pyg-nightly 2.6.0.dev20240511__py3-none-any.whl → 2.7.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- {pyg_nightly-2.6.0.dev20240511.dist-info → pyg_nightly-2.7.0.dev20250114.dist-info}/METADATA +30 -31
- {pyg_nightly-2.6.0.dev20240511.dist-info → pyg_nightly-2.7.0.dev20250114.dist-info}/RECORD +205 -181
- {pyg_nightly-2.6.0.dev20240511.dist-info → pyg_nightly-2.7.0.dev20250114.dist-info}/WHEEL +1 -1
- torch_geometric/__init__.py +26 -1
- torch_geometric/_compile.py +8 -1
- torch_geometric/_onnx.py +14 -0
- torch_geometric/config_mixin.py +113 -0
- torch_geometric/config_store.py +16 -14
- torch_geometric/data/__init__.py +24 -1
- torch_geometric/data/batch.py +2 -2
- torch_geometric/data/data.py +13 -8
- torch_geometric/data/database.py +15 -7
- torch_geometric/data/dataset.py +14 -6
- torch_geometric/data/feature_store.py +13 -22
- torch_geometric/data/graph_store.py +0 -4
- torch_geometric/data/hetero_data.py +4 -4
- torch_geometric/data/in_memory_dataset.py +2 -4
- torch_geometric/data/large_graph_indexer.py +677 -0
- torch_geometric/data/lightning/datamodule.py +4 -4
- torch_geometric/data/storage.py +15 -5
- torch_geometric/data/summary.py +14 -4
- torch_geometric/data/temporal.py +1 -2
- torch_geometric/datasets/__init__.py +11 -1
- torch_geometric/datasets/actor.py +9 -11
- torch_geometric/datasets/airfrans.py +15 -18
- torch_geometric/datasets/airports.py +10 -12
- torch_geometric/datasets/amazon.py +8 -11
- torch_geometric/datasets/amazon_book.py +9 -10
- torch_geometric/datasets/amazon_products.py +9 -10
- torch_geometric/datasets/aminer.py +8 -9
- torch_geometric/datasets/aqsol.py +10 -13
- torch_geometric/datasets/attributed_graph_dataset.py +10 -12
- torch_geometric/datasets/ba_multi_shapes.py +10 -12
- torch_geometric/datasets/ba_shapes.py +5 -6
- torch_geometric/datasets/bitcoin_otc.py +1 -1
- torch_geometric/datasets/brca_tgca.py +1 -1
- torch_geometric/datasets/dblp.py +2 -1
- torch_geometric/datasets/dbp15k.py +2 -2
- torch_geometric/datasets/fake.py +1 -3
- torch_geometric/datasets/flickr.py +2 -1
- torch_geometric/datasets/freebase.py +1 -1
- torch_geometric/datasets/gdelt_lite.py +3 -2
- torch_geometric/datasets/ged_dataset.py +3 -2
- torch_geometric/datasets/git_mol_dataset.py +263 -0
- torch_geometric/datasets/gnn_benchmark_dataset.py +6 -5
- torch_geometric/datasets/hgb_dataset.py +8 -8
- torch_geometric/datasets/imdb.py +2 -1
- torch_geometric/datasets/last_fm.py +2 -1
- torch_geometric/datasets/linkx_dataset.py +4 -3
- torch_geometric/datasets/lrgb.py +3 -5
- torch_geometric/datasets/malnet_tiny.py +4 -3
- torch_geometric/datasets/mnist_superpixels.py +2 -3
- torch_geometric/datasets/molecule_gpt_dataset.py +485 -0
- torch_geometric/datasets/molecule_net.py +7 -1
- torch_geometric/datasets/motif_generator/base.py +0 -1
- torch_geometric/datasets/neurograph.py +1 -3
- torch_geometric/datasets/ogb_mag.py +1 -1
- torch_geometric/datasets/opf.py +239 -0
- torch_geometric/datasets/ose_gvcs.py +1 -1
- torch_geometric/datasets/pascal_pf.py +1 -1
- torch_geometric/datasets/pcpnet_dataset.py +1 -1
- torch_geometric/datasets/pcqm4m.py +2 -1
- torch_geometric/datasets/ppi.py +1 -1
- torch_geometric/datasets/qm9.py +4 -3
- torch_geometric/datasets/reddit.py +2 -1
- torch_geometric/datasets/reddit2.py +2 -1
