pyg-nightly 2.6.0.dev20240511__py3-none-any.whl → 2.7.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (205) hide show
  1. {pyg_nightly-2.6.0.dev20240511.dist-info → pyg_nightly-2.7.0.dev20250114.dist-info}/METADATA +30 -31
  2. {pyg_nightly-2.6.0.dev20240511.dist-info → pyg_nightly-2.7.0.dev20250114.dist-info}/RECORD +205 -181
  3. {pyg_nightly-2.6.0.dev20240511.dist-info → pyg_nightly-2.7.0.dev20250114.dist-info}/WHEEL +1 -1
  4. torch_geometric/__init__.py +26 -1
  5. torch_geometric/_compile.py +8 -1
  6. torch_geometric/_onnx.py +14 -0
  7. torch_geometric/config_mixin.py +113 -0
  8. torch_geometric/config_store.py +16 -14
  9. torch_geometric/data/__init__.py +24 -1
  10. torch_geometric/data/batch.py +2 -2
  11. torch_geometric/data/data.py +13 -8
  12. torch_geometric/data/database.py +15 -7
  13. torch_geometric/data/dataset.py +14 -6
  14. torch_geometric/data/feature_store.py +13 -22
  15. torch_geometric/data/graph_store.py +0 -4
  16. torch_geometric/data/hetero_data.py +4 -4
  17. torch_geometric/data/in_memory_dataset.py +2 -4
  18. torch_geometric/data/large_graph_indexer.py +677 -0
  19. torch_geometric/data/lightning/datamodule.py +4 -4
  20. torch_geometric/data/storage.py +15 -5
  21. torch_geometric/data/summary.py +14 -4
  22. torch_geometric/data/temporal.py +1 -2
  23. torch_geometric/datasets/__init__.py +11 -1
  24. torch_geometric/datasets/actor.py +9 -11
  25. torch_geometric/datasets/airfrans.py +15 -18
  26. torch_geometric/datasets/airports.py +10 -12
  27. torch_geometric/datasets/amazon.py +8 -11
  28. torch_geometric/datasets/amazon_book.py +9 -10
  29. torch_geometric/datasets/amazon_products.py +9 -10
  30. torch_geometric/datasets/aminer.py +8 -9
  31. torch_geometric/datasets/aqsol.py +10 -13
  32. torch_geometric/datasets/attributed_graph_dataset.py +10 -12
  33. torch_geometric/datasets/ba_multi_shapes.py +10 -12
  34. torch_geometric/datasets/ba_shapes.py +5 -6
  35. torch_geometric/datasets/bitcoin_otc.py +1 -1
  36. torch_geometric/datasets/brca_tgca.py +1 -1
  37. torch_geometric/datasets/dblp.py +2 -1
  38. torch_geometric/datasets/dbp15k.py +2 -2
  39. torch_geometric/datasets/fake.py +1 -3
  40. torch_geometric/datasets/flickr.py +2 -1
  41. torch_geometric/datasets/freebase.py +1 -1
  42. torch_geometric/datasets/gdelt_lite.py +3 -2
  43. torch_geometric/datasets/ged_dataset.py +3 -2
  44. torch_geometric/datasets/git_mol_dataset.py +263 -0
  45. torch_geometric/datasets/gnn_benchmark_dataset.py +6 -5
  46. torch_geometric/datasets/hgb_dataset.py +8 -8
  47. torch_geometric/datasets/imdb.py +2 -1
  48. torch_geometric/datasets/last_fm.py +2 -1
  49. torch_geometric/datasets/linkx_dataset.py +4 -3
  50. torch_geometric/datasets/lrgb.py +3 -5
  51. torch_geometric/datasets/malnet_tiny.py +4 -3
  52. torch_geometric/datasets/mnist_superpixels.py +2 -3
  53. torch_geometric/datasets/molecule_gpt_dataset.py +485 -0
  54. torch_geometric/datasets/molecule_net.py +7 -1
  55. torch_geometric/datasets/motif_generator/base.py +0 -1
  56. torch_geometric/datasets/neurograph.py +1 -3
  57. torch_geometric/datasets/ogb_mag.py +1 -1
  58. torch_geometric/datasets/opf.py +239 -0
  59. torch_geometric/datasets/ose_gvcs.py +1 -1
  60. torch_geometric/datasets/pascal_pf.py +1 -1
  61. torch_geometric/datasets/pcpnet_dataset.py +1 -1
  62. torch_geometric/datasets/pcqm4m.py +2 -1
  63. torch_geometric/datasets/ppi.py +1 -1
  64. torch_geometric/datasets/qm9.py +4 -3
  65. torch_geometric/datasets/reddit.py +2 -1
  66. torch_geometric/datasets/reddit2.py +2 -1
  67. torch_geometric/datasets/rel_link_pred_dataset.py +3 -3
