pyerualjetwork 4.3.8.dev15__py3-none-any.whl → 4.3.9b0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. pyerualjetwork/__init__.py +1 -1
  2. pyerualjetwork/activation_functions.py +2 -2
  3. pyerualjetwork/activation_functions_cuda.py +63 -114
  4. pyerualjetwork/data_operations_cuda.py +1 -1
  5. pyerualjetwork/model_operations.py +14 -14
  6. pyerualjetwork/model_operations_cuda.py +16 -17
  7. pyerualjetwork/plan.py +87 -268
  8. pyerualjetwork/plan_cuda.py +82 -276
  9. pyerualjetwork/planeat.py +12 -44
  10. pyerualjetwork/planeat_cuda.py +9 -45
  11. pyerualjetwork/visualizations.py +29 -26
  12. pyerualjetwork/visualizations_cuda.py +19 -20
  13. {pyerualjetwork-4.3.8.dev15.dist-info → pyerualjetwork-4.3.9b0.dist-info}/METADATA +2 -19
  14. pyerualjetwork-4.3.9b0.dist-info/RECORD +24 -0
  15. pyerualjetwork-4.3.9b0.dist-info/top_level.txt +1 -0
  16. pyerualjetwork-4.3.8.dev15.dist-info/RECORD +0 -45
  17. pyerualjetwork-4.3.8.dev15.dist-info/top_level.txt +0 -2
  18. pyerualjetwork_afterburner/__init__.py +0 -11
  19. pyerualjetwork_afterburner/activation_functions.py +0 -290
  20. pyerualjetwork_afterburner/activation_functions_cuda.py +0 -289
  21. pyerualjetwork_afterburner/data_operations.py +0 -406
  22. pyerualjetwork_afterburner/data_operations_cuda.py +0 -461
  23. pyerualjetwork_afterburner/help.py +0 -17
  24. pyerualjetwork_afterburner/loss_functions.py +0 -21
  25. pyerualjetwork_afterburner/loss_functions_cuda.py +0 -21
  26. pyerualjetwork_afterburner/memory_operations.py +0 -298
  27. pyerualjetwork_afterburner/metrics.py +0 -190
  28. pyerualjetwork_afterburner/metrics_cuda.py +0 -163
  29. pyerualjetwork_afterburner/model_operations.py +0 -408
  30. pyerualjetwork_afterburner/model_operations_cuda.py +0 -420
  31. pyerualjetwork_afterburner/parallel.py +0 -118
  32. pyerualjetwork_afterburner/plan.py +0 -432
  33. pyerualjetwork_afterburner/plan_cuda.py +0 -441
  34. pyerualjetwork_afterburner/planeat.py +0 -793
  35. pyerualjetwork_afterburner/planeat_cuda.py +0 -752
  36. pyerualjetwork_afterburner/ui.py +0 -22
  37. pyerualjetwork_afterburner/visualizations.py +0 -823
  38. pyerualjetwork_afterburner/visualizations_cuda.py +0 -825
  39. {pyerualjetwork-4.3.8.dev15.dist-info → pyerualjetwork-4.3.9b0.dist-info}/WHEEL +0 -0
@@ -1,461 +0,0 @@
1
- from tqdm import tqdm
2
- import cupy as cp
3
- from colorama import Fore, Style
4
- import math
5
- import numpy as np
6
-
7
- def encode_one_hot(y_train, y_test=None, summary=False):
8
- """
9
- Performs one-hot encoding on y_train and y_test data.
10
-
11
- Args:
12
- y_train (cupy.ndarray): Train label data.
13
- y_test (cupy.ndarray): Test label data. (optional).
14
- summary (bool): If True, prints the class-to-index mapping. Default: False
15
-
16
- Returns:
17
- tuple: One-hot encoded y_train and (if given) y_test.