- torch_geometric/datasets/rel_link_pred_dataset.py +3 -3
- torch_geometric/datasets/s3dis.py +2 -2
- torch_geometric/datasets/shapenet.py +3 -3
- torch_geometric/datasets/shrec2016.py +2 -2
- torch_geometric/datasets/tag_dataset.py +350 -0
- torch_geometric/datasets/upfd.py +2 -1
- torch_geometric/datasets/web_qsp_dataset.py +246 -0
- torch_geometric/datasets/webkb.py +2 -2
- torch_geometric/datasets/wikics.py +1 -1
- torch_geometric/datasets/wikidata.py +3 -2
- torch_geometric/datasets/wikipedia_network.py +2 -2
- torch_geometric/datasets/word_net.py +2 -2
- torch_geometric/datasets/yelp.py +2 -1
- torch_geometric/datasets/zinc.py +1 -1
- torch_geometric/device.py +42 -0
- torch_geometric/distributed/local_feature_store.py +3 -2
- torch_geometric/distributed/local_graph_store.py +2 -1
- torch_geometric/distributed/partition.py +9 -8
- torch_geometric/edge_index.py +17 -8
- torch_geometric/explain/algorithm/base.py +0 -1
- torch_geometric/explain/algorithm/pg_explainer.py +1 -1
- torch_geometric/explain/explanation.py +2 -2
- torch_geometric/graphgym/checkpoint.py +2 -1
- torch_geometric/graphgym/logger.py +4 -4
- torch_geometric/graphgym/loss.py +1 -1
- torch_geometric/graphgym/utils/agg_runs.py +6 -6
- torch_geometric/index.py +20 -7
- torch_geometric/inspector.py +6 -2
- torch_geometric/io/fs.py +28 -2
- torch_geometric/io/npz.py +2 -1
- torch_geometric/io/off.py +2 -2
- torch_geometric/io/sdf.py +2 -2
- torch_geometric/io/tu.py +2 -3
- torch_geometric/loader/__init__.py +4 -0
- torch_geometric/loader/cluster.py +9 -3
- torch_geometric/loader/graph_saint.py +2 -1
- torch_geometric/loader/ibmb_loader.py +12 -4
- torch_geometric/loader/mixin.py +1 -1
- torch_geometric/loader/neighbor_loader.py +1 -1
- torch_geometric/loader/neighbor_sampler.py +2 -2
- torch_geometric/loader/prefetch.py +1 -1
- torch_geometric/loader/rag_loader.py +107 -0
- torch_geometric/loader/zip_loader.py +10 -0
- torch_geometric/metrics/__init__.py +11 -2
- torch_geometric/metrics/link_pred.py +159 -34
- torch_geometric/nn/aggr/__init__.py +2 -0
- torch_geometric/nn/aggr/attention.py +0 -2
- torch_geometric/nn/aggr/base.py +2 -4
- torch_geometric/nn/aggr/patch_transformer.py +143 -0
- torch_geometric/nn/aggr/set_transformer.py +1 -1
- torch_geometric/nn/attention/__init__.py +5 -1
- torch_geometric/nn/attention/qformer.py +71 -0
- torch_geometric/nn/conv/collect.jinja +6 -3
- torch_geometric/nn/conv/cugraph/base.py +0 -1
- torch_geometric/nn/conv/edge_conv.py +3 -2
- torch_geometric/nn/conv/gat_conv.py +35 -7
- torch_geometric/nn/conv/gatv2_conv.py +36 -6
- torch_geometric/nn/conv/general_conv.py +1 -1
- torch_geometric/nn/conv/gravnet_conv.py +3 -2
- torch_geometric/nn/conv/hetero_conv.py +3 -3
- torch_geometric/nn/conv/hgt_conv.py +1 -1
- torch_geometric/nn/conv/message_passing.py +100 -82
- torch_geometric/nn/conv/mixhop_conv.py +1 -1
- torch_geometric/nn/conv/rgcn_conv.py +2 -1
- torch_geometric/nn/conv/spline_conv.py +4 -4
- torch_geometric/nn/conv/x_conv.py +3 -2
- torch_geometric/nn/dense/linear.py +5 -4
- torch_geometric/nn/fx.py +3 -3
- torch_geometric/nn/model_hub.py +3 -1
- torch_geometric/nn/models/__init__.py +10 -2
- torch_geometric/nn/models/deep_graph_infomax.py +1 -2
- torch_geometric/nn/models/dimenet_utils.py +5 -7
- torch_geometric/nn/models/g_retriever.py +230 -0
- torch_geometric/nn/models/git_mol.py +336 -0
