pyerualjetwork 4.3.8.dev15__py3-none-any.whl → 4.3.9b0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. pyerualjetwork/__init__.py +1 -1
  2. pyerualjetwork/activation_functions.py +2 -2
  3. pyerualjetwork/activation_functions_cuda.py +63 -114
  4. pyerualjetwork/data_operations_cuda.py +1 -1
  5. pyerualjetwork/model_operations.py +14 -14
  6. pyerualjetwork/model_operations_cuda.py +16 -17
  7. pyerualjetwork/plan.py +87 -268
  8. pyerualjetwork/plan_cuda.py +82 -276
  9. pyerualjetwork/planeat.py +12 -44
  10. pyerualjetwork/planeat_cuda.py +9 -45
  11. pyerualjetwork/visualizations.py +29 -26
  12. pyerualjetwork/visualizations_cuda.py +19 -20
  13. {pyerualjetwork-4.3.8.dev15.dist-info → pyerualjetwork-4.3.9b0.dist-info}/METADATA +2 -19
  14. pyerualjetwork-4.3.9b0.dist-info/RECORD +24 -0
  15. pyerualjetwork-4.3.9b0.dist-info/top_level.txt +1 -0
  16. pyerualjetwork-4.3.8.dev15.dist-info/RECORD +0 -45
  17. pyerualjetwork-4.3.8.dev15.dist-info/top_level.txt +0 -2
  18. pyerualjetwork_afterburner/__init__.py +0 -11
  19. pyerualjetwork_afterburner/activation_functions.py +0 -290
  20. pyerualjetwork_afterburner/activation_functions_cuda.py +0 -289
  21. pyerualjetwork_afterburner/data_operations.py +0 -406
  22. pyerualjetwork_afterburner/data_operations_cuda.py +0 -461
  23. pyerualjetwork_afterburner/help.py +0 -17
  24. pyerualjetwork_afterburner/loss_functions.py +0 -21
  25. pyerualjetwork_afterburner/loss_functions_cuda.py +0 -21
  26. pyerualjetwork_afterburner/memory_operations.py +0 -298
  27. pyerualjetwork_afterburner/metrics.py +0 -190
  28. pyerualjetwork_afterburner/metrics_cuda.py +0 -163
  29. pyerualjetwork_afterburner/model_operations.py +0 -408
  30. pyerualjetwork_afterburner/model_operations_cuda.py +0 -420
  31. pyerualjetwork_afterburner/parallel.py +0 -118
  32. pyerualjetwork_afterburner/plan.py +0 -432
  33. pyerualjetwork_afterburner/plan_cuda.py +0 -441
  34. pyerualjetwork_afterburner/planeat.py +0 -793
  35. pyerualjetwork_afterburner/planeat_cuda.py +0 -752
  36. pyerualjetwork_afterburner/ui.py +0 -22
  37. pyerualjetwork_afterburner/visualizations.py +0 -823
  38. pyerualjetwork_afterburner/visualizations_cuda.py +0 -825
  39. {pyerualjetwork-4.3.8.dev15.dist-info → pyerualjetwork-4.3.9b0.dist-info}/WHEEL +0 -0
@@ -19,7 +19,6 @@ import math
19
19
 
20
20
 
21
21
  ### LIBRARY IMPORTS ###
22
- from .plan_cuda import feed_forward
23
22
  from .data_operations_cuda import normalization
24
23
  from .ui import loading_bars, initialize_loading_bar
25
24
  from .activation_functions_cuda import apply_activation, all_activations
@@ -399,7 +398,7 @@ def evolver(weights,
399
398
  return weights, activation_potentiations
400
399
 
401
400
 
402
- def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dtype=cp.float32):
401
+ def evaluate(x_population, weights, activation_potentiations):
403
402
  """
404
403
  Evaluates the performance of a population of genomes, applying different activation functions
405
404
  and weights depending on whether reinforcement learning mode is enabled or not.
@@ -414,64 +413,29 @@ def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dty
414
413
  activation_potentiations (list or str): A list where each entry represents an activation function
415
414
  or a potentiation strategy applied to each genome. If only one
416
415
  activation function is used, this can be a single string.
417
-
418
- rl_mode (bool, optional): If True, reinforcement learning mode is activated, this accepts x_population is a single genome. (Also weights and activation_potentations a single genomes part.)
419
- Default is False.
420
-
421
-
422
- dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
423
-
424
416
  Returns:
425
417
  list: A list of outputs corresponding to each genome in the population after applying the respective
426
418
  activation function and weights.
427
419
 