18
- """
19
-
20
- from .memory_operations import optimize_labels, transfer_to_cpu
21
-
22
- y_train = optimize_labels(y_train, one_hot_encoded=False, cuda=True)
23
- y_test = optimize_labels(y_test, one_hot_encoded=False, cuda=True)
24
-
25
- y_train = transfer_to_cpu(y_train,dtype=y_train.dtype)
26
- y_test = transfer_to_cpu(y_test,dtype=y_test.dtype)
27
-
28
- classes = np.unique(y_train)
29
- class_count = len(classes)
30
-
31
- class_to_index = {cls: idx for idx, cls in enumerate(classes)}
32
-
33
- if summary:
34
- print("Class-to-index mapping:")
35
- for cls, idx in class_to_index.items():
36
- print(f" {idx}: {cls}")
37
-
38
- y_train_encoded = np.zeros((y_train.shape[0], class_count), dtype=y_train.dtype)
39
- for i, label in enumerate(y_train):
40
- y_train_encoded[i, class_to_index[label]] = 1
41
-
42
- if y_test is not None:
43
- y_test_encoded = np.zeros((y_test.shape[0], class_count), dtype=y_test.dtype)
44
- for i, label in enumerate(y_test):
45
- y_test_encoded[i, class_to_index[label]] = 1
46
- return cp.array(y_train_encoded, dtype=y_train.dtype), cp.array(y_test_encoded, dtype=y_test.dtype)
47
-
48
- return cp.array(y_train_encoded, dtype=y_train.dtype)
49
-
50
-
51
- def decode_one_hot(encoded_data):
52
- """
53
- Decodes one-hot encoded data to original categorical labels.
54
-
55
- Args:
56
- encoded_data (cupy.ndarray): One-hot encoded data with shape (n_samples, n_classes).
57
-
58
- Returns:
59
- cupy.ndarray: Decoded categorical labels with shape (n_samples,).
60
- """
61
-
62
- if encoded_data.ndim == 1: return cp.argmax(encoded_data)
63
- else: return cp.argmax(encoded_data, axis=1)
64
-
65
-
66
-
67
- def split(X, y, test_size, random_state=42, dtype=cp.float32, shuffle_in_cpu=False):
68
- """
69
- Splits the given X (features) and y (labels) data into training and testing subsets.
70
-
71
- Args:
72
- X (cupy.ndarray): Features data.
73
-
74
- y (cupy.ndarray): Labels data.
75
-
76
- test_size (float or int): Proportion or number of samples for the test subset.
77
-
78
- random_state (int or None): Seed for random state. Default: 42.
79
-
80
- dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
81
-
82
- shuffle_in_cpu (bool): If True, output will be same cpu's split function. Default: False. (Use this for direct comparison of cpu training.)
83
- Returns:
84
- tuple: x_train, x_test, y_train, y_test as ordered training and testing data subsets.
85
- """
86
- from .memory_operations import transfer_to_gpu, optimize_labels
87
-
88
- X = transfer_to_gpu(X, dtype=dtype)
89
- y = optimize_labels(y, one_hot_encoded=False, cuda=True)
90
-
91
- num_samples = X.shape[0]
92
-
93
- if isinstance(test_size, float):
94
- test_size = int(test_size * num_samples)
95
- elif isinstance(test_size, int):
96
- if test_size > num_samples:
97
- raise ValueError(
98
- "test_size cannot be larger than the number of samples.")
99
- else:
100
- raise ValueError("test_size should be float or int.")
101
-
102
- if shuffle_in_cpu:
103
- indices = np.arange(num_samples)
104
- np.random.seed(random_state)
105
- np.random.shuffle(indices)
106
- indices = cp.array(indices)
107
- else:
108
- if random_state is not None:
109
- cp.random.seed(random_state)
110
-
111
- indices = cp.arange(num_samples)
112
- cp.random.shuffle(indices)
113
-
114
- test_indices = indices[:test_size]
115
- train_indices = indices[test_size:]
116
-
117
- x_train, x_test = X[train_indices], X[test_indices]
118
- y_train, y_test = y[train_indices], y[test_indices]
119
- del X
120
- del y
121
- cp.cuda.MemoryPool().free_all_blocks()
122
- return x_train, x_test, y_train, y_test
123
-
124
-
125
- def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=cp.float32, shuffle_in_cpu=False):
126
- """
127
- Generates synthetic examples to balance classes to the specified number of examples per class.