- torch_geometric/nn/models/glem.py +385 -0
- torch_geometric/nn/models/gnnff.py +0 -1
- torch_geometric/nn/models/graph_unet.py +12 -3
- torch_geometric/nn/models/jumping_knowledge.py +63 -4
- torch_geometric/nn/models/lightgcn.py +1 -1
- torch_geometric/nn/models/metapath2vec.py +3 -4
- torch_geometric/nn/models/molecule_gpt.py +222 -0
- torch_geometric/nn/models/node2vec.py +1 -2
- torch_geometric/nn/models/schnet.py +2 -1
- torch_geometric/nn/models/signed_gcn.py +3 -3
- torch_geometric/nn/module_dict.py +2 -2
- torch_geometric/nn/nlp/__init__.py +9 -0
- torch_geometric/nn/nlp/llm.py +322 -0
- torch_geometric/nn/nlp/sentence_transformer.py +134 -0
- torch_geometric/nn/nlp/vision_transformer.py +33 -0
- torch_geometric/nn/norm/batch_norm.py +1 -1
- torch_geometric/nn/parameter_dict.py +2 -2
- torch_geometric/nn/pool/__init__.py +7 -5
- torch_geometric/nn/pool/cluster_pool.py +145 -0
- torch_geometric/nn/pool/connect/base.py +0 -1
- torch_geometric/nn/pool/edge_pool.py +1 -1
- torch_geometric/nn/pool/graclus.py +4 -2
- torch_geometric/nn/pool/select/base.py +0 -1
- torch_geometric/nn/pool/voxel_grid.py +3 -2
- torch_geometric/nn/resolver.py +1 -1
- torch_geometric/nn/sequential.jinja +10 -23
- torch_geometric/nn/sequential.py +203 -77
- torch_geometric/nn/summary.py +1 -1
- torch_geometric/nn/to_hetero_with_bases_transformer.py +19 -19
- torch_geometric/profile/__init__.py +2 -0
- torch_geometric/profile/nvtx.py +66 -0
- torch_geometric/profile/profiler.py +24 -15
- torch_geometric/resolver.py +1 -1
- torch_geometric/sampler/base.py +34 -13
- torch_geometric/sampler/neighbor_sampler.py +11 -10
- torch_geometric/testing/decorators.py +17 -22
- torch_geometric/transforms/__init__.py +2 -0
- torch_geometric/transforms/add_metapaths.py +4 -4
- torch_geometric/transforms/add_positional_encoding.py +1 -1
- torch_geometric/transforms/delaunay.py +65 -14
- torch_geometric/transforms/face_to_edge.py +32 -3
- torch_geometric/transforms/gdc.py +7 -6
- torch_geometric/transforms/laplacian_lambda_max.py +2 -2
- torch_geometric/transforms/mask.py +5 -1
- torch_geometric/transforms/node_property_split.py +1 -2
- torch_geometric/transforms/pad.py +7 -6
- torch_geometric/transforms/random_link_split.py +1 -1
- torch_geometric/transforms/remove_self_loops.py +36 -0
- torch_geometric/transforms/svd_feature_reduction.py +1 -1
- torch_geometric/transforms/virtual_node.py +2 -1
- torch_geometric/typing.py +31 -5
- torch_geometric/utils/__init__.py +5 -1
- torch_geometric/utils/_negative_sampling.py +1 -1
- torch_geometric/utils/_normalize_edge_index.py +46 -0
- torch_geometric/utils/_scatter.py +37 -12
- torch_geometric/utils/_subgraph.py +4 -0
- torch_geometric/utils/_tree_decomposition.py +2 -2
- torch_geometric/utils/augmentation.py +1 -1
- torch_geometric/utils/convert.py +5 -5
- torch_geometric/utils/geodesic.py +24 -22
- torch_geometric/utils/hetero.py +1 -1
- torch_geometric/utils/map.py +1 -1
- torch_geometric/utils/smiles.py +66 -28
- torch_geometric/utils/sparse.py +25 -10
- torch_geometric/visualization/graph.py +3 -4
{pyg_nightly-2.6.0.dev20240511.dist-info → pyg_nightly-2.7.0.dev20250114.dist-info}/METADATA
RENAMED
@@ -1,15 +1,14 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.3
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.
