pyg-nightly 2.6.0.dev20240511__py3-none-any.whl → 2.7.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- {pyg_nightly-2.6.0.dev20240511.dist-info → pyg_nightly-2.7.0.dev20250114.dist-info}/METADATA +30 -31
- {pyg_nightly-2.6.0.dev20240511.dist-info → pyg_nightly-2.7.0.dev20250114.dist-info}/RECORD +205 -181
- {pyg_nightly-2.6.0.dev20240511.dist-info → pyg_nightly-2.7.0.dev20250114.dist-info}/WHEEL +1 -1
- torch_geometric/__init__.py +26 -1
- torch_geometric/_compile.py +8 -1
- torch_geometric/_onnx.py +14 -0
- torch_geometric/config_mixin.py +113 -0
- torch_geometric/config_store.py +16 -14
- torch_geometric/data/__init__.py +24 -1
- torch_geometric/data/batch.py +2 -2
- torch_geometric/data/data.py +13 -8
- torch_geometric/data/database.py +15 -7
- torch_geometric/data/dataset.py +14 -6
- torch_geometric/data/feature_store.py +13 -22
- torch_geometric/data/graph_store.py +0 -4
- torch_geometric/data/hetero_data.py +4 -4
- torch_geometric/data/in_memory_dataset.py +2 -4
- torch_geometric/data/large_graph_indexer.py +677 -0
- torch_geometric/data/lightning/datamodule.py +4 -4
- torch_geometric/data/storage.py +15 -5
- torch_geometric/data/summary.py +14 -4
- torch_geometric/data/temporal.py +1 -2
- torch_geometric/datasets/__init__.py +11 -1
- torch_geometric/datasets/actor.py +9 -11
- torch_geometric/datasets/airfrans.py +15 -18
- torch_geometric/datasets/airports.py +10 -12
- torch_geometric/datasets/amazon.py +8 -11
- torch_geometric/datasets/amazon_book.py +9 -10
- torch_geometric/datasets/amazon_products.py +9 -10
- torch_geometric/datasets/aminer.py +8 -9
- torch_geometric/datasets/aqsol.py +10 -13
- torch_geometric/datasets/attributed_graph_dataset.py +10 -12
- torch_geometric/datasets/ba_multi_shapes.py +10 -12
- torch_geometric/datasets/ba_shapes.py +5 -6
- torch_geometric/datasets/bitcoin_otc.py +1 -1
- torch_geometric/datasets/brca_tgca.py +1 -1
- torch_geometric/datasets/dblp.py +2 -1
- torch_geometric/datasets/dbp15k.py +2 -2
- torch_geometric/datasets/fake.py +1 -3
- torch_geometric/datasets/flickr.py +2 -1
- torch_geometric/datasets/freebase.py +1 -1
- torch_geometric/datasets/gdelt_lite.py +3 -2
- torch_geometric/datasets/ged_dataset.py +3 -2
- torch_geometric/datasets/git_mol_dataset.py +263 -0
- torch_geometric/datasets/gnn_benchmark_dataset.py +6 -5
- torch_geometric/datasets/hgb_dataset.py +8 -8
- torch_geometric/datasets/imdb.py +2 -1
- torch_geometric/datasets/last_fm.py +2 -1
- torch_geometric/datasets/linkx_dataset.py +4 -3
- torch_geometric/datasets/lrgb.py +3 -5
- torch_geometric/datasets/malnet_tiny.py +4 -3
- torch_geometric/datasets/mnist_superpixels.py +2 -3
- torch_geometric/datasets/molecule_gpt_dataset.py +485 -0
- torch_geometric/datasets/molecule_net.py +7 -1
- torch_geometric/datasets/motif_generator/base.py +0 -1
- torch_geometric/datasets/neurograph.py +1 -3
- torch_geometric/datasets/ogb_mag.py +1 -1
- torch_geometric/datasets/opf.py +239 -0
- torch_geometric/datasets/ose_gvcs.py +1 -1
- torch_geometric/datasets/pascal_pf.py +1 -1
- torch_geometric/datasets/pcpnet_dataset.py +1 -1
- torch_geometric/datasets/pcqm4m.py +2 -1
- torch_geometric/datasets/ppi.py +1 -1
- torch_geometric/datasets/qm9.py +4 -3
- torch_geometric/datasets/reddit.py +2 -1
- torch_geometric/datasets/reddit2.py +2 -1
- torch_geometric/datasets/rel_link_pred_dataset.py +3 -3
- torch_geometric/datasets/s3dis.py +2 -2
- torch_geometric/datasets/shapenet.py +3 -3
- torch_geometric/datasets/shrec2016.py +2 -2
- torch_geometric/datasets/tag_dataset.py +350 -0
- torch_geometric/datasets/upfd.py +2 -1
- torch_geometric/datasets/web_qsp_dataset.py +246 -0
- torch_geometric/datasets/webkb.py +2 -2
- torch_geometric/datasets/wikics.py +1 -1
- torch_geometric/datasets/wikidata.py +3 -2
- torch_geometric/datasets/wikipedia_network.py +2 -2
- torch_geometric/datasets/word_net.py +2 -2
- torch_geometric/datasets/yelp.py +2 -1
- torch_geometric/datasets/zinc.py +1 -1
- torch_geometric/device.py +42 -0
- torch_geometric/distributed/local_feature_store.py +3 -2
- torch_geometric/distributed/local_graph_store.py +2 -1
- torch_geometric/distributed/partition.py +9 -8
- torch_geometric/edge_index.py +17 -8
- torch_geometric/explain/algorithm/base.py +0 -1
- torch_geometric/explain/algorithm/pg_explainer.py +1 -1