128
-
129
- Arguments:
130
-
131
- x_train -- Input dataset (examples) - cupy array format
132
-
133
- y_train -- Class labels (one-hot encoded) - cupy array format
134
-
135
- target_samples_per_class -- Desired number of samples per class
136
-
137
- dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
138
-
139
- shuffle_in_cpu (bool): If True, output will be same cpu's manuel_balancer function. Default: False. (Use this for direct comparison of cpu training.)
140
-
141
- Returns:
142
- x_balanced -- Balanced input dataset (cupy array format)
143
- y_balanced -- Balanced class labels (one-hot encoded, cupy array format)
144
- """
145
- from .ui import loading_bars
146
- from .memory_operations import transfer_to_gpu
147
-
148
- bar_format = loading_bars()[0]
149
- x_train = transfer_to_gpu(x_train, dtype=dtype)
150
- y_train = transfer_to_gpu(y_train, dtype=y_train.dtype)
151
-
152
- classes = cp.arange(y_train.shape[1])
153
- class_count = len(classes)
154
-
155
- x_balanced = []
156
- y_balanced = []
157
-
158
- for class_label in tqdm(range(class_count),leave=False, ascii="▱▰",
159
- bar_format=bar_format,desc='Augmenting Data',ncols= 52):
160
- class_indices = cp.where(cp.argmax(y_train, axis=1) == class_label)[0]
161
- num_samples = len(class_indices)
162
-
163
- if num_samples > target_samples_per_class:
164
-
165
- if shuffle_in_cpu:
166
- selected_indices = np.random.choice(
167
- class_indices.get(), target_samples_per_class, replace=False)
168
- else:
169
- selected_indices = cp.random.choice(class_indices, target_samples_per_class, replace=False)
170
-
171
- x_balanced.append(x_train[selected_indices])
172
- y_balanced.append(y_train[selected_indices])
173
-
174
- else:
175
-
176
- x_balanced.append(x_train[class_indices])
177
- y_balanced.append(y_train[class_indices])
178
-
179
- if num_samples < target_samples_per_class:
180
-
181
- samples_to_add = target_samples_per_class - num_samples
182
- additional_samples = cp.zeros((samples_to_add, x_train.shape[1]), dtype=x_train.dtype)
183
- additional_labels = cp.zeros((samples_to_add, y_train.shape[1]), dtype=y_train.dtype)
184
-
185
- for i in range(samples_to_add):
186
-
187
- if shuffle_in_cpu:
188
- random_indices = np.random.choice(class_indices.get(), 2, replace=False)
189
- else:
190
- random_indices = cp.random.choice(class_indices, 2, replace=False)
191
-
192
- sample1 = x_train[random_indices[0]]
193
- sample2 = x_train[random_indices[1]]
194
-
195
- if shuffle_in_cpu:
196
- synthetic_sample = sample1 + (sample2 - sample1) * np.random.rand()
197
- else:
198
- synthetic_sample = sample1 + (sample2 - sample1) * cp.random.rand()
199
-
200
- additional_samples[i] = synthetic_sample
201
- additional_labels[i] = y_train[class_indices[0]]
202
-
203
-
204
- x_balanced.append(additional_samples)
205
- y_balanced.append(additional_labels)
206
-
207
- x_balanced = cp.vstack(x_balanced, dtype=x_train.dtype)
208
- y_balanced = cp.vstack(y_balanced, dtype=y_train.dtype)
209
-
210
- del x_train, y_train
211
- cp.cuda.MemoryPool().free_all_blocks()
212
-
213
- return x_balanced, y_balanced
214
-
215
-
216
- def auto_balancer(x_train, y_train, dtype=cp.float32, shuffle_in_cpu=False):
217
-
218
- """
219
- Function to balance the training data across different classes.
220
-
221
- Arguments:
222
- x_train (list): Input data for training.
223
-
224
- y_train (list): Labels corresponding to the input data. (one-hot encoded)
225
-
226
- dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
227
-
228
- shuffle_in_cpu (bool): If True, output will be same cpu's auto_balancer function. Default: False. (Use this for direct comparison of cpu training.)