428
- Notes:
429
- - If `rl_mode` is True:
430
- - Accepts x_population is a single genom
431
- - The inputs are flattened, and the activation function is applied across the single genom.
432
-
433
- - If `rl_mode` is False:
434
- - Accepts x_population is a list of genomes
435
- - Each genome is processed individually, and the results are stored in the `outputs` list.
436
-
437
- - `feed_forward()` function is the core function that processes the input with the given weights and activation function.
438
-
439
420
  Example:
440
421
  ```python
441
- outputs = evaluate(x_population, weights, activation_potentiations, rl_mode=False)
422
+ outputs = evaluate(x_population, weights, activation_potentiations)
442
423
  ```
443
424
 
444
425
  - The function returns a list of outputs after processing the population, where each element corresponds to
445
426
  the output for each genome in `x_population`.
446
427
  """
447
-
448
- ### IF RL_MODE IS TRUE, A SINGLE GENOME IS ASSUMED AS INPUT, A FEEDFORWARD PREDICTION IS MADE, AND THE OUTPUT(NPARRAY) IS RETURNED:
449
-
450
- ### IF RL_MODE IS FALSE, PREDICTIONS ARE MADE FOR ALL GENOMES IN THE GROUP USING THEIR CORRESPONDING INDEXED INPUTS AND DATA.
451
428
  ### THE OUTPUTS ARE RETURNED AS A PYTHON LIST, WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
452
429
 
453
- if rl_mode == True:
454
- Input = cp.array(x_population, dtype=dtype, copy=False)
455
- Input = Input.ravel()
456
-
457
- if isinstance(activation_potentiations, str):
458
- activation_potentiations = [activation_potentiations]
459
-
460
- outputs = feed_forward(Input=Input, is_training=False, activation_potentiation=activation_potentiations, w=weights)
461
-
430
+ if isinstance(activation_potentiations, str):
431
+ activation_potentiations = [activation_potentiations]
462
432
  else:
463
- outputs = [0] * len(x_population)
464
- for i, genome in enumerate(x_population):
433
+ activation_potentiations = [item if isinstance(item, list) else [item] for item in activation_potentiations]
465
434
 
466
- Input = cp.array(genome)
467
- Input = Input.ravel()
435
+ x_population = apply_activation(x_population, activation_potentiations)
436
+ result = x_population @ weights.T
468
437
 
469
- if isinstance(activation_potentiations[i], str):
470
- activation_potentiations[i] = [activation_potentiations[i]]
471
-
472
- outputs[i] = feed_forward(Input=Input, is_training=False, activation_potentiation=activation_potentiations[i], w=weights[i])
473
-
474
- return outputs
438
+ return result
475
439
 
476
440
 
477
441
  def cross_over(first_parent_W,
@@ -757,7 +721,7 @@ def mutation(weight,
757
721
  max_threshold = len(activations)
758
722
 
759
723
  new_threshold = threshold
760
-
724
+
761
725
  except_this = ['spiral', 'circular']
762
726
  all_acts = [item for item in all_activations() if item not in except_this] # SPIRAL AND CIRCULAR ACTIVATION DISCARDED
763
727
 
@@ -323,7 +323,8 @@ def draw_activations(x_train, activation):
323
323
  except:
324
324
  print('\rWARNING: error in drawing some activation.', end='')
325
325
  return x_train
326
-
326
+
327
+
327
328
  def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation):
328
329
 
329
330
  from .metrics import metrics, confusion_matrix, roc_curve
@@ -447,8 +448,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
447
448
  axs[1,1].set_title('Decision Boundary')
448
449
 
449
450
  except Exception as e:
450
- # Hata meydana geldiğinde yapılacak işlemler
451
- print(f"Hata oluştu: {e}")
451
+ print(f"Error: {e}")
452
452
 