- torch_geometric/explain/explanation.py +2 -2
- torch_geometric/graphgym/checkpoint.py +2 -1
- torch_geometric/graphgym/logger.py +4 -4
- torch_geometric/graphgym/loss.py +1 -1
- torch_geometric/graphgym/utils/agg_runs.py +6 -6
- torch_geometric/index.py +20 -7
- torch_geometric/inspector.py +6 -2
- torch_geometric/io/fs.py +28 -2
- torch_geometric/io/npz.py +2 -1
- torch_geometric/io/off.py +2 -2
- torch_geometric/io/sdf.py +2 -2
- torch_geometric/io/tu.py +2 -3
- torch_geometric/loader/__init__.py +4 -0
- torch_geometric/loader/cluster.py +9 -3
- torch_geometric/loader/graph_saint.py +2 -1
- torch_geometric/loader/ibmb_loader.py +12 -4
- torch_geometric/loader/mixin.py +1 -1
- torch_geometric/loader/neighbor_loader.py +1 -1
- torch_geometric/loader/neighbor_sampler.py +2 -2
- torch_geometric/loader/prefetch.py +1 -1
- torch_geometric/loader/rag_loader.py +107 -0
- torch_geometric/loader/zip_loader.py +10 -0
- torch_geometric/metrics/__init__.py +11 -2
- torch_geometric/metrics/link_pred.py +159 -34
- torch_geometric/nn/aggr/__init__.py +2 -0
- torch_geometric/nn/aggr/attention.py +0 -2
- torch_geometric/nn/aggr/base.py +2 -4
- torch_geometric/nn/aggr/patch_transformer.py +143 -0
- torch_geometric/nn/aggr/set_transformer.py +1 -1
- torch_geometric/nn/attention/__init__.py +5 -1
- torch_geometric/nn/attention/qformer.py +71 -0
- torch_geometric/nn/conv/collect.jinja +6 -3
- torch_geometric/nn/conv/cugraph/base.py +0 -1
- torch_geometric/nn/conv/edge_conv.py +3 -2
- torch_geometric/nn/conv/gat_conv.py +35 -7
- torch_geometric/nn/conv/gatv2_conv.py +36 -6
- torch_geometric/nn/conv/general_conv.py +1 -1
- torch_geometric/nn/conv/gravnet_conv.py +3 -2
- torch_geometric/nn/conv/hetero_conv.py +3 -3
- torch_geometric/nn/conv/hgt_conv.py +1 -1
- torch_geometric/nn/conv/message_passing.py +100 -82
- torch_geometric/nn/conv/mixhop_conv.py +1 -1
- torch_geometric/nn/conv/rgcn_conv.py +2 -1
- torch_geometric/nn/conv/spline_conv.py +4 -4
- torch_geometric/nn/conv/x_conv.py +3 -2
- torch_geometric/nn/dense/linear.py +5 -4
- torch_geometric/nn/fx.py +3 -3
- torch_geometric/nn/model_hub.py +3 -1
- torch_geometric/nn/models/__init__.py +10 -2
- torch_geometric/nn/models/deep_graph_infomax.py +1 -2
- torch_geometric/nn/models/dimenet_utils.py +5 -7
- torch_geometric/nn/models/g_retriever.py +230 -0
- torch_geometric/nn/models/git_mol.py +336 -0
- torch_geometric/nn/models/glem.py +385 -0
- torch_geometric/nn/models/gnnff.py +0 -1
- torch_geometric/nn/models/graph_unet.py +12 -3
- torch_geometric/nn/models/jumping_knowledge.py +63 -4
- torch_geometric/nn/models/lightgcn.py +1 -1
- torch_geometric/nn/models/metapath2vec.py +3 -4
- torch_geometric/nn/models/molecule_gpt.py +222 -0
- torch_geometric/nn/models/node2vec.py +1 -2
- torch_geometric/nn/models/schnet.py +2 -1
- torch_geometric/nn/models/signed_gcn.py +3 -3
- torch_geometric/nn/module_dict.py +2 -2
- torch_geometric/nn/nlp/__init__.py +9 -0
- torch_geometric/nn/nlp/llm.py +322 -0
- torch_geometric/nn/nlp/sentence_transformer.py +134 -0
- torch_geometric/nn/nlp/vision_transformer.py +33 -0
- torch_geometric/nn/norm/batch_norm.py +1 -1
- torch_geometric/nn/parameter_dict.py +2 -2
- torch_geometric/nn/pool/__init__.py +7 -5
- torch_geometric/nn/pool/cluster_pool.py +145 -0
- torch_geometric/nn/pool/connect/base.py +0 -1
- torch_geometric/nn/pool/edge_pool.py +1 -1
- torch_geometric/nn/pool/graclus.py +4 -2
- torch_geometric/nn/pool/select/base.py +0 -1
- torch_geometric/nn/pool/voxel_grid.py +3 -2
- torch_geometric/nn/resolver.py +1 -1
- torch_geometric/nn/sequential.jinja +10 -23
- torch_geometric/nn/sequential.py +203 -77
- torch_geometric/nn/summary.py +1 -1
- torch_geometric/nn/to_hetero_with_bases_transformer.py +19 -19
- torch_geometric/profile/__init__.py +2 -0
- torch_geometric/profile/nvtx.py +66 -0
- torch_geometric/profile/profiler.py +24 -15
- torch_geometric/resolver.py +1 -1
- torch_geometric/sampler/base.py +34 -13
- torch_geometric/sampler/neighbor_sampler.py +11 -10
- torch_geometric/testing/decorators.py +17 -22
- torch_geometric/transforms/__init__.py +2 -0
- torch_geometric/transforms/add_metapaths.py +4 -4
- torch_geometric/transforms/add_positional_encoding.py +1 -1
- torch_geometric/transforms/delaunay.py +65 -14