229
- Returns:
230
- tuple: A tuple containing balanced input data and labels.
231
- """
232
- from .ui import loading_bars
233
- from .memory_operations import transfer_to_gpu
234
-
235
- x_train = transfer_to_gpu(x_train, dtype=dtype)
236
- y_train = transfer_to_gpu(y_train, dtype=y_train.dtype)
237
-
238
- bar_format = loading_bars()[0]
239
-
240
- classes = cp.arange(y_train.shape[1], dtype=y_train.dtype)
241
- class_count = len(classes)
242
-
243
-
244
- ClassIndices = {i: cp.where(y_train[:, i] == 1)[
245
- 0] for i in range(class_count)}
246
- classes = [len(ClassIndices[i]) for i in range(class_count)]
247
-
248
- if len(set(classes)) == 1:
249
- print(Fore.WHITE + "INFO: Data have already balanced. from: auto_balancer" + Style.RESET_ALL)
250
- return x_train, y_train
251
-
252
- MinCount = min(classes)
253
-
254
- BalancedIndices = []
255
- for i in tqdm(range(class_count),leave=False, ascii="▱▰",
256
- bar_format= bar_format, desc='Balancing Data',ncols=70):
257
- if len(ClassIndices[i]) > MinCount:
258
- if shuffle_in_cpu:
259
- SelectedIndices = np.random.choice(
260
- ClassIndices[i].get(), MinCount, replace=False)
261
- else:
262
- SelectedIndices = cp.random.choice(
263
- ClassIndices[i], MinCount, replace=False)
264
- else:
265
- SelectedIndices = ClassIndices[i]
266
- BalancedIndices.extend(SelectedIndices)
267
-
268
- BalancedInputs = [x_train[idx] for idx in BalancedIndices]
269
- BalancedLabels = [y_train[idx] for idx in BalancedIndices]
270
-
271
- if shuffle_in_cpu:
272
- permutation = np.random.permutation(len(BalancedInputs))
273
- else:
274
- permutation = cp.random.permutation(len(BalancedInputs))
275
-
276
- BalancedInputs = cp.array(BalancedInputs)[permutation]
277
- BalancedLabels = cp.array(BalancedLabels)[permutation]
278
-
279
- print(Fore.GREEN + "Data Succesfully Balanced from: " + str(len(x_train)
280
- ) + " to: " + str(len(BalancedInputs)) + ". from: auto_balancer " + Style.RESET_ALL)
281
- del x_train, y_train
282
- cp.cuda.MemoryPool().free_all_blocks()
283
-
284
- return BalancedInputs, BalancedLabels
285
-
286
-
287
- def synthetic_augmentation(x_train, y_train, dtype=cp.float32, shuffle_in_cpu=False):
288
- """
289
- Generates synthetic examples to balance classes with fewer examples using CuPy.
290
- Arguments:
291
-
292
- x_train -- Input dataset (examples) - cupy array format
293
-
294
- y_train -- Class labels (one-hot encoded) - cupy array format
295
-
296
- dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
297
-
298
- shuffle_in_cpu (bool): If True, output will be same cpu's synthetic_augmentation function. Default: False. (Use this for direct comparison of cpu training.)