  68. torch_geometric/datasets/s3dis.py +2 -2
  69. torch_geometric/datasets/shapenet.py +3 -3
  70. torch_geometric/datasets/shrec2016.py +2 -2
  71. torch_geometric/datasets/tag_dataset.py +350 -0
  72. torch_geometric/datasets/upfd.py +2 -1
  73. torch_geometric/datasets/web_qsp_dataset.py +246 -0
  74. torch_geometric/datasets/webkb.py +2 -2
  75. torch_geometric/datasets/wikics.py +1 -1
  76. torch_geometric/datasets/wikidata.py +3 -2
  77. torch_geometric/datasets/wikipedia_network.py +2 -2
  78. torch_geometric/datasets/word_net.py +2 -2
  79. torch_geometric/datasets/yelp.py +2 -1
  80. torch_geometric/datasets/zinc.py +1 -1
  81. torch_geometric/device.py +42 -0
  82. torch_geometric/distributed/local_feature_store.py +3 -2
  83. torch_geometric/distributed/local_graph_store.py +2 -1
  84. torch_geometric/distributed/partition.py +9 -8
  85. torch_geometric/edge_index.py +17 -8
  86. torch_geometric/explain/algorithm/base.py +0 -1
  87. torch_geometric/explain/algorithm/pg_explainer.py +1 -1
  88. torch_geometric/explain/explanation.py +2 -2
  89. torch_geometric/graphgym/checkpoint.py +2 -1
  90. torch_geometric/graphgym/logger.py +4 -4
  91. torch_geometric/graphgym/loss.py +1 -1
  92. torch_geometric/graphgym/utils/agg_runs.py +6 -6
  93. torch_geometric/index.py +20 -7
  94. torch_geometric/inspector.py +6 -2
  95. torch_geometric/io/fs.py +28 -2
  96. torch_geometric/io/npz.py +2 -1
  97. torch_geometric/io/off.py +2 -2
  98. torch_geometric/io/sdf.py +2 -2
  99. torch_geometric/io/tu.py +2 -3
  100. torch_geometric/loader/__init__.py +4 -0
  101. torch_geometric/loader/cluster.py +9 -3
  102. torch_geometric/loader/graph_saint.py +2 -1
  103. torch_geometric/loader/ibmb_loader.py +12 -4
  104. torch_geometric/loader/mixin.py +1 -1
  105. torch_geometric/loader/neighbor_loader.py +1 -1
  106. torch_geometric/loader/neighbor_sampler.py +2 -2
  107. torch_geometric/loader/prefetch.py +1 -1
  108. torch_geometric/loader/rag_loader.py +107 -0
  109. torch_geometric/loader/zip_loader.py +10 -0
  110. torch_geometric/metrics/__init__.py +11 -2
  111. torch_geometric/metrics/link_pred.py +159 -34
  112. torch_geometric/nn/aggr/__init__.py +2 -0
  113. torch_geometric/nn/aggr/attention.py +0 -2
  114. torch_geometric/nn/aggr/base.py +2 -4
  115. torch_geometric/nn/aggr/patch_transformer.py +143 -0
  116. torch_geometric/nn/aggr/set_transformer.py +1 -1
  117. torch_geometric/nn/attention/__init__.py +5 -1
  118. torch_geometric/nn/attention/qformer.py +71 -0
  119. torch_geometric/nn/conv/collect.jinja +6 -3
  120. torch_geometric/nn/conv/cugraph/base.py +0 -1
  121. torch_geometric/nn/conv/edge_conv.py +3 -2
  122. torch_geometric/nn/conv/gat_conv.py +35 -7
  123. torch_geometric/nn/conv/gatv2_conv.py +36 -6
  124. torch_geometric/nn/conv/general_conv.py +1 -1
  125. torch_geometric/nn/conv/gravnet_conv.py +3 -2
  126. torch_geometric/nn/conv/hetero_conv.py +3 -3
  127. torch_geometric/nn/conv/hgt_conv.py +1 -1
  128. torch_geometric/nn/conv/message_passing.py +100 -82
  129. torch_geometric/nn/conv/mixhop_conv.py +1 -1
  130. torch_geometric/nn/conv/rgcn_conv.py +2 -1
  131. torch_geometric/nn/conv/spline_conv.py +4 -4
  132. torch_geometric/nn/conv/x_conv.py +3 -2
  133. torch_geometric/nn/dense/linear.py +5 -4
  134. torch_geometric/nn/fx.py +3 -3
  135. torch_geometric/nn/model_hub.py +3 -1
  136. torch_geometric/nn/models/__init__.py +10 -2
  137. torch_geometric/nn/models/deep_graph_infomax.py +1 -2
  138. torch_geometric/nn/models/dimenet_utils.py +5 -7
  139. torch_geometric/nn/models/g_retriever.py +230 -0
  140. torch_geometric/nn/models/git_mol.py +336 -0