- torch_geometric/transforms/face_to_edge.py +32 -3
- torch_geometric/transforms/gdc.py +7 -6
- torch_geometric/transforms/laplacian_lambda_max.py +2 -2
- torch_geometric/transforms/mask.py +5 -1
- torch_geometric/transforms/node_property_split.py +1 -2
- torch_geometric/transforms/pad.py +7 -6
- torch_geometric/transforms/random_link_split.py +1 -1
- torch_geometric/transforms/remove_self_loops.py +36 -0
- torch_geometric/transforms/svd_feature_reduction.py +1 -1
- torch_geometric/transforms/virtual_node.py +2 -1
- torch_geometric/typing.py +31 -5
- torch_geometric/utils/__init__.py +5 -1
- torch_geometric/utils/_negative_sampling.py +1 -1
- torch_geometric/utils/_normalize_edge_index.py +46 -0
- torch_geometric/utils/_scatter.py +37 -12
- torch_geometric/utils/_subgraph.py +4 -0
- torch_geometric/utils/_tree_decomposition.py +2 -2
- torch_geometric/utils/augmentation.py +1 -1
- torch_geometric/utils/convert.py +5 -5
- torch_geometric/utils/geodesic.py +24 -22
- torch_geometric/utils/hetero.py +1 -1
- torch_geometric/utils/map.py +1 -1
- torch_geometric/utils/smiles.py +66 -28
- torch_geometric/utils/sparse.py +25 -10
- torch_geometric/visualization/graph.py +3 -4
@@ -1,4 +1,5 @@
|
|
1
1
|
import copy
|
2
|
+
import os
|
2
3
|
import os.path as osp
|
3
4
|
import sys
|
4
5
|
from dataclasses import dataclass
|
@@ -11,6 +12,7 @@ from torch import Tensor
|
|
11
12
|
import torch_geometric.typing
|
12
13
|
from torch_geometric.data import Data
|
13
14
|
from torch_geometric.index import index2ptr, ptr2index
|
15
|
+
from torch_geometric.io import fs
|
14
16
|
from torch_geometric.typing import pyg_lib
|
15
17
|
from torch_geometric.utils import index_sort, narrow, select, sort_edge_index
|
16
18
|
from torch_geometric.utils.map import map_index
|
@@ -43,6 +45,8 @@ class ClusterData(torch.utils.data.Dataset):
|
|
43
45
|
(default: :obj:`False`)
|
44
46
|
save_dir (str, optional): If set, will save the partitioned data to the
|
45
47
|
:obj:`save_dir` directory for faster re-use. (default: :obj:`None`)
|
48
|
+
filename (str, optional): Name of the stored partitioned file.
|
49
|
+
(default: :obj:`None`)
|
46
50
|
log (bool, optional): If set to :obj:`False`, will not log any
|
47
51
|
progress. (default: :obj:`True`)
|
48
52
|
keep_inter_cluster_edges (bool, optional): If set to :obj:`True`,
|
@@ -56,6 +60,7 @@ class ClusterData(torch.utils.data.Dataset):
|
|
56
60
|
num_parts: int,
|
57
61
|
recursive: bool = False,
|
58
62
|
save_dir: Optional[str] = None,
|
63
|
+
filename: Optional[str] = None,
|
59
64
|
log: bool = True,
|
60
65
|
keep_inter_cluster_edges: bool = False,
|
61
66
|
sparse_format: Literal['csr', 'csc'] = 'csr',
|
@@ -69,11 +74,11 @@ class ClusterData(torch.utils.data.Dataset):
|
|
69
74
|
self.sparse_format = sparse_format
|
70
75
|
|
71
76
|
recursive_str = '_recursive' if recursive else ''
|
72
|
-
|
73
|
-
path = osp.join(
|
77
|
+
root_dir = osp.join(save_dir or '', f'part_{num_parts}{recursive_str}')
|
78
|
+
path = osp.join(root_dir, filename or 'metis.pt')
|
74
79
|
|
75
80
|
if save_dir is not None and osp.exists(path):
|
76
|
-
self.partition =
|
81
|
+
self.partition = fs.torch_load(path)
|
77
82
|
else:
|
78
83
|
if log: # pragma: no cover
|
79
84
|
print('Computing METIS partitioning...', file=sys.stderr)
|
@@ -82,6 +87,7 @@ class ClusterData(torch.utils.data.Dataset):
|
|
82
87
|
self.partition = self._partition(data.edge_index, cluster)
|
83
88
|
|
84
89
|
if save_dir is not None:
|
90
|
+
os.makedirs(root_dir, exist_ok=True)
|
85
91
|
torch.save(self.partition, path)
|
86
92
|
|
87
93
|
if log: # pragma: no cover
|
@@ -4,6 +4,7 @@ from typing import Optional
|
|
4
4
|
import torch
|
5
5
|
from tqdm import tqdm
|
6
6
|
|
7
|
+
from torch_geometric.io import fs
|
7
8
|
from torch_geometric.typing import SparseTensor
|
8
9
|
|
9
10
|
|
@@ -77,7 +78,7 @@ class GraphSAINTSampler(torch.utils.data.DataLoader):
|
|
77
78
|
if self.sample_coverage > 0:
|
78
79
|
path = osp.join(save_dir or '', self._filename)
|
79
80
|
if save_dir is not None and osp.exists(path): # pragma: no cover
|
80
|
-
self.node_norm, self.edge_norm =
|
81
|
+
self.node_norm, self.edge_norm = fs.torch_load(path)
|
81
82
|
else:
|
82
83
|
self.node_norm, self.edge_norm = self._compute_norm()
|
83
84
|