|
3
|
+
Version: 2.7.0.dev20250114
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
7
|
-
Requires-Python: >=3.
|
7
|
+
Requires-Python: >=3.9
|
8
8
|
Description-Content-Type: text/markdown
|
9
9
|
Classifier: Development Status :: 5 - Production/Stable
|
10
10
|
Classifier: License :: OSI Approved :: MIT License
|
11
11
|
Classifier: Programming Language :: Python
|
12
|
-
Classifier: Programming Language :: Python :: 3.8
|
13
12
|
Classifier: Programming Language :: Python :: 3.9
|
14
13
|
Classifier: Programming Language :: Python :: 3.10
|
15
14
|
Classifier: Programming Language :: Python :: 3.11
|
@@ -22,8 +21,6 @@ Requires-Dist: numpy
|
|
22
21
|
Requires-Dist: psutil>=5.8.0
|
23
22
|
Requires-Dist: pyparsing
|
24
23
|
Requires-Dist: requests
|
25
|
-
Requires-Dist: scikit-learn
|
26
|
-
Requires-Dist: scipy
|
27
24
|
Requires-Dist: tqdm
|
28
25
|
Requires-Dist: matplotlib ; extra == "benchmark"
|
29
26
|
Requires-Dist: networkx ; extra == "benchmark"
|
@@ -34,13 +31,15 @@ Requires-Dist: ipython ; extra == "dev"
|
|
34
31
|
Requires-Dist: matplotlib-inline ; extra == "dev"
|
35
32
|
Requires-Dist: pre-commit ; extra == "dev"
|
36
33
|
Requires-Dist: torch_geometric[test] ; extra == "dev"
|
34
|
+
Requires-Dist: scipy ; extra == "full"
|
35
|
+
Requires-Dist: scikit-learn ; extra == "full"
|
37
36
|
Requires-Dist: ase ; extra == "full"
|
38
37
|
Requires-Dist: captum<0.7.0 ; extra == "full"
|
39
38
|
Requires-Dist: graphviz ; extra == "full"
|
40
39
|
Requires-Dist: h5py ; extra == "full"
|
41
40
|
Requires-Dist: matplotlib ; extra == "full"
|
42
41
|
Requires-Dist: networkx ; extra == "full"
|
43
|
-
Requires-Dist: numba ; extra == "full"
|
42
|
+
Requires-Dist: numba<0.60.0 ; extra == "full"
|
44
43
|
Requires-Dist: opt_einsum ; extra == "full"
|
45
44
|
Requires-Dist: pandas ; extra == "full"
|
46
45
|
Requires-Dist: pgmpy ; extra == "full"
|
@@ -56,7 +55,7 @@ Requires-Dist: torch_geometric[graphgym, modelhub] ; extra == "full"
|
|
56
55
|
Requires-Dist: torchmetrics ; extra == "full"
|
57
56
|
Requires-Dist: trimesh ; extra == "full"
|
58
57
|
Requires-Dist: protobuf<4.21 ; extra == "graphgym"
|
59
|
-
Requires-Dist: pytorch-lightning ; extra == "graphgym"
|
58
|
+
Requires-Dist: pytorch-lightning<2.3.0 ; extra == "graphgym"
|
60
59
|
Requires-Dist: yacs ; extra == "graphgym"
|
61
60
|
Requires-Dist: huggingface_hub ; extra == "modelhub"
|
62
61
|
Requires-Dist: onnx ; extra == "test"
|
@@ -185,7 +184,7 @@ More information about evaluating final model performance can be found in the co
|
|
185
184
|
In addition to the easy application of existing GNNs, PyG makes it simple to implement custom Graph Neural Networks (see [here](https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html) for the accompanying tutorial).