  141. torch_geometric/nn/models/glem.py +385 -0
  142. torch_geometric/nn/models/gnnff.py +0 -1
  143. torch_geometric/nn/models/graph_unet.py +12 -3
  144. torch_geometric/nn/models/jumping_knowledge.py +63 -4
  145. torch_geometric/nn/models/lightgcn.py +1 -1
  146. torch_geometric/nn/models/metapath2vec.py +3 -4
  147. torch_geometric/nn/models/molecule_gpt.py +222 -0
  148. torch_geometric/nn/models/node2vec.py +1 -2
  149. torch_geometric/nn/models/schnet.py +2 -1
  150. torch_geometric/nn/models/signed_gcn.py +3 -3
  151. torch_geometric/nn/module_dict.py +2 -2
  152. torch_geometric/nn/nlp/__init__.py +9 -0
  153. torch_geometric/nn/nlp/llm.py +322 -0
  154. torch_geometric/nn/nlp/sentence_transformer.py +134 -0
  155. torch_geometric/nn/nlp/vision_transformer.py +33 -0
  156. torch_geometric/nn/norm/batch_norm.py +1 -1
  157. torch_geometric/nn/parameter_dict.py +2 -2
  158. torch_geometric/nn/pool/__init__.py +7 -5
  159. torch_geometric/nn/pool/cluster_pool.py +145 -0
  160. torch_geometric/nn/pool/connect/base.py +0 -1
  161. torch_geometric/nn/pool/edge_pool.py +1 -1
  162. torch_geometric/nn/pool/graclus.py +4 -2
  163. torch_geometric/nn/pool/select/base.py +0 -1
  164. torch_geometric/nn/pool/voxel_grid.py +3 -2
  165. torch_geometric/nn/resolver.py +1 -1
  166. torch_geometric/nn/sequential.jinja +10 -23
  167. torch_geometric/nn/sequential.py +203 -77
  168. torch_geometric/nn/summary.py +1 -1
  169. torch_geometric/nn/to_hetero_with_bases_transformer.py +19 -19
  170. torch_geometric/profile/__init__.py +2 -0
  171. torch_geometric/profile/nvtx.py +66 -0
  172. torch_geometric/profile/profiler.py +24 -15
  173. torch_geometric/resolver.py +1 -1
  174. torch_geometric/sampler/base.py +34 -13
  175. torch_geometric/sampler/neighbor_sampler.py +11 -10
  176. torch_geometric/testing/decorators.py +17 -22
  177. torch_geometric/transforms/__init__.py +2 -0
  178. torch_geometric/transforms/add_metapaths.py +4 -4
  179. torch_geometric/transforms/add_positional_encoding.py +1 -1
  180. torch_geometric/transforms/delaunay.py +65 -14
  181. torch_geometric/transforms/face_to_edge.py +32 -3
  182. torch_geometric/transforms/gdc.py +7 -6
  183. torch_geometric/transforms/laplacian_lambda_max.py +2 -2
  184. torch_geometric/transforms/mask.py +5 -1
  185. torch_geometric/transforms/node_property_split.py +1 -2
  186. torch_geometric/transforms/pad.py +7 -6
  187. torch_geometric/transforms/random_link_split.py +1 -1
  188. torch_geometric/transforms/remove_self_loops.py +36 -0
  189. torch_geometric/transforms/svd_feature_reduction.py +1 -1
  190. torch_geometric/transforms/virtual_node.py +2 -1
  191. torch_geometric/typing.py +31 -5
  192. torch_geometric/utils/__init__.py +5 -1
  193. torch_geometric/utils/_negative_sampling.py +1 -1
  194. torch_geometric/utils/_normalize_edge_index.py +46 -0
  195. torch_geometric/utils/_scatter.py +37 -12
  196. torch_geometric/utils/_subgraph.py +4 -0
  197. torch_geometric/utils/_tree_decomposition.py +2 -2
  198. torch_geometric/utils/augmentation.py +1 -1
  199. torch_geometric/utils/convert.py +5 -5
  200. torch_geometric/utils/geodesic.py +24 -22
  201. torch_geometric/utils/hetero.py +1 -1
  202. torch_geometric/utils/map.py +1 -1
  203. torch_geometric/utils/smiles.py +66 -28
  204. torch_geometric/utils/sparse.py +25 -10
  205. torch_geometric/visualization/graph.py +3 -4
@@ -167,71 +167,8 @@ class MessagePassing(torch.nn.Module):
167
167
  self._edge_update_forward_pre_hooks: HookDict = OrderedDict()
168
168
  self._edge_update_forward_hooks: HookDict = OrderedDict()
169
169
 