if save_dir is not None: # pragma: no cover
|
@@ -1,9 +1,17 @@
|
|
1
1
|
import logging
|
2
2
|
import math
|
3
|
-
from typing import
|
3
|
+
from typing import (
|
4
|
+
Any,
|
5
|
+
Callable,
|
6
|
+
Iterator,
|
7
|
+
List,
|
8
|
+
NamedTuple,
|
9
|
+
Optional,
|
10
|
+
Tuple,
|
11
|
+
Union,
|
12
|
+
)
|
4
13
|
|
5
14
|
import numpy as np
|
6
|
-
import scipy.sparse
|
7
15
|
import torch
|
8
16
|
from torch import Tensor
|
9
17
|
from tqdm import tqdm
|
@@ -281,7 +289,7 @@ def create_batchwise_out_aux_pairs(
|
|
281
289
|
return loader
|
282
290
|
|
283
291
|
|
284
|
-
def get_pairs(ppr_mat:
|
292
|
+
def get_pairs(ppr_mat: Any) -> np.ndarray:
|
285
293
|
ppr_mat = ppr_mat + ppr_mat.transpose()
|
286
294
|
|
287
295
|
ppr_mat = ppr_mat.tocoo()
|
@@ -387,7 +395,7 @@ def topk_ppr_matrix(
|
|
387
395
|
output_node_indices: Union[np.ndarray, torch.LongTensor],
|
388
396
|
topk: int,
|
389
397
|
normalization='row',
|
390
|
-
) -> Tuple[
|
398
|
+
) -> Tuple[Any, List[np.ndarray]]:
|
391
399
|
neighbors, weights = get_ppr(edge_index, alpha, eps, output_node_indices,
|
392
400
|
num_nodes)
|
393
401
|
|
torch_geometric/loader/mixin.py
CHANGED
@@ -56,7 +56,7 @@ def get_numa_nodes_cores() -> Dict[str, Any]:
|
|
56
56
|
nodes[numa_node_id] = sorted([(k, sorted(v))
|
57
57
|
for k, v in thread_siblings.items()])
|
58
58
|
|
59
|
-
except (OSError, ValueError, IndexError
|
59
|
+
except (OSError, ValueError, IndexError):
|
60
60
|
Warning('Failed to read NUMA info')
|
61
61
|
return {}
|
62
62
|
|
@@ -14,7 +14,7 @@ class NeighborLoader(NodeLoader):
|
|
14
14
|
This loader allows for mini-batch training of GNNs on large-scale graphs
|
15
15
|
where full-batch training is not feasible.
|
16
16
|
|
17
|
-
More specifically, :obj:`num_neighbors` denotes how
|
17
|
+
More specifically, :obj:`num_neighbors` denotes how many neighbors are
|
18
18
|
sampled for each node in each iteration.
|
19
19
|
:class:`~torch_geometric.loader.NeighborLoader` takes in this list of
|
20
20
|
:obj:`num_neighbors` and iteratively samples :obj:`num_neighbors[i]` for
|
@@ -72,9 +72,9 @@ class NeighborSampler(torch.utils.data.DataLoader):
|
|
72
72
|
`examples/reddit.py
|
73
73
|
<https://github.com/pyg-team/pytorch_geometric/blob/master/examples/
|
74
74
|
reddit.py>`_ or
|
75
|
-
`examples/
|
75
|
+
`examples/ogbn_train.py
|
76
76
|
<https://github.com/pyg-team/pytorch_geometric/blob/master/examples/
|
77
|
-
|
77
|
+
ogbn_train.py>`_.
|
78
78
|
|
79
79
|
Args:
|
80
80
|
edge_index (Tensor or SparseTensor): A :obj:`torch.LongTensor` or a
|
@@ -73,7 +73,7 @@ class PrefetchLoader:
|
|
73
73
|
if isinstance(batch, dict):
|
74
74
|
return {k: self.non_blocking_transfer(v) for k, v in batch.items()}
|
75
75
|
|
76
|
-
batch = batch.pin_memory(
|
76
|
+
batch = batch.pin_memory()
|
77
77
|
return batch.to(self.device_helper.device, non_blocking=True)
|
78
78
|
|
79
79
|
def __iter__(self) -> Any:
|
@@ -0,0 +1,107 @@
|
|
1
|
+
from abc import abstractmethod
|
2
|
+
from typing import Any, Callable, Dict, Optional, Protocol, Tuple, Union
|
3
|
+
|
4
|
+
from torch_geometric.data import Data, FeatureStore, HeteroData
|
5
|
+
from torch_geometric.sampler import HeteroSamplerOutput, SamplerOutput
|
6
|
+
from torch_geometric.typing import InputEdges, InputNodes
|
7
|
+
|
8
|
+
|
9
|
+
class RAGFeatureStore(Protocol):
|
10
|
+
"""Feature store template for remote GNN RAG backend."""
|
11
|
+
@abstractmethod
|
12
|
+
def retrieve_seed_nodes(self, query: Any, **kwargs) -> InputNodes:
|
13
|
+
"""Makes a comparison between the query and all the nodes to get all
|
14
|
+
the closest nodes. Return the indices of the nodes that are to be seeds
|
15
|
+
for the RAG Sampler.
|
16
|
+
"""
|
17
|
+
...
|
18
|
+
|
19
|
+
@abstractmethod
|
20
|
+
def retrieve_seed_edges(self, query: Any, **kwargs) -> InputEdges:
|
21
|
+
"""Makes a comparison between the query and all the edges to get all
|
22
|
+
the closest nodes. Returns the edge indices that are to be the seeds
|
23
|
+
for the RAG Sampler.
|
24
|
+
"""
|
25
|
+
...
|
26
|
+
|
27
|
+
@abstractmethod
|
28
|
+
def load_subgraph(
|
29
|
+
self, sample: Union[SamplerOutput, HeteroSamplerOutput]
|
30
|
+
) -> Union[Data, HeteroData]:
|
31
|
+
"""Combines sampled subgraph output with features in a Data object."""