453
453
  plt.show()
454
454
 
@@ -614,10 +614,10 @@ def update_neuron_history(LTPW, ax1, row, col, class_count, artist5, fig1, acc=F
614
614
 
615
615
  fig1.suptitle(suptitle_info, fontsize=16)
616
616
 
617
-
617
+ """ DISABLED
618
618
  def initialize_visualization_for_fit(val, show_training, neurons_history, x_train, y_train):
619
- """Initializes the visualization setup based on the parameters."""
620
- from data_operations import find_closest_factors
619
+
620
+ from .data_operations import find_closest_factors
621
621
  visualization_objects = {}
622
622
 
623
623
  if show_training or neurons_history:
@@ -649,32 +649,33 @@ def initialize_visualization_for_fit(val, show_training, neurons_history, x_trai
649
649
  })
650
650
 
651
651
  return visualization_objects
652
-
652
+ """
653
653
 
654
-
654
+ """ DISABLED
655
655
  def update_neural_web_for_fit(W, ax, G, artist):
656
- """
657
- The function `update_neural_web_for_fit` updates a neural web visualization for fitting.
658
- """
656
+
659
657
  art5_1, art5_2, art5_3 = draw_neural_web(W=W, ax=ax, G=G, return_objs=True)
660
658
  art5_list = [art5_1] + [art5_2] + list(art5_3.values())
661
659
  artist.append(art5_list)
662
-
663
-
660
+ """
661
+
662
+ """ DISABLED
664
663
  def update_weight_visualization_for_fit(ax, LTPW, artist2):
665
- """Updates the weight visualization plot."""
664
+
666
665
  art2 = ax.imshow(LTPW, interpolation='sinc', cmap='viridis')
667
666
  artist2.append([art2])
667
+ """
668
668
 
669
-
669
+ """ DISABLED
670
670
  def update_decision_boundary_for_fit(ax, x_val, y_val, activation_potentiation, LTPW, artist1):
671
- """Updates the decision boundary visualization."""
671
+
672
672
  art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activation_potentiation, LTPW, artist=artist1, ax=ax)
673
673
  artist1.append([*art1_1.collections, art1_2])
674
+ """
674
675
 
675
-
676
+ """ DISABLED
676
677
  def update_validation_history_for_fit(ax, val_list, artist3):
677
- """Updates the validation accuracy history plot."""
678
+
678
679
  period = list(range(1, len(val_list) + 1))
679
680
  art3 = ax.plot(
680
681
  period,
@@ -691,20 +692,22 @@ def update_validation_history_for_fit(ax, val_list, artist3):
691
692
  ax.set_ylabel('Validation Accuracy')
692
693
  ax.set_ylim([0, 1])
693
694
  artist3.append(art3)
694
-
695
-
695
+ """
696
+
697
+ """ DISABLED
696
698
  def display_visualization_for_fit(fig, artist_list, interval):
697
- """Displays the animation for the given artist list."""
699
+
698
700
  ani = ArtistAnimation(fig, artist_list, interval=interval, blit=True)
699
701
  return ani
700
-
702
+ """
703
+
701
704
  def show():
702
705
  plt.tight_layout()
703
706
  plt.show()
704
707
 
705
708
  def initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train):
706
- """Initialize all visualization components"""
707
- from data_operations import find_closest_factors
709
+
710
+ from .data_operations import find_closest_factors
708
711
  viz_objects = {}
709
712
 
710
713
  if show_history:
@@ -745,7 +748,7 @@ def initialize_visualization_for_learner(show_history, neurons_history, neural_w
745
748
  return viz_objects
746
749
 
747
750
  def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_acc_per_depth_list, x_train, final_activations):
748
- """Update history visualization plots"""
751
+
749
752
  if 'history' not in viz_objects:
750
753
  return
751
754
 
@@ -772,7 +775,7 @@ def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_ac
772
775
  hist['artist3'].append(art3)
773
776
 
774
777
  def display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, test_loss, y_train, interval):
775
- """Display all final visualizations"""
778
+
776
779
  if 'history' in viz_objects:
777
780
  hist = viz_objects['history']
778
781
  for _ in range(30):
@@ -448,7 +448,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
448
448
 
449
449
  plt.show()
450
450
 
451
-
451
+
452
452
  def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=None):
453
453
 