|
186
185
|
For example, this is all it takes to implement the [edge convolutional layer](https://arxiv.org/abs/1801.07829) from Wang *et al.*:
|
187
186
|
|
188
|
-
$$x_i^{\\prime} ~ = ~ \\max\_{j \\in \\mathcal{N}(i)} ~ \\textrm{MLP}\_{\\theta} \\left(
|
187
|
+
$$x_i^{\\prime} ~ = ~ \\max\_{j \\in \\mathcal{N}(i)} ~ \\textrm{MLP}\_{\\theta} \\left( [ ~ x_i, ~ x_j - x_i ~ ] \\right)$$
|
189
188
|
|
190
189
|
```python
|
191
190
|
import torch
|
@@ -252,7 +251,7 @@ These GNN layers can be stacked together to create Graph Neural Network models.
|
|
252
251
|
- **[EGConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.EGConv.html)** from Tailor *et al.*: [Adaptive Filters and Aggregator Fusion for Efficient Graph Convolutions](https://arxiv.org/abs/2104.01481) (GNNSys 2021) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/egc.py)\]
|
253
252
|
- **[GATv2Conv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GATv2Conv.html)** from Brody *et al.*: [How Attentive are Graph Attention Networks?](https://arxiv.org/abs/2105.14491) (ICLR 2022)
|
254
253
|
- **[TransformerConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.TransformerConv.html)** from Shi *et al.*: [Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification](https://arxiv.org/abs/2009.03509) (CoRR 2020) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/unimp_arxiv.py)\]
|
255
|
-
- **[SAGEConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/
|
254
|
+
- **[SAGEConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_train.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup_ppi.py)\]
|
256
255
|
- **[GraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GraphConv.html)** from, *e.g.*, Morris *et al.*: [Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks](https://arxiv.org/abs/1810.02244) (AAAI 2019)
|
257
256
|
- **[GatedGraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GatedGraphConv.html)** from Li *et al.*: [Gated Graph Sequence Neural Networks](https://arxiv.org/abs/1511.05493) (ICLR 2016)
|
258
257
|
- **[ResGatedGraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.ResGatedGraphConv.html)** from Bresson and Laurent: [Residual Gated Graph ConvNets](https://arxiv.org/abs/1711.07553) (CoRR 2017)
|
@@ -395,7 +394,7 @@ Such application is challenging since the entire graph, its associated features
|
|
395
394
|
Many state-of-the-art scalability approaches tackle this challenge by sampling neighborhoods for mini-batch training, graph clustering and partitioning, or by using simplified GNN models.
|
396
395
|
These approaches have been implemented in PyG, and can benefit from the above GNN layers, operators and models.
|
397
396
|
|
398
|
-
- **[NeighborLoader](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.NeighborLoader)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/
|
397
|
+
- **[NeighborLoader](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.NeighborLoader)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_train.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/to_hetero_mag.py)\]
|
399
398
|
- **[ClusterGCN](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.ClusterLoader)** from Chiang *et al.*: [Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks](https://arxiv.org/abs/1905.07953) (KDD 2019) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gcn_reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gcn_ppi.py)\]
|
400
399
|
- **[GraphSAINT](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.GraphSAINTSampler)** from Zeng *et al.*: [GraphSAINT: Graph Sampling Based Inductive Learning Method](https://arxiv.org/abs/1907.04931) (ICLR 2020) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_saint.py)\]
|
401
400
|
|
@@ -410,7 +409,7 @@ These approaches have been implemented in PyG, and can benefit from the above GN
|
|
410
409
|
|
411
410
|
## Installation
|
412
411
|
|
413
|
-
PyG is available for Python 3.