|
32
|
+
...
|
33
|
+
|
34
|
+
|
35
|
+
class RAGGraphStore(Protocol):
|
36
|
+
"""Graph store template for remote GNN RAG backend."""
|
37
|
+
@abstractmethod
|
38
|
+
def sample_subgraph(self, seed_nodes: InputNodes, seed_edges: InputEdges,
|
39
|
+
**kwargs) -> Union[SamplerOutput, HeteroSamplerOutput]:
|
40
|
+
"""Sample a subgraph using the seeded nodes and edges."""
|
41
|
+
...
|
42
|
+
|
43
|
+
@abstractmethod
|
44
|
+
def register_feature_store(self, feature_store: FeatureStore):
|
45
|
+
"""Register a feature store to be used with the sampler. Samplers need
|
46
|
+
info from the feature store in order to work properly on HeteroGraphs.
|
47
|
+
"""
|
48
|
+
...
|
49
|
+
|
50
|
+
|
51
|
+
# TODO: Make compatible with Heterographs
|
52
|
+
|
53
|
+
|
54
|
+
class RAGQueryLoader:
|
55
|
+
"""Loader meant for making RAG queries from a remote backend."""
|
56
|
+
def __init__(self, data: Tuple[RAGFeatureStore, RAGGraphStore],
|
57
|
+
local_filter: Optional[Callable[[Data, Any], Data]] = None,
|
58
|
+
seed_nodes_kwargs: Optional[Dict[str, Any]] = None,
|
59
|
+
seed_edges_kwargs: Optional[Dict[str, Any]] = None,
|
60
|
+
sampler_kwargs: Optional[Dict[str, Any]] = None,
|
61
|
+
loader_kwargs: Optional[Dict[str, Any]] = None):
|
62
|
+
"""Loader meant for making queries from a remote backend.
|
63
|
+
|
64
|
+
Args:
|
65
|
+
data (Tuple[RAGFeatureStore, RAGGraphStore]): Remote FeatureStore
|
66
|
+
and GraphStore to load from. Assumed to conform to the
|
67
|
+
protocols listed above.
|
68
|
+
local_filter (Optional[Callable[[Data, Any], Data]], optional):
|
69
|
+
Optional local transform to apply to data after retrieval.
|
70
|
+
Defaults to None.
|
71
|
+
seed_nodes_kwargs (Optional[Dict[str, Any]], optional): Paramaters
|
72
|
+
to pass into process for fetching seed nodes. Defaults to None.
|
73
|
+
seed_edges_kwargs (Optional[Dict[str, Any]], optional): Parameters
|
74
|
+
to pass into process for fetching seed edges. Defaults to None.
|
75
|
+
sampler_kwargs (Optional[Dict[str, Any]], optional): Parameters to
|
76
|
+
pass into process for sampling graph. Defaults to None.
|
77
|
+
loader_kwargs (Optional[Dict[str, Any]], optional): Parameters to
|
78
|
+
pass into process for loading graph features. Defaults to None.
|
79
|
+
"""
|
80
|
+
fstore, gstore = data
|
81
|
+
self.feature_store = fstore
|
82
|
+
self.graph_store = gstore
|
83
|
+
self.graph_store.register_feature_store(self.feature_store)
|
84
|
+
self.local_filter = local_filter
|
85
|
+
self.seed_nodes_kwargs = seed_nodes_kwargs or {}
|
86
|
+
self.seed_edges_kwargs = seed_edges_kwargs or {}
|
87
|
+
self.sampler_kwargs = sampler_kwargs or {}
|
88
|
+
self.loader_kwargs = loader_kwargs or {}
|
89
|
+
|
90
|
+
def query(self, query: Any) -> Data:
|
91
|
+
"""Retrieve a subgraph associated with the query with all its feature
|
92
|
+
attributes.
|
93
|
+
"""
|
94
|
+
seed_nodes = self.feature_store.retrieve_seed_nodes(
|
95
|
+
query, **self.seed_nodes_kwargs)
|
96
|
+
seed_edges = self.feature_store.retrieve_seed_edges(
|
97
|
+
query, **self.seed_edges_kwargs)
|
98
|
+
|
99
|
+
subgraph_sample = self.graph_store.sample_subgraph(
|
100
|
+
seed_nodes, seed_edges, **self.sampler_kwargs)
|
101
|
+
|
102
|
+
data = self.feature_store.load_subgraph(sample=subgraph_sample,
|
103
|
+
**self.loader_kwargs)
|
104
|
+
|
105
|
+
if self.local_filter:
|
106
|
+
data = self.local_filter(data, query)
|
107
|
+
return data
|
@@ -59,6 +59,16 @@ class ZipLoader(torch.utils.data.DataLoader):
|
|
59
59
|
self.loaders = loaders
|
60
60
|
self.filter_per_worker = filter_per_worker
|
61
61
|
|
62
|
+
def __call__(
|
63
|
+
self,
|
64
|
+
index: Union[Tensor, List[int]],
|
65
|
+
) -> Union[Tuple[Data, ...], Tuple[HeteroData, ...]]:
|
66
|
+
r"""Samples subgraphs from a batch of input IDs."""