170
- root_dir = osp.dirname(osp.realpath(__file__))
171
- jinja_prefix = f'{self.__module__}_{self.__class__.__name__}'
172
- # Optimize `propagate()` via `*.jinja` templates:
173
- if not self.propagate.__module__.startswith(jinja_prefix):
174
- try:
175
- if 'propagate' in self.__class__.__dict__:
176
- raise ValueError("Cannot compile custom 'propagate' "
177
- "method")
178
-
179
- module = module_from_template(
180
- module_name=f'{jinja_prefix}_propagate',
181
- template_path=osp.join(root_dir, 'propagate.jinja'),
182
- tmp_dirname='message_passing',
183
- # Keyword arguments:
184
- modules=self.inspector._modules,
185
- collect_name='collect',
186
- signature=self._get_propagate_signature(),
187
- collect_param_dict=self.inspector.get_flat_param_dict(
188
- ['message', 'aggregate', 'update']),
189
- message_args=self.inspector.get_param_names('message'),
190
- aggregate_args=self.inspector.get_param_names('aggregate'),
191
- message_and_aggregate_args=self.inspector.get_param_names(
192
- 'message_and_aggregate'),
193
- update_args=self.inspector.get_param_names('update'),
194
- fuse=self.fuse,
195
- )
196
-
197
- self.__class__._orig_propagate = self.__class__.propagate
198
- self.__class__._jinja_propagate = module.propagate
199
-
200
- self.__class__.propagate = module.propagate
201
- self.__class__.collect = module.collect
202
- except Exception: # pragma: no cover
203
- self.__class__._orig_propagate = self.__class__.propagate
204
- self.__class__._jinja_propagate = self.__class__.propagate
205
-
206
- # Optimize `edge_updater()` via `*.jinja` templates (if implemented):
207
- if (self.inspector.implements('edge_update')
208
- and not self.edge_updater.__module__.startswith(jinja_prefix)):
209
- try:
210
- if 'edge_updater' in self.__class__.__dict__:
211
- raise ValueError("Cannot compile custom 'edge_updater' "
212
- "method")
213
-
214
- module = module_from_template(
215
- module_name=f'{jinja_prefix}_edge_updater',
216
- template_path=osp.join(root_dir, 'edge_updater.jinja'),
217
- tmp_dirname='message_passing',
218
- # Keyword arguments:
219
- modules=self.inspector._modules,
220
- collect_name='edge_collect',
221
- signature=self._get_edge_updater_signature(),
222
- collect_param_dict=self.inspector.get_param_dict(
223
- 'edge_update'),
224
- )
225
-
226
- self.__class__._orig_edge_updater = self.__class__.edge_updater
227
- self.__class__._jinja_edge_updater = module.edge_updater
228
-
229
- self.__class__.edge_updater = module.edge_updater
230
- self.__class__.edge_collect = module.edge_collect
231
- except Exception: # pragma: no cover
232
- self.__class__._orig_edge_updater = self.__class__.edge_updater
233
- self.__class__._jinja_edge_updater = (
234
- self.__class__.edge_updater)
170
+ # Set jittable `propagate` and `edge_updater` function templates:
171
+ self._set_jittable_templates()
235
172
 