299
-
300
- Returns:
301
- x_train_balanced -- Balanced input dataset (cupy array format)
302
- y_train_balanced -- Balanced class labels (one-hot encoded, cupy array format)
303
- """
304
- from .ui import loading_bars
305
- from .memory_operations import transfer_to_gpu
306
-
307
- x = transfer_to_gpu(x_train, dtype=dtype)
308
- y = transfer_to_gpu(y_train, dtype=y_train.dtype)
309
-
310
- bar_format = loading_bars()[0]
311
-
312
- classes = cp.arange(y_train.shape[1])
313
- class_count = len(classes)
314
- class_distribution = {i: 0 for i in range(class_count)}
315
-
316
- for label in y:
317
- class_distribution[cp.argmax(label).item()] += 1
318
-
319
- max_class_count = max(class_distribution.values())
320
- x_balanced = list(x)
321
- y_balanced = list(y)
322
-
323
- for class_label in tqdm(range(class_count), leave=False, ascii="▱▰",
324
- bar_format=bar_format, desc='Augmenting Data', ncols=52):
325
- class_indices = [i for i, label in enumerate(y) if cp.argmax(label) == class_label]
326
- num_samples = len(class_indices)
327
-
328
- if num_samples < max_class_count:
329
- while num_samples < max_class_count:
330
- if shuffle_in_cpu:
331
- random_indices = np.random.choice(
332
- class_indices, 2, replace=False)
333
- else:
334
- random_indices = cp.random.choice(
335
- cp.array(class_indices), 2, replace=False)
336
- sample1 = x[random_indices[0]]
337
- sample2 = x[random_indices[1]]
338
-
339
- if shuffle_in_cpu:
340
- synthetic_sample = sample1 + \
341
- (sample2 - sample1) * np.random.rand()
342
- else:
343
- synthetic_sample = sample1 + \
344
- (sample2 - sample1) * cp.random.rand()
345
-
346
- x_balanced.append(synthetic_sample)
347
- y_balanced.append(y[class_indices[0]])
348
- num_samples += 1
349
-
350
- x_balanced = cp.array(x_balanced)
351
- y_balanced = cp.array(y_balanced)
352
-
353
- del x_train, y_train, x, y
354
- cp.cuda.MemoryPool().free_all_blocks()
355
-
356
- return x_balanced, y_balanced
357
-
358
- def standard_scaler(x_train=None, x_test=None, scaler_params=None, dtype=cp.float32):
359
- """
360
- Standardizes training and test datasets. x_test may be None.
361
-
362
- Args:
363
- x_train: cupy.ndarray
364
-
365
- x_test: cupy.ndarray (optional)
366
-
367
- scaler_params (optional for using model)
368
-
369
- dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
370
-
371
- Returns:
372
- list:
373
- Scaler parameters: mean and std
374
- tuple
375
- Standardized training and test datasets
376
- """
377
- if x_train is not None and scaler_params is None and x_test is not None:
378
- x_train = x_train.astype(dtype, copy=False)
379
- x_test = x_test.astype(dtype, copy=False)
380
-
381
- mean = cp.mean(x_train, axis=0)
382
- std = cp.std(x_train, axis=0)
383
-
384
- train_data_scaled = (x_train - mean) / std
385
- test_data_scaled = (x_test - mean) / std
386
-
387
- train_data_scaled = cp.nan_to_num(train_data_scaled, nan=0)
388
- test_data_scaled = cp.nan_to_num(test_data_scaled, nan=0)
389
-
390
- scaler_params = [mean, std]
391
-
392
- return scaler_params, train_data_scaled, test_data_scaled
393
-
394
- if scaler_params is None and x_train is None and x_test is not None:
395
- return x_test.astype(dtype, copy=False) # sample data not scaled
396
-
397
- if scaler_params is not None:
398
- x_test = x_test.astype(dtype, copy=False)
399
- scaled_data = (x_test - scaler_params[0]) / scaler_params[1]
400
- scaled_data = cp.nan_to_num(scaled_data, nan=0)
401
-
402
- return scaled_data # sample data scaled
403
-
404
-
405
- def normalization(
406
- Input, # num: Input data to be normalized.
407
- dtype=cp.float32
408
- ):
409
- """
410
- Normalizes the input data using maximum absolute scaling.
411
-
412
- Args:
413
- Input (num): Input data to be normalized.
414
-
415
- dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
416
-
417
- Returns:
418
- (num) Scaled input data after normalization.