|
67
|
+
out = self.collate_fn(index)
|
68
|
+
if not self.filter_per_worker:
|
69
|
+
out = self.filter_fn(out)
|
70
|
+
return out
|
71
|
+
|
62
72
|
def collate_fn(self, index: List[int]) -> Tuple[Any, ...]:
|
63
73
|
if not isinstance(index, Tensor):
|
64
74
|
index = torch.tensor(index, dtype=torch.long)
|
@@ -1,14 +1,23 @@
|
|
1
1
|
# flake8: noqa
|
2
2
|
|
3
|
-
from .link_pred import (
|
4
|
-
|
3
|
+
from .link_pred import (
|
4
|
+
LinkPredMetricCollection,
|
5
|
+
LinkPredPrecision,
|
6
|
+
LinkPredRecall,
|
7
|
+
LinkPredF1,
|
8
|
+
LinkPredMAP,
|
9
|
+
LinkPredNDCG,
|
10
|
+
LinkPredMRR,
|
11
|
+
)
|
5
12
|
|
6
13
|
link_pred_metrics = [
|
14
|
+
'LinkPredMetricCollection',
|
7
15
|
'LinkPredPrecision',
|
8
16
|
'LinkPredRecall',
|
9
17
|
'LinkPredF1',
|
10
18
|
'LinkPredMAP',
|
11
19
|
'LinkPredNDCG',
|
20
|
+
'LinkPredMRR',
|
12
21
|
]
|
13
22
|
|
14
23
|
__all__ = link_pred_metrics
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from typing import Optional, Tuple, Union
|
1
|
+
from typing import Dict, List, Optional, Tuple, Union
|
2
2
|
|
3
3
|
import torch
|
4
4
|
from torch import Tensor
|
@@ -43,34 +43,15 @@ class LinkPredMetric(BaseMetric):
|
|
43
43
|
self.register_buffer('accum', torch.tensor(0.))
|
44
44
|
self.register_buffer('total', torch.tensor(0))
|
45
45
|
|
46
|
-
|
47
|
-
|
46
|
+
@staticmethod
|
47
|
+
def _prepare(
|
48
48
|
pred_index_mat: Tensor,
|
49
49
|
edge_label_index: Union[Tensor, Tuple[Tensor, Tensor]],
|
50
|
-
) ->
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
of successive predictions, *e.g.*, inside a mini-batch training or
|
56
|
-
evaluation loop.
|
57
|
-
|
58
|
-
Args:
|
59
|
-
pred_index_mat (torch.Tensor): The top-:math:`k` predictions of
|
60
|
-
every example in the mini-batch with shape
|
61
|
-
:obj:`[batch_size, k]`.
|
62
|
-
edge_label_index (torch.Tensor): The ground-truth indices for every
|
63
|
-
example in the mini-batch, given in COO format of shape
|
64
|
-
:obj:`[2, num_ground_truth_indices]`.
|
65
|
-
"""
|
66
|
-
if pred_index_mat.size(1) != self.k:
|
67
|
-
raise ValueError(f"Expected 'pred_index_mat' to hold {self.k} "
|
68
|
-
f"many indices for every entry "
|
69
|
-
f"(got {pred_index_mat.size(1)})")
|
70
|
-
|
71
|
-
# Compute a boolean matrix indicating if the k-th prediction is part of
|
72
|
-
# the ground-truth. We do this by flattening both prediction and
|
73
|
-
# target indices, and then determining overlaps via `torch.isin`.
|
50
|
+
) -> Tuple[Tensor, Tensor]:
|
51
|
+
# Compute a boolean matrix indicating if the `k`-th prediction is part
|
52
|
+
# of the ground-truth, as well as the number of ground-truths for every
|
53
|
+
# example. We do this by flattening both prediction and ground-truth
|
54
|
+
# indices, and then determining overlaps via `torch.isin`.
|
74
55
|
max_index = max( # type: ignore
|
75
56
|
pred_index_mat.max() if pred_index_mat.numel() > 0 else 0,
|
76
57
|
edge_label_index[1].max()
|
@@ -78,8 +59,8 @@ class LinkPredMetric(BaseMetric):
|
|
78
59
|
) + 1
|
79
60
|
arange = torch.arange(
|
80
61
|
start=0,
|
81
|
-
end=max_index * pred_index_mat.size(0),
|
82
|
-
step=max_index,
|
62
|
+
end=max_index * pred_index_mat.size(0), # type: ignore
|
63
|
+
step=max_index, # type: ignore
|
83
64
|
device=pred_index_mat.device,
|
84
65
|
).view(-1, 1)
|
85
66
|
flat_pred_index = (pred_index_mat + arange).view(-1)
|
@@ -88,7 +69,7 @@ class LinkPredMetric(BaseMetric):
|
|
88
69
|
pred_isin_mat = torch.isin(flat_pred_index, flat_y_index)
|
89
70
|
pred_isin_mat = pred_isin_mat.view(pred_index_mat.size())
|
90
71
|
|
91
|
-
# Compute the number of
|
72
|
+
# Compute the number of ground-truths per example:
|
92
73
|
y_count = scatter(
|
93
74
|
torch.ones_like(edge_label_index[0]),
|
94
75
|
edge_label_index[0],
|
@@ -97,11 +78,41 @@ class LinkPredMetric(BaseMetric):
|
|
97
78
|
reduce='sum',
|
98
79
|
)
|
99
80
|
|
100
|
-
|
81
|
+
return pred_isin_mat, y_count
|
101
82
|
|
83
|
+
def _update_from_prepared(
|
84
|
+
self,
|
85
|
+
pred_isin_mat: Tensor,
|
86
|
+
y_count: Tensor,
|
87
|
+
) -> None:
|
88
|
+
metric = self._compute(pred_isin_mat[:, :self.k], y_count)
|
102
89
|
self.accum += metric.sum()
|
103
90
|
self.total += (y_count > 0).sum()
|
104
91
|
|
92
|
+
def update(
|
93
|
+
self,
|
94
|
+
pred_index_mat: Tensor,
|
95
|
+
edge_label_index: Union[Tensor, Tuple[Tensor, Tensor]],
|
96
|
+
) -> None:
|
97
|
+
r"""Updates the state variables based on the current mini-batch
|
98
|
+
prediction.