454
454
  from .model_operations_cuda import predict_model_ram
@@ -583,9 +583,8 @@ def update_neuron_history(LTPW, ax1, row, col, class_count, artist5, fig1, acc=F
583
583
 
584
584
  fig1.suptitle(suptitle_info, fontsize=16)
585
585
 
586
-
586
+ """ DISABLED
587
587
  def initialize_visualization_for_fit(val, show_training, neurons_history, x_train, y_train):
588
- """Initializes the visualization setup based on the parameters."""
589
588
  from .data_operations_cuda import find_closest_factors
590
589
  visualization_objects = {}
591
590
 
@@ -618,33 +617,34 @@ def initialize_visualization_for_fit(val, show_training, neurons_history, x_trai
618
617
  })
619
618
 
620
619
  return visualization_objects
620
+ """
621
+
621
622
 
622
-
623
+ """ DISABLED
623
624
  def update_weight_visualization_for_fit(ax, LTPW, artist2):
624
- """Updates the weight visualization plot."""
625
625
  art2 = ax.imshow(LTPW.get(), interpolation='sinc', cmap='viridis')
626
626
  artist2.append([art2])
627
+ """
627
628
 
628
629
  def show():
629
630
  plt.tight_layout()
630
631
  plt.show()
631
632
 
633
+ """ DISABLED
632
634
  def update_neural_web_for_fit(W, ax, G, artist):
633
- """
634
- The function `update_neural_web_for_fit` updates a neural web visualization for fitting.
635
- """
636
635
  art5_1, art5_2, art5_3 = draw_neural_web(W=W, ax=ax, G=G, return_objs=True)
637
636
  art5_list = [art5_1] + [art5_2] + list(art5_3.values())
638
637
  artist.append(art5_list)
639
-
638
+ """
639
+
640
+ """ DISABLED
640
641
  def update_decision_boundary_for_fit(ax, x_val, y_val, activation_potentiation, LTPW, artist1):
641
- """Updates the decision boundary visualization."""
642
642
  art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activation_potentiation, LTPW, artist=artist1, ax=ax)
643
643
  artist1.append([*art1_1.collections, art1_2])
644
+ """
644
645
 
645
-
646
+ """ DISABLED
646
647
  def update_validation_history_for_fit(ax, val_list, artist3):
647
- """Updates the validation accuracy history plot."""
648
648
  val_list_cpu = []
649
649
  for i in range(len(val_list)):
650
650
  val_list_cpu.append(val_list[i].get())
@@ -664,13 +664,12 @@ def update_validation_history_for_fit(ax, val_list, artist3):
664
664
  ax.set_ylabel('Validation Accuracy')
665
665
  ax.set_ylim([0, 1])
666
666
  artist3.append(art3)
667
-
668
-
667
+ """
668
+ """ DISABLED
669
669
  def display_visualization_for_fit(fig, artist_list, interval):
670
- """Displays the animation for the given artist list."""
671
670
  ani = ArtistAnimation(fig, artist_list, interval=interval, blit=True)
672
671
  return ani
673
-
672
+ """
674
673
  def update_neuron_history_for_learner(LTPW, ax1, row, col, class_count, artist5, data, fig1, acc=False, loss=False):
675
674
 
676
675
  for j in range(len(class_count)):
@@ -699,7 +698,7 @@ def update_neuron_history_for_learner(LTPW, ax1, row, col, class_count, artist5,
699
698
  return artist5
700
699
 
701
700
  def initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train):
702
- """Initialize all visualization components"""
701
+
703
702
  from .data_operations_cuda import find_closest_factors
704
703
  viz_objects = {}
705
704
 
@@ -741,7 +740,7 @@ def initialize_visualization_for_learner(show_history, neurons_history, neural_w
741
740
  return viz_objects
742
741
 
743
742
  def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_acc_per_depth_list, x_train, final_activations):
744
- """Update history visualization plots"""
743
+
745
744
  if 'history' not in viz_objects:
746
745
  return
747
746
 
@@ -770,11 +769,11 @@ def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_ac
770
769
  translated_x_train += draw_activations(x, activation)
771
770
 