236
173
  # Explainability:
237
174
  self._explain: Optional[bool] = None
@@ -248,6 +185,12 @@ class MessagePassing(torch.nn.Module):
248
185
  if self.aggr_module is not None:
249
186
  self.aggr_module.reset_parameters()
250
187
 
188
+ def __setstate__(self, data: Dict[str, Any]) -> None:
189
+ self.inspector = data['inspector']
190
+ self.fuse = data['fuse']
191
+ self._set_jittable_templates()
192
+ super().__setstate__(data)
193
+
251
194
  def __repr__(self) -> str:
252
195
  channels_repr = ''
253
196
  if hasattr(self, 'in_channels') and hasattr(self, 'out_channels'):
@@ -261,7 +204,7 @@ class MessagePassing(torch.nn.Module):
261
204
  def _check_input(
262
205
  self,
263
206
  edge_index: Union[Tensor, SparseTensor],
264
- size: Optional[Tuple[int, int]],
207
+ size: Optional[Tuple[Optional[int], Optional[int]]],
265
208
  ) -> List[Optional[int]]:
266
209
 
267
210
  if not torch.jit.is_scripting() and isinstance(edge_index, EdgeIndex):
@@ -270,19 +213,20 @@ class MessagePassing(torch.nn.Module):
270
213
  if is_sparse(edge_index):
271
214
  if self.flow == 'target_to_source':
272
215
  raise ValueError(
273
- ('Flow direction "target_to_source" is invalid for '
274
- 'message propagation via `torch_sparse.SparseTensor` '
275
- 'or `torch.sparse.Tensor`. If you really want to make '
276
- 'use of a reverse message passing flow, pass in the '
277
- 'transposed sparse tensor to the message passing module, '
278
- 'e.g., `adj_t.t()`.'))
216
+ 'Flow direction "target_to_source" is invalid for '
217
+ 'message propagation via `torch_sparse.SparseTensor` '
218
+ 'or `torch.sparse.Tensor`. If you really want to make '
219
+ 'use of a reverse message passing flow, pass in the '
220
+ 'transposed sparse tensor to the message passing module, '
221
+ 'e.g., `adj_t.t()`.')
279
222
 
280
223
  if isinstance(edge_index, SparseTensor):
281
224
  return [edge_index.size(1), edge_index.size(0)]
282
225
  return [edge_index.size(1), edge_index.size(0)]
283
226
 
284
227
  elif isinstance(edge_index, Tensor):
285
- int_dtypes = (torch.uint8, torch.int8, torch.int32, torch.int64)
228
+ int_dtypes = (torch.uint8, torch.int8, torch.int16, torch.int32,
229
+ torch.int64)
286
230
 
287
231
  if edge_index.dtype not in int_dtypes:
288
232
  raise ValueError(f"Expected 'edge_index' to be of integer "
@@ -298,9 +242,9 @@ class MessagePassing(torch.nn.Module):
298
242
  return list(size) if size is not None else [None, None]
299
243
 
300
244
  raise ValueError(
301
- ('`MessagePassing.propagate` only supports integer tensors of '
302
- 'shape `[2, num_messages]`, `torch_sparse.SparseTensor` or '
303
- '`torch.sparse.Tensor` for argument `edge_index`.'))
245
+ '`MessagePassing.propagate` only supports integer tensors of '
246
+ 'shape `[2, num_messages]`, `torch_sparse.SparseTensor` or '
247
+ '`torch.sparse.Tensor` for argument `edge_index`.')
304
248
 
305
249
  def _set_size(
306
250
  self,
@@ -313,8 +257,8 @@ class MessagePassing(torch.nn.Module):
313
257
  size[dim] = src.size(self.node_dim)
314
258
  elif the_size != src.size(self.node_dim):
315
259
  raise ValueError(
316
- (f'Encountered tensor with size {src.size(self.node_dim)} in '
317
- f'dimension {self.node_dim}, but expected size {the_size}.'))
260
+ f'Encountered tensor with size {src.size(self.node_dim)} in '
261
+ f'dimension {self.node_dim}, but expected size {the_size}.')
318
262
 
319
263
  def _index_select(self, src: Tensor, index) -> Tensor:
320
264
  if torch.jit.is_scripting() or is_compiling():
@@ -384,9 +328,9 @@ class MessagePassing(torch.nn.Module):
384
328
  return src.index_select(self.node_dim, row)
385
329
 
386
330
  raise ValueError(
387
- ('`MessagePassing.propagate` only supports integer tensors of '
388
- 'shape `[2, num_messages]`, `torch_sparse.SparseTensor` '
389
- 'or `torch.sparse.Tensor` for argument `edge_index`.'))
331
+ '`MessagePassing.propagate` only supports integer tensors of '
332
+ 'shape `[2, num_messages]`, `torch_sparse.SparseTensor` '
333
+ 'or `torch.sparse.Tensor` for argument `edge_index`.')
390
334
 
391
335
  def _collect(
392
336
  self,
@@ -473,7 +417,6 @@ class MessagePassing(torch.nn.Module):
473
417
 
474
418
  def forward(self, *args: Any, **kwargs: Any) -> Any:
475
419
  r"""Runs the forward pass of the module."""
476
- pass
477
420
 
478
421
  def propagate(
479
422
  self,
@@ -980,6 +923,81 @@ class MessagePassing(torch.nn.Module):
980
923
 
981
924
  # TorchScript Support #####################################################
982
925
 
