pyerualjetwork 4.3.8.dev15__py3-none-any.whl → 4.3.9b0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. pyerualjetwork/__init__.py +1 -1
  2. pyerualjetwork/activation_functions.py +2 -2
  3. pyerualjetwork/activation_functions_cuda.py +63 -114
  4. pyerualjetwork/data_operations_cuda.py +1 -1
  5. pyerualjetwork/model_operations.py +14