772
771
  art3 = hist['ax'][2].plot(x.get(), translated_x_train.get(), color='b', markersize=6, linewidth=2)
773
- hist['ax'][2].set_title('Potentiation Shape Over Gen')
772
+ hist['ax'][2].set_title('Activation Shape Over Gen')
774
773
  hist['artist3'].append(art3)
775
774
 
776
775
  def display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, test_loss, y_train, interval):
777
- """Display all final visualizations"""
776
+
778
777
  if 'history' in viz_objects:
779
778
  hist = viz_objects['history']
780
779
  for _ in range(30):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.8.dev15
3
+ Version: 4.3.9b0
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -25,8 +25,6 @@ GitHub Page: https://github.com/HCB06/PyerualJetwork
25
25
  YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7HbsBpCx2VTJ4SK9wcPyse-EHw
26
26
 
27
27
  pip install pyerualjetwork
28
-
29
- 'use this if your data small or memory management is a problem :'
30
28
 
31
29
  from pyerualjetwork import plan
32
30
  from pyerualjetwork import planeat
@@ -38,26 +36,11 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
38
36
  from pyerualjetwork import data_operations_cuda
39
37
  from pyerualjetwork import model_operations_cuda
40
38
 
41
- 'use this if your data large or memory management is not a problem : _afterburner package (afterburner package comes with powerful paralellism,
42
- afterburner with cuda modules offers super-fast training but some memory managemant features and visualization features discarded.
43
- Specially designed for LLM training and other massive model training)'
44
-
45
- from pyerualjetwork_afterburner import plan
46
- from pyerualjetwork_afterburner import planeat
47
- from pyerualjetwork_afterburner import data_operations
48
- from pyerualjetwork_afterburner import model_operations
49
-
50
- from pyerualjetwork_afterburner import plan_cuda
51
- from pyerualjetwork_afterburner import planeat_cuda
52
- from pyerualjetwork_afterburner import data_operations_cuda
53
- from pyerualjetwork_afterburner import model_operations_cuda
54
-
55
39
  Optimized for Visual Studio Code
56
40
 
57
41
  requires=[
58
42
  'scipy==1.13.1',
59
43
  'tqdm==4.66.4',
60
- 'seaborn==0.13.2',
61
44
  'pandas==2.2.2',
62
45
  'networkx==3.3',
63
46
  'numpy==1.26.4',
@@ -67,7 +50,7 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
67
50
  'psutil==6.1.1'
68
51
  ]
69
52
 
70
- matplotlib, seaborn, networkx (optional).
53
+ matplotlib, networkx (optional).
71
54
 
