graph, graph_atts = self.graph_encoder(x, edge_index, batch,
185
+ edge_attr)
186
+ x_graph = self.graph_proj(x_graph)
187
+ x_graph = self.ln_graph(x_graph) # [bs, node_len, d]
188
+ graph_targets = torch.arange(batch_size).to(x_graph.device)
189
+
190
+ x_smiles = self.text_encoder.encode(smiles) # [bs, seq_len, d]
191
+ smiles_atts = torch.ones(x_smiles.size()[:-1],
192
+ dtype=torch.long).to(x_smiles.device)
193
+ smiles_targets = torch.arange(batch_size).to(x_smiles.device)
194
+
195
+ caption_input_ids, caption_attention_masks = self.text_encoder.get_input_ids( # noqa: E501
196
+ captions)
197
+
198
+ text_output = self.gitformer.Qformer(
199
+ caption_input_ids,
200
+ attention_mask=caption_attention_masks,
201
+ return_dict=True,
202
+ )
203
+ text_feat = F.normalize(
204
+ self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1)
205
+
206
+ loss = 0
207
+ for x_embed, x_atts, x_targets, modal in zip(
208
+ [x_graph, x_smiles, x_vision],
209
+ [graph_atts, smiles_atts, vision_atts],
210
+ [graph_targets, smiles_targets, vision_targets],
211
+ ['graph', 'cs_text', 'image'],
212
+ ):
213
+ loss += self._calc_xtc_loss(x_embed, x_atts, x_targets, text_feat,
214
+ modal)
215
+ loss += self._calc_xtm_loss(x_embed, caption_input_ids,
216
+ caption_attention_masks, modal)
217
+
218
+ return loss / 6
219
+
220
+ def _calc_xtm_loss(
221
+ self,
222
+ x_embeds: Tensor,
223
+ input_ids: Tensor,
224
+ attention_mask: Tensor,
225
+ modal: str,
226
+ ) -> Tensor:
227
+ # Initializing lists to hold the original and negative samples
228
+ x_embeds_list = []
229
+ text_input_ids_list = []
230
+ text_attention_mask_list = []
231
+
232
+ batch_size = x_embeds.size(0)
233
+ for i in range(batch_size):
234
+ # Original samples
235
+ x_embeds_list.append(x_embeds[i])
236
+ text_input_ids_list.append(input_ids[i, :])
237
+ text_attention_mask_list.append(attention_mask[i, :])
238
+
239
+ if batch_size > 1:
240
+ # Negative samples (neg_text_input_ids corresponds to x_embeds)
241
+ neg_text_input_ids = input_ids[i - 1 if i == batch_size -
242
+ 1 else i + 1, :]
243
+ neg_text_attention_mask = attention_mask[i -
244
+ 1 if i == batch_size -
245
+ 1 else i + 1, :]
246
+ text_input_ids_list.append(neg_text_input_ids)
247
+ text_attention_mask_list.append(neg_text_attention_mask)
248
+ x_embeds_list.append(x_embeds[i, :])
249
+
250
+ # Negative samples (text_input_ids corresponds to neg_x_embeds)
251
+ neg_x_embeds = x_embeds[i - 1 if i == batch_size - 1 else i +
252
+ 1, :]
253
+ x_embeds_list.append(neg_x_embeds)
254
+ text_input_ids_list.append(input_ids[i, :])
255
+ text_attention_mask_list.append(attention_mask[i, :])
256
+
257
+ # Stack all samples into two large tensors
258
+ x_embeds_all = torch.stack(x_embeds_list, dim=1) \
259
+ .reshape(-1, x_embeds.size(1), x_embeds.size(2))
260
+ text_input_ids_all = torch.stack(text_input_ids_list, dim=1) \
261
+ .reshape(-1, input_ids.size(1))
262
+ # Create image attention masks for the concatenated tensor
263
+ image_attns_all = torch.ones(x_embeds_all.size()[:-1],
264
+ dtype=torch.long).to(x_embeds_all.device)
265
+ query_tokens_xtm = self.gitformer.query_tokens.expand(
266
+ text_input_ids_all.shape[0], -1, -1)
267
+ query_attns_xtm = torch.ones(query_tokens_xtm.size()[:-1],
268
+ dtype=torch.long).to(x_embeds_all.device)
269
+
270
+ output_xtm = self.gitformer.Qformer(
271
+ inputs_embeds=query_tokens_xtm,
272
+ attention_mask=query_attns_xtm,
273
+ encoder_hidden_states=x_embeds_all,
274
+ encoder_attention_mask=image_attns_all,
275
+ return_dict=True,
276
+ ).last_hidden_state
277
+
278
+ xtm_embeddings = output_xtm[:, :query_tokens_xtm.size(1), :]
279
+
280
+ xtm_logit = self.xtm_head[modal](xtm_embeddings).mean(dim=1)
281
+ # Create labels: 1 for the original samples, 0 for the negative samples
282
+ if batch_size > 1:
283
+ labels = torch.cat(
284
+ [torch.ones(batch_size),
285
+ torch.zeros(batch_size * 2)], dim=0)
286
+ else:
287
+ labels = torch.ones(batch_size)
288
+ labels = labels.long().to(xtm_logit.device)
289
+
290
+ # Calculate cross entropy loss
291
+ return F.cross_entropy(xtm_logit, labels)
292
+
293
+ def _calc_xtc_loss(
294
+ self,
295
+ x_embeds: Tensor,
296
+ x_atts: Tensor,
297
+ x_targets: Tensor,
298
+ text_feat: Tensor,
299
+ modal: str,
300
+ ) -> Tensor:
301
+ query_tokens = self.gitformer.query_tokens.expand(
302
+ x_embeds.shape[0], -1, -1)
303
+
304
+ query_output = self.gitformer.Qformer(
305
+ inputs_embeds=query_tokens,
306
+ encoder_hidden_states=x_embeds,
307
+ encoder_attention_mask=x_atts,
308
+ return_dict=True,
309
+ ).last_hidden_state
310
+
311
+ x_feats = F.normalize(self.xtc_proj[modal](query_output), dim=-1)
312
+
313
+ sim_q2t = torch.matmul(
314
+ x_feats.unsqueeze(1),
315
+ text_feat.unsqueeze(-1),
316
+ ).squeeze(-1)
317
+
318
+ # modal-text similarity: aggregate across all query tokens
319
+ sim_x2t, _ = sim_q2t.max(-1)
320
+ sim_x2t = sim_x2t / self.temp
321
+
322
+ # text-query similarity
323
+ sim_t2q = torch.matmul(
324
+ text_feat.unsqueeze(1).unsqueeze(1),
325
+ x_feats.permute(0, 2, 1),
326
+ ).squeeze(-2)
327
+
328
+ # text-modal similarity: aggregate across all query tokens
329
+ sim_t2x, _ = sim_t2q.max(-1)
330
+ sim_t2x = sim_t2x / self.temp
331
+
332
+ loss_itc = (
333
+ F.cross_entropy(sim_x2t, x_targets, label_smoothing=0.1) +
334
+ F.cross_entropy(sim_t2x, x_targets, label_smoothing=0.1)) / 2
335
+
336
+ return loss_itc