|
99
|
+
|
100
|
+
:meth:`update` can be repeated multiple times to accumulate the results
|
101
|
+
of successive predictions, *e.g.*, inside a mini-batch training or
|
102
|
+
evaluation loop.
|
103
|
+
|
104
|
+
Args:
|
105
|
+
pred_index_mat (torch.Tensor): The top-:math:`k` predictions of
|
106
|
+
every example in the mini-batch with shape
|
107
|
+
:obj:`[batch_size, k]`.
|
108
|
+
edge_label_index (torch.Tensor): The ground-truth indices for every
|
109
|
+
example in the mini-batch, given in COO format of shape
|
110
|
+
:obj:`[2, num_ground_truth_indices]`.
|
111
|
+
"""
|
112
|
+
pred_isin_mat, y_count = self._prepare(pred_index_mat,
|
113
|
+
edge_label_index)
|
114
|
+
self._update_from_prepared(pred_isin_mat, y_count)
|
115
|
+
|
105
116
|
def compute(self) -> Tensor:
|
106
117
|
r"""Computes the final metric value."""
|
107
118
|
if self.total == 0:
|
@@ -133,6 +144,103 @@ class LinkPredMetric(BaseMetric):
|
|
133
144
|
return f'{self.__class__.__name__}(k={self.k})'
|
134
145
|
|
135
146
|
|
147
|
+
class LinkPredMetricCollection(torch.nn.ModuleDict):
|
148
|
+
r"""A collection of metrics to reduce and speed-up computation of link
|
149
|
+
prediction metrics.
|
150
|
+
|
151
|
+
.. code-block:: python
|
152
|
+
|
153
|
+
from torch_geometric.metrics import (
|
154
|
+
LinkPredMAP,
|
155
|
+
LinkPredMetricCollection,
|
156
|
+
LinkPredPrecision,
|
157
|
+
LinkPredRecall,
|
158
|
+
)
|
159
|
+
|
160
|
+
metrics = LinkPredMetricCollection([
|
161
|
+
LinkPredMAP(k=10),
|
162
|
+
LinkPredPrecision(k=100),
|
163
|
+
LinkPredRecall(k=50),
|
164
|
+
])
|
165
|
+
|
166
|
+
metrics.update(pred_index_mat, edge_label_index)
|
167
|
+
out = metrics.compute()
|
168
|
+
metrics.reset()
|
169
|
+
|
170
|
+
print(out)
|
171
|
+
>>> {'LinkPredMAP@10': tensor(0.375),
|
172
|
+
... 'LinkPredPrecision@100': tensor(0.127),
|
173
|
+
... 'LinkPredRecall@50': tensor(0.483)}
|
174
|
+
|
175
|
+
Args:
|
176
|
+
metrics: The link prediction metrics.
|
177
|
+
"""
|
178
|
+
def __init__(
|
179
|
+
self,
|
180
|
+
metrics: Union[
|
181
|
+
List[LinkPredMetric],
|
182
|
+
Dict[str, LinkPredMetric],
|
183
|
+
],
|
184
|
+
) -> None:
|
185
|
+
super().__init__()
|
186
|
+
|
187
|
+
if isinstance(metrics, (list, tuple)):
|
188
|
+
metrics = {
|
189
|
+
f'{metric.__class__.__name__}@{metric.k}': metric
|
190
|
+
for metric in metrics
|
191
|
+
}
|
192
|
+
assert len(metrics) > 0
|
193
|
+
assert isinstance(metrics, dict)
|
194
|
+
|
195
|
+
for name, metric in metrics.items():
|
196
|
+
self[name] = metric
|
197
|
+
|
198
|
+
@property
|
199
|
+
def max_k(self) -> int:
|
200
|
+
r"""The maximum number of top-:math:`k` predictions to evaluate
|
201
|
+
against.
|
202
|
+
"""
|
203
|
+
return max([metric.k for metric in self.values()])
|
204
|
+
|
205
|
+
def update( # type: ignore
|
206
|
+
self,
|
207
|
+
pred_index_mat: Tensor,
|
208
|
+
edge_label_index: Union[Tensor, Tuple[Tensor, Tensor]],
|
209
|
+
) -> None:
|
210
|
+
r"""Updates the state variables based on the current mini-batch
|
211
|
+
prediction.
|
212
|
+
|
213
|
+
:meth:`update` can be repeated multiple times to accumulate the results
|
214
|
+
of successive predictions, *e.g.*, inside a mini-batch training or
|
215
|
+
evaluation loop.
|
216
|
+
|
217
|
+
Args:
|
218
|
+
pred_index_mat (torch.Tensor): The top-:math:`k` predictions of
|
219
|
+
every example in the mini-batch with shape
|
220
|
+
:obj:`[batch_size, k]`.
|
221
|
+
edge_label_index (torch.Tensor): The ground-truth indices for every
|
222
|
+
example in the mini-batch, given in COO format of shape
|
223
|
+
:obj:`[2, num_ground_truth_indices]`.
|
224
|
+
"""
|
225
|
+
pred_isin_mat, y_count = LinkPredMetric._prepare(
|
226
|
+
pred_index_mat, edge_label_index)
|
227
|
+
for metric in self.values():
|
228
|
+
metric._update_from_prepared(pred_isin_mat, y_count)
|
229
|
+
|
230
|
+
def compute(self) -> Dict[str, Tensor]:
|
231
|
+
r"""Computes the final metric values."""
|
232
|
+
return {name: metric.compute() for name, metric in self.items()}
|
233
|
+
|
234
|
+
def reset(self) -> None:
|
235
|
+
r"""Reset metric state variables to their default value."""