72
55
  ##############################
73
56
 
@@ -0,0 +1,24 @@
1
+ pyerualjetwork/__init__.py,sha256=mDFCFvWAMM7y9Es2Aopu_-rSQcBNfw0hhrdFX9xyCiw,641
2
+ pyerualjetwork/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
3
+ pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
4
+ pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
5
+ pyerualjetwork/data_operations_cuda.py,sha256=ZcjmLXE1-HVwedextYdJZ1rgrns1OfSekzFpr1a9m6o,17625
6
+ pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
7
+ pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
8
+ pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
9
+ pyerualjetwork/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
10
+ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
11
+ pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
+ pyerualjetwork/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
13
+ pyerualjetwork/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
14
+ pyerualjetwork/plan.py,sha256=rd6BOj6xU7m-nQgLQ0tH5oY5a78tTwW5spsX4niFUKU,23362
15
+ pyerualjetwork/plan_cuda.py,sha256=NJq_KSbl7Q7wlie2NH7ApwJ36hfmzocXra36tgcO28w,24197
16
+ pyerualjetwork/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
17
+ pyerualjetwork/planeat_cuda.py,sha256=SG7Oq1F2m3lJBbG9cgmu7q_ApmwSn2SvTpcbtEVAoDE,37630
18
+ pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
+ pyerualjetwork/visualizations.py,sha256=08O5uEewuYiovZRX1uHWEHjn19LcnhndWYvqVN74xs0,28290
20
+ pyerualjetwork/visualizations_cuda.py,sha256=PYRqj4QYUbuYMYcNwO8yaTPB-jK7E6kZHhTrAi0lwPU,28749
21
+ pyerualjetwork-4.3.9b0.dist-info/METADATA,sha256=pCQACKItpMxqwMfYJl3EHXsa7kA_ZwkWuz8e-FtDKcE,7476
22
+ pyerualjetwork-4.3.9b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.3.9b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
+ pyerualjetwork-4.3.9b0.dist-info/RECORD,,
@@ -0,0 +1 @@
1
+ pyerualjetwork
@@ -1,45 +0,0 @@
1
- pyerualjetwork/__init__.py,sha256=nExIY8tR-NFtscBgb0Qnv8sKakbbE2V5SL2nES0aZTI,644
2
- pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
3
- pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
4
- pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
5
- pyerualjetwork/data_operations_cuda.py,sha256=UpoJoFhIwTU4xg9dVuLAxLAT4CkRaGsxvtJG9j1xrNo,17629
6
- pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
7
- pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
8
- pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
9
- pyerualjetwork/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
10
- pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
11
- pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
- pyerualjetwork/model_operations.py,sha256=RKqnh7-MByFosxqme4q4jC1lOndX26O-OVXYV6ZxoEE,12965
13
- pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
14
- pyerualjetwork/plan.py,sha256=ApMQC46_I8qtMqO4lLYLme--SGcMRg-GRo1-gSb3A3I,31894
15
- pyerualjetwork/plan_cuda.py,sha256=ifXiyZs8y3N8b6BbM-T8fMrvzAal-zHqcxFlqwnfwII,33256
16
- pyerualjetwork/planeat.py,sha256=uRX-hDywGOai6hHhbYrmcRodNZOg4WCQeJWZbdMlZs8,39470
17
- pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMFA,39529
18
- pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
- pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
20
- pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
21
- pyerualjetwork_afterburner/__init__.py,sha256=A5YqLtQ9TUhfBHlkSSpTb6pMtkk0FJQOUwAIJu0LMIc,656
22
- pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
23
- pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
24
- pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
25
- pyerualjetwork_afterburner/data_operations_cuda.py,sha256=ZcjmLXE1-HVwedextYdJZ1rgrns1OfSekzFpr1a9m6o,17625
26
- pyerualjetwork_afterburner/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
27
- pyerualjetwork_afterburner/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
28
- pyerualjetwork_afterburner/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
29
- pyerualjetwork_afterburner/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
30
- pyerualjetwork_afterburner/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
31
- pyerualjetwork_afterburner/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
32
- pyerualjetwork_afterburner/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
33
- pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
34
- pyerualjetwork_afterburner/parallel.py,sha256=TqTSqyxnq7lA9IYE-lCxqUO_GVdAYL34n4K67CMSNKI,5946
35
- pyerualjetwork_afterburner/plan.py,sha256=EOXngujG7DQRf3cooFigKB7heQsEoK96JtrcKivT_pE,22449
36
- pyerualjetwork_afterburner/plan_cuda.py,sha256=fg5YunEuBE7sK6q9paP_yAGONr9x0e19oF0J0DucejM,23380
37
- pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
38
- pyerualjetwork_afterburner/planeat_cuda.py,sha256=icjtJcZnA1DcE93mKpdQOp5nMGSqycTbLOym7yITXwY,35299
39
- pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
40
- pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
41
- pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
42
- pyerualjetwork-4.3.8.dev15.dist-info/METADATA,sha256=6YSlEsLUfwZz6a3hxScGBeRZj5M2WIZbrPPh6BA-dNA,8385
43
- pyerualjetwork-4.3.8.dev15.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
44
- pyerualjetwork-4.3.8.dev15.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
45
- pyerualjetwork-4.3.8.dev15.dist-info/RECORD,,
@@ -1,2 +0,0 @@
1
- pyerualjetwork
2
- pyerualjetwork_afterburner
@@ -1,11 +0,0 @@
1
- __version__ = "4.3.8dev15-afterburner"
2
- __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
-
4
- def print_version(__version__):
5
- print(f"PyerualJetwork Version {__version__}" + '\n')
6
-
7
- def print_update_notes(__update__):
8
- print(f"Notes:\n{__update__}")
9
-
10
- print_version(__version__)
11
- print_update_notes(__update__)