926
+ def _set_jittable_templates(self, raise_on_error: bool = False) -> None:
927
+ root_dir = osp.dirname(osp.realpath(__file__))
928
+ jinja_prefix = f'{self.__module__}_{self.__class__.__name__}'
929
+ # Optimize `propagate()` via `*.jinja` templates:
930
+ if not self.propagate.__module__.startswith(jinja_prefix):
931
+ try:
932
+ if ('propagate' in self.__class__.__dict__
933
+ and self.__class__.__dict__['propagate']
934
+ != MessagePassing.propagate):
935
+ raise ValueError("Cannot compile custom 'propagate' "
936
+ "method")
937
+
938
+ module = module_from_template(
939
+ module_name=f'{jinja_prefix}_propagate',
940
+ template_path=osp.join(root_dir, 'propagate.jinja'),
941
+ tmp_dirname='message_passing',
942
+ # Keyword arguments:
943
+ modules=self.inspector._modules,
944
+ collect_name='collect',
945
+ signature=self._get_propagate_signature(),
946
+ collect_param_dict=self.inspector.get_flat_param_dict(
947
+ ['message', 'aggregate', 'update']),
948
+ message_args=self.inspector.get_param_names('message'),
949
+ aggregate_args=self.inspector.get_param_names('aggregate'),
950
+ message_and_aggregate_args=self.inspector.get_param_names(
951
+ 'message_and_aggregate'),
952
+ update_args=self.inspector.get_param_names('update'),
953
+ fuse=self.fuse,
954
+ )
955
+
956
+ self.__class__._orig_propagate = self.__class__.propagate
957
+ self.__class__._jinja_propagate = module.propagate
958
+
959
+ self.__class__.propagate = module.propagate
960
+ self.__class__.collect = module.collect
961
+ except Exception as e: # pragma: no cover
962
+ if raise_on_error:
963
+ raise e
964
+ self.__class__._orig_propagate = self.__class__.propagate
965
+ self.__class__._jinja_propagate = self.__class__.propagate
966
+
967
+ # Optimize `edge_updater()` via `*.jinja` templates (if implemented):
968
+ if (self.inspector.implements('edge_update')
969
+ and not self.edge_updater.__module__.startswith(jinja_prefix)):
970
+ try:
971
+ if ('edge_updater' in self.__class__.__dict__
972
+ and self.__class__.__dict__['edge_updater']
973
+ != MessagePassing.edge_updater):
974
+ raise ValueError("Cannot compile custom 'edge_updater' "
975
+ "method")
976
+
977
+ module = module_from_template(
978
+ module_name=f'{jinja_prefix}_edge_updater',
979
+ template_path=osp.join(root_dir, 'edge_updater.jinja'),
980
+ tmp_dirname='message_passing',
981
+ # Keyword arguments:
982
+ modules=self.inspector._modules,
983
+ collect_name='edge_collect',
984
+ signature=self._get_edge_updater_signature(),
985
+ collect_param_dict=self.inspector.get_param_dict(
986
+ 'edge_update'),
987
+ )
988
+
989
+ self.__class__._orig_edge_updater = self.__class__.edge_updater
990
+ self.__class__._jinja_edge_updater = module.edge_updater
991
+
992
+ self.__class__.edge_updater = module.edge_updater
993
+ self.__class__.edge_collect = module.edge_collect
994
+ except Exception as e: # pragma: no cover
995
+ if raise_on_error:
996
+ raise e
997
+ self.__class__._orig_edge_updater = self.__class__.edge_updater
998
+ self.__class__._jinja_edge_updater = (
999
+ self.__class__.edge_updater)
1000
+
983
1001
  def _get_propagate_signature(self) -> Signature:
984
1002
  param_dict = self.inspector.get_params_from_method_call(
985
1003
  'propagate', exclude=[0, 'edge_index', 'size'])
@@ -14,7 +14,7 @@ from torch_geometric.utils import spmm
14
14
 
15
15
  class MixHopConv(MessagePassing):
16
16
  r"""The Mix-Hop graph convolutional operator from the
17
- `"MixHop: Higher-Order Graph Convolutional Architecturesvia Sparsified
17
+ `"MixHop: Higher-Order Graph Convolutional Architectures via Sparsified
18
18
  Neighborhood Mixing" <https://arxiv.org/abs/1905.00067>`_ paper.
19
19
 
20
20
  .. math::
@@ -120,7 +120,8 @@ class RGCNConv(MessagePassing):
120
120
  in_channels = (in_channels, in_channels)
121
121
  self.in_channels_l = in_channels[0]
122
122
 