|
412
|
+
PyG is available for Python 3.9 to Python 3.12.
|
414
413
|
|
415
414
|
### Anaconda
|
416
415
|
|
@@ -447,39 +446,39 @@ We recommend to start with a minimal installation, and install additional depend
|
|
447
446
|
|
448
447
|
For ease of installation of these extensions, we provide `pip` wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
|
449
448
|
|
450
|
-
#### PyTorch 2.
|
449
|
+
#### PyTorch 2.5
|
451
450
|
|
452
|
-
To install the binaries for PyTorch 2.
|
451
|
+
To install the binaries for PyTorch 2.5.0, simply run
|
453
452
|
|
454
453
|
```
|
455
|
-
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.
|
454
|
+
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.5.0+${CUDA}.html
|
456
455
|
```
|
457
456
|
|
458
|
-
where `${CUDA}` should be replaced by either `cpu`, `cu118`, or `
|
457
|
+
where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu121`, or `cu124` depending on your PyTorch installation.
|
459
458
|
|
460
|
-
| | `cpu` | `cu118` | `cu121` |
|
461
|
-
| ----------- | ----- | ------- | ------- |
|
462
|
-
| **Linux** | ✅
|
463
|
-
| **Windows** | ✅
|
464
|
-
| **macOS** | ✅
|
459
|
+
| | `cpu` | `cu118` | `cu121` | `cu124` |
|
460
|
+
| ----------- | ----- | ------- | ------- | ------- |
|
461
|
+
| **Linux** | ✅ | ✅ | ✅ | ✅ |
|
462
|
+
| **Windows** | ✅ | ✅ | ✅ | ✅ |
|
463
|
+
| **macOS** | ✅ | | | |
|
465
464
|
|
466
|
-
#### PyTorch 2.
|
465
|
+
#### PyTorch 2.4
|
467
466
|
|
468
|
-
To install the binaries for PyTorch 2.
|
467
|
+
To install the binaries for PyTorch 2.4.0, simply run
|
469
468
|
|
470
469
|
```
|
471
|
-
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.
|
470
|
+
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.4.0+${CUDA}.html
|
472
471
|
```
|
473
472
|
|
474
|
-
where `${CUDA}` should be replaced by either `cpu`, `cu118`, or `
|
473
|
+
where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu121`, or `cu124` depending on your PyTorch installation.
|
475
474
|
|
476
|
-
| | `cpu` | `cu118` | `cu121` |
|
477
|
-
| ----------- | ----- | ------- | ------- |
|
478
|
-
| **Linux** | ✅
|
479
|
-
| **Windows** | ✅
|
480
|
-
| **macOS** | ✅
|
475
|
+
| | `cpu` | `cu118` | `cu121` | `cu124` |
|
476
|
+
| ----------- | ----- | ------- | ------- | ------- |
|
477
|
+
| **Linux** | ✅ | ✅ | ✅ | ✅ |
|
478
|
+
| **Windows** | ✅ | ✅ | ✅ | ✅ |
|
479
|
+
| **macOS** | ✅ | | | |
|
481
480
|
|
482
|
-
**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, PyTorch 1.12.0/1.12.1, PyTorch 1.13.0/1.13.1, PyTorch 2.0.0/2.0.1,
|
481
|
+
**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, PyTorch 1.12.0/1.12.1, PyTorch 1.13.0/1.13.1, PyTorch 2.0.0/2.0.1, PyTorch 2.1.0/2.1.1/2.1.2, PyTorch 2.2.0/2.2.1/2.2.2, and PyTorch 2.3.0/2.3.1 (following the same procedure).
|
483
482
|
**For older versions, you might need to explicitly specify the latest supported version number** or install via `pip install --no-index` in order to prevent a manual installation from source.
|
484
483
|
You can look up the latest supported version number [here](https://data.pyg.org/whl).
|
485
484
|
|