|
236
|
+
for metric in self.values():
|
237
|
+
metric.reset()
|
238
|
+
|
239
|
+
def __repr__(self) -> str:
|
240
|
+
names = [f' {name}: {metric},\n' for name, metric in self.items()]
|
241
|
+
return f'{self.__class__.__name__}([\n{"".join(names)}])'
|
242
|
+
|
243
|
+
|
136
244
|
class LinkPredPrecision(LinkPredMetric):
|
137
245
|
r"""A link prediction metric to compute Precision @ :math:`k`.
|
138
246
|
|
@@ -182,8 +290,9 @@ class LinkPredMAP(LinkPredMetric):
|
|
182
290
|
higher_is_better: bool = True
|
183
291
|
|
184
292
|
def _compute(self, pred_isin_mat: Tensor, y_count: Tensor) -> Tensor:
|
185
|
-
|
186
|
-
|
293
|
+
device = pred_isin_mat.device
|
294
|
+
arange = torch.arange(1, pred_isin_mat.size(1) + 1, device=device)
|
295
|
+
cum_precision = pred_isin_mat.cumsum(dim=1) / arange
|
187
296
|
return ((cum_precision * pred_isin_mat).sum(dim=-1) /
|
188
297
|
y_count.clamp(min=1e-7, max=self.k))
|
189
298
|
|
@@ -210,9 +319,25 @@ class LinkPredNDCG(LinkPredMetric):
|
|
210
319
|
self.register_buffer('idcg', cumsum(multiplier))
|
211
320
|
|
212
321
|
def _compute(self, pred_isin_mat: Tensor, y_count: Tensor) -> Tensor:
|
213
|
-
|
322
|
+
multiplier = self.multiplier[:pred_isin_mat.size(1)].view(1, -1)
|
323
|
+
dcg = (pred_isin_mat * multiplier).sum(dim=-1)
|
214
324
|
idcg = self.idcg[y_count.clamp(max=self.k)]
|
215
325
|
|
216
326
|
out = dcg / idcg
|
217
327
|
out[out.isnan() | out.isinf()] = 0.0
|
218
328
|
return out
|
329
|
+
|
330
|
+
|
331
|
+
class LinkPredMRR(LinkPredMetric):
|
332
|
+
r"""A link prediction metric to compute the MRR @ :math:`k` (Mean
|
333
|
+
Reciprocal Rank).
|
334
|
+
|
335
|
+
Args:
|
336
|
+
k (int): The number of top-:math:`k` predictions to evaluate against.
|
337
|
+
"""
|
338
|
+
higher_is_better: bool = True
|
339
|
+
|
340
|
+
def _compute(self, pred_isin_mat: Tensor, y_count: Tensor) -> Tensor:
|
341
|
+
device = pred_isin_mat.device
|
342
|
+
arange = torch.arange(1, pred_isin_mat.size(1) + 1, device=device)
|
343
|
+
return (pred_isin_mat / arange).max(dim=-1)[0]
|
@@ -25,6 +25,7 @@ from .deep_sets import DeepSetsAggregation
|
|
25
25
|
from .set_transformer import SetTransformerAggregation
|
26
26
|
from .lcm import LCMAggregation
|
27
27
|
from .variance_preserving import VariancePreservingAggregation
|
28
|
+
from .patch_transformer import PatchTransformerAggregation
|
28
29
|
|
29
30
|
__all__ = classes = [
|
30
31
|
'Aggregation',
|
@@ -53,4 +54,5 @@ __all__ = classes = [
|
|
53
54
|
'SetTransformerAggregation',
|
54
55
|
'LCMAggregation',
|
55
56
|
'VariancePreservingAggregation',
|
57
|
+
'PatchTransformerAggregation',
|
56
58
|
]
|
@@ -65,8 +65,6 @@ class AttentionalAggregation(Aggregation):
|
|
65
65
|
ptr: Optional[Tensor] = None, dim_size: Optional[int] = None,
|
66
66
|
dim: int = -2) -> Tensor:
|
67
67
|
|
68
|
-
self.assert_two_dimensional_input(x, dim)
|
69
|
-
|
70
68
|
if self.gate_mlp is not None:
|
71
69
|
gate = self.gate_mlp(x, batch=index, batch_size=dim_size)
|
72
70
|
else:
|
torch_geometric/nn/aggr/base.py
CHANGED
@@ -25,7 +25,7 @@ class Aggregation(torch.nn.Module):
|
|
25
25
|
Notably, :obj:`index` does not have to be sorted (for most aggregation
|
26
26
|
operators):
|
27
27
|
|
28
|
-
.. code-block::
|
28
|
+
.. code-block:: python
|
29
29
|
|
30
30
|
# Feature matrix holding 10 elements with 64 features each:
|
31
31
|
x = torch.randn(10, 64)
|
@@ -39,7 +39,7 @@ class Aggregation(torch.nn.Module):
|
|
39
39
|
called :obj:`ptr`. Here, elements within the same set need to be grouped
|
40
40
|
together in the input, and :obj:`ptr` defines their boundaries:
|
41
41
|
|
42
|
-
.. code-block::
|
42
|
+
.. code-block:: python
|
43
43
|
|
44
44
|
# Feature matrix holding 10 elements with 64 features each:
|
45
45
|
x = torch.randn(10, 64)
|
@@ -94,11 +94,9 @@ class Aggregation(torch.nn.Module):
|
|
94
94
|
max_num_elements: (int, optional): The maximum number of elements
|
95
95
|
within a single aggregation group. (default: :obj:`None`)
|
96
96
|
"""
|
97
|
-
pass
|
98
97
|
|
99
98
|
def reset_parameters(self):
|
100
99
|
r"""Resets all learnable parameters of the module."""
|
101
|
-
pass
|
102
100
|
|
103
101
|
@disable_dynamic_shapes(required_args=['dim_size'])
|
104
102
|
def __call__(
|