123
- self._use_segment_matmul_heuristic_output: Optional[bool] = None
123
+ self._use_segment_matmul_heuristic_output: torch.jit.Attribute(
124
+ None, Optional[float])
124
125
 
125
126
  if num_bases is not None:
126
127
  self.weight = Parameter(
@@ -5,17 +5,17 @@ import torch
5
5
  from torch import Tensor, nn
6
6
  from torch.nn import Parameter
7
7
 
8
+ import torch_geometric.typing
8
9
  from torch_geometric.nn.conv import MessagePassing
9
10
  from torch_geometric.nn.dense.linear import Linear
10
11
  from torch_geometric.nn.inits import uniform, zeros
11
12
  from torch_geometric.typing import Adj, OptPairTensor, OptTensor, Size
12
13
  from torch_geometric.utils.repeat import repeat
13
14
 
14
- try:
15
+ if torch_geometric.typing.WITH_TORCH_SPLINE_CONV:
15
16
  from torch_spline_conv import spline_basis, spline_weighting
16
- except (ImportError, OSError): # Fail gracefully on GLIBC errors
17
- spline_basis = None
18
- spline_weighting = None
17
+ else:
18
+ spline_basis = spline_weighting = None
19
19
 
20
20
 
21
21
  class SplineConv(MessagePassing):
@@ -9,12 +9,13 @@ from torch.nn import Conv1d
9
9
  from torch.nn import Linear as L
10
10
  from torch.nn import Sequential as S
11
11
 
12
+ import torch_geometric.typing
12
13
  from torch_geometric.nn import Reshape
13
14
  from torch_geometric.nn.inits import reset
14
15
 
15
- try:
16
+ if torch_geometric.typing.WITH_TORCH_CLUSTER:
16
17
  from torch_cluster import knn_graph
17
- except ImportError:
18
+ else:
18
19
  knn_graph = None
19
20
 
20
21
 
@@ -58,7 +58,7 @@ def reset_bias_(bias: Optional[Tensor], in_channels: int,
58
58
 
59
59
 
60
60
  class Linear(torch.nn.Module):
61
- r"""Applies a linear tranformation to the incoming data.
61
+ r"""Applies a linear transformation to the incoming data.
62
62
 
63
63
  .. math::
64
64
  \mathbf{x}^{\prime} = \mathbf{x} \mathbf{W}^{\top} + \mathbf{b}
@@ -192,7 +192,7 @@ class Linear(torch.nn.Module):
192
192
 
193
193
 
194
194
  class HeteroLinear(torch.nn.Module):
195
- r"""Applies separate linear tranformations to the incoming data according
195
+ r"""Applies separate linear transformations to the incoming data according
196
196
  to types.
197
197
 
198
198
  For type :math:`\kappa`, it computes
@@ -365,7 +365,8 @@ class HeteroLinear(torch.nn.Module):
365
365
 
366
366
 
367
367
  class HeteroDictLinear(torch.nn.Module):
368
- r"""Applies separate linear tranformations to the incoming data dictionary.
368
+ r"""Applies separate linear transformations to the incoming data
369
+ dictionary.
369
370
 
370
371
  For key :math:`\kappa`, it computes
371
372
 
@@ -479,7 +480,7 @@ class HeteroDictLinear(torch.nn.Module):
479
480
  lin = self.lins[key]
480
481
  if is_uninitialized_parameter(lin.weight):
481
482
  self.lins[key].initialize_parameters(None, x)
482
- self.reset_parameters()
483
+ self.lins[key].reset_parameters()
483
484
  self._hook.remove()
484
485
  self.in_channels = {key: x.size(-1) for key, x in input[0].items()}
485
486
  delattr(self, '_hook')
torch_geometric/nn/fx.py CHANGED
@@ -18,8 +18,8 @@ class Transformer:
18
18
  :class:`~torch.nn.Module`.
19
19
  :class:`Transformer` works entirely symbolically.
20
20
 
21
- Methods in the :class:`Transformer` class can be overriden to customize the
22
- behavior of transformation.
21
+ Methods in the :class:`Transformer` class can be overridden to customize
22
+ the behavior of transformation.
23
23
 
24
24
  .. code-block:: none
25
25
 
@@ -283,7 +283,7 @@ def symbolic_trace(
283
283
  # TODO We currently only trace top-level modules.
284
284
  return not isinstance(module, torch.nn.Sequential)
285
285
 
286
- # Note: This is a hack around the fact that `Aggregaton.__call__`
286
+ # Note: This is a hack around the fact that `Aggregation.__call__`
287
287
  # is not patched by the base implementation of `trace`.
288
288
  # see https://github.com/pyg-team/pytorch_geometric/pull/5021 for
289
289
  # details on the rationale
@@ -4,6 +4,8 @@ from typing import Any, Dict, Optional, Union
4
4
 