419
- """
420
-
421
- MaxAbs = cp.max(cp.abs(Input.astype(dtype, copy=False)))
422
- return (Input / MaxAbs)
423
-
424
- def find_closest_factors(a):
425
-
426
- root = int(math.sqrt(a))
427
-
428
- for i in range(root, 0, -1):
429
- if a % i == 0:
430
- j = a // i
431
- return i, j
432
-
433
- def batcher(x_test, y_test, batch_size=1):
434
-
435
- if batch_size == 1:
436
- return x_test, y_test
437
-
438
- y_labels = cp.argmax(y_test, axis=1)
439
-
440
- unique_labels = cp.unique(y_labels)
441
- total_samples = sum(
442
- int(cp.sum(y_labels == class_label) * batch_size) for class_label in unique_labels
443
- )
444
-
445
- sampled_x = cp.empty((total_samples, x_test.shape[1]), dtype=x_test.dtype)
446
- sampled_y = cp.empty((total_samples, y_test.shape[1]), dtype=y_test.dtype)
447
-
448
- offset = 0
449
- for class_label in unique_labels:
450
- class_indices = cp.where(y_labels == class_label)[0]
451
-
452
- num_samples = int(len(class_indices) * batch_size)
453
-
454
- sampled_indices = cp.random.choice(class_indices, num_samples, replace=False)
455
-
456
- sampled_x[offset:offset + num_samples] = x_test[sampled_indices]
457
- sampled_y[offset:offset + num_samples] = y_test[sampled_indices]
458
-
459
- offset += num_samples
460
-
461
- return sampled_x, sampled_y
@@ -1,17 +0,0 @@
1
- from activation_functions import all_activations
2
-
3
-
4
- def activation_potentiation():
5
-
6
- activations_list = all_activations()
7
-
8
- print('All available activations: ', activations_list, "\n\nYOU CAN COMBINE EVERY ACTIVATION. EXAMPLE: ['linear', 'tanh'] or ['waveakt', 'linear', 'sine'].")
9
-
10
- return activations_list
11
-
12
- def docs_and_examples():
13
-
14
- print('PLAN document: https://github.com/HCB06/Anaplan/tree/main/Welcome_to_PLAN\n')
15
- print('PLAN examples: https://github.com/HCB06/Anaplan/tree/main/Welcome_to_Anaplan/ExampleCodes\n')
16
- print('PLANEAT examples: https://github.com/HCB06/Anaplan/tree/main/Welcome_to_Anaplan/ExampleCodes/PLANEAT\n')
17
- print('Anaplan document and examples: https://github.com/HCB06/Anaplan/tree/main/Welcome_to_Anaplan')
@@ -1,21 +0,0 @@
1
-
2
- import numpy as np
3
-
4
- def categorical_crossentropy(y_true_batch, y_pred_batch):
5
- epsilon = 1e-7
6
- y_pred_batch = np.clip(y_pred_batch, epsilon, 1. - epsilon)
7
-
8
- losses = -np.sum(y_true_batch * np.log(y_pred_batch), axis=1)
9
-
10
- mean_loss = np.mean(losses)
11
- return mean_loss
12
-
13
-
14
- def binary_crossentropy(y_true_batch, y_pred_batch):
15
- epsilon = 1e-7
16
- y_pred_batch = np.clip(y_pred_batch, epsilon, 1. - epsilon)
17
-
18
- losses = -np.mean(y_true_batch * np.log(y_pred_batch) + (1 - y_true_batch) * np.log(1 - y_pred_batch), axis=1)
19
-
20
- mean_loss = np.mean(losses)
21
- return mean_loss
@@ -1,21 +0,0 @@
1
-
2
- import cupy as cp
3
-
4
- def categorical_crossentropy(y_true_batch, y_pred_batch):
5
- epsilon = 1e-7
6
- y_pred_batch = cp.clip(y_pred_batch, epsilon, 1. - epsilon)
7
-
8
- losses = -cp.sum(y_true_batch * cp.log(y_pred_batch), axis=1)
9
-
10
- mean_loss = cp.mean(losses)
11
- return mean_loss
12
-
13
-
14
- def binary_crossentropy(y_true_batch, y_pred_batch):
15
- epsilon = 1e-7
16
- y_pred_batch = cp.clip(y_pred_batch, epsilon, 1. - epsilon)
17
-
18
- losses = -cp.mean(y_true_batch * cp.log(y_pred_batch) + (1 - y_true_batch) * cp.log(1 - y_pred_batch), axis=1)
19
-
20
- mean_loss = cp.mean(losses)
21
- return mean_loss