5
5
  import torch
6
6
 
7
+ from torch_geometric.io import fs
8
+
7
9
  try:
8
10
  from huggingface_hub import ModelHubMixin, hf_hub_download
9
11
  except ImportError:
@@ -175,7 +177,7 @@ class PyGModelHubMixin(ModelHubMixin):
175
177
 
176
178
  model = cls(dataset_name, model_name, model_kwargs)
177
179
 
178
- state_dict = torch.load(model_file, map_location=map_location)
180
+ state_dict = fs.torch_load(model_file, map_location=map_location)
179
181
  model.load_state_dict(state_dict, strict=strict)
180
182
  model.eval()
181
183
 
@@ -2,7 +2,7 @@ r"""Model package."""
2
2
 
3
3
  from .mlp import MLP
4
4
  from .basic_gnn import GCN, GraphSAGE, GIN, GAT, PNA, EdgeCNN
5
- from .jumping_knowledge import JumpingKnowledge
5
+ from .jumping_knowledge import JumpingKnowledge, HeteroJumpingKnowledge
6
6
  from .meta import MetaLayer
7
7
  from .node2vec import Node2Vec
8
8
  from .deep_graph_infomax import DeepGraphInfomax
@@ -28,7 +28,10 @@ from .gnnff import GNNFF
28
28
  from .pmlp import PMLP
29
29
  from .neural_fingerprint import NeuralFingerprint
30
30
  from .visnet import ViSNet
31
-
31
+ from .g_retriever import GRetriever
32
+ from .git_mol import GITMol
33
+ from .molecule_gpt import MoleculeGPT
34
+ from .glem import GLEM
32
35
  # Deprecated:
33
36
  from torch_geometric.explain.algorithm.captum import (to_captum_input,
34
37
  captum_output_to_dicts)
@@ -42,6 +45,7 @@ __all__ = classes = [
42
45
  'PNA',
43
46
  'EdgeCNN',
44
47
  'JumpingKnowledge',
48
+ 'HeteroJumpingKnowledge',
45
49
  'MetaLayer',
46
50
  'Node2Vec',
47
51
  'DeepGraphInfomax',
@@ -74,4 +78,8 @@ __all__ = classes = [
74
78
  'PMLP',
75
79
  'NeuralFingerprint',
76
80
  'ViSNet',
81
+ 'GRetriever',
82
+ 'GITMol',
83
+ 'MoleculeGPT',
84
+ 'GLEM',
77
85
  ]
@@ -98,7 +98,6 @@ class DeepGraphInfomax(torch.nn.Module):
98
98
  test_z: Tensor,
99
99
  test_y: Tensor,
100
100
  solver: str = 'lbfgs',
101
- multi_class: str = 'auto',
102
101
  *args,
103
102
  **kwargs,
104
103
  ) -> float:
@@ -107,7 +106,7 @@ class DeepGraphInfomax(torch.nn.Module):
107
106
  """
108
107
  from sklearn.linear_model import LogisticRegression
109
108
 
110
- clf = LogisticRegression(solver=solver, multi_class=multi_class, *args,
109
+ clf = LogisticRegression(solver=solver, *args,
111
110
  **kwargs).fit(train_z.detach().cpu().numpy(),
112
111
  train_y.detach().cpu().numpy())
113
112
  return clf.score(test_z.detach().cpu().numpy(),
@@ -1,14 +1,12 @@
1
1
  # Shameless steal from: https://github.com/klicperajo/dimenet
2
2
 
3
+ import math
4
+
3
5
  import numpy as np
6
+ import sympy as sym
4
7
  from scipy import special as sp
5
8
  from scipy.optimize import brentq
6
9
 
7
- try:
8
- import sympy as sym
9
- except ImportError:
10
- sym = None
11
-
12
10
 
13
11
  def Jn(r, n):
14
12
  return np.sqrt(np.pi / (2 * r)) * sp.jv(n + 0.5, r)
@@ -66,8 +64,8 @@ def bessel_basis(n, k):
66
64
 
67
65
 
68
66
  def sph_harm_prefactor(k, m):
69
- return ((2 * k + 1) * np.math.factorial(k - abs(m)) /
70
- (4 * np.pi * np.math.factorial(k + abs(m))))**0.5
67
+ return ((2 * k + 1) * math.factorial(k - abs(m)) /
68
+ (4 * np.pi * math.factorial(k + abs(m))))**0.5
71
69
 
72
70
 
73
71
  def associated_legendre_polynomials(k, zero_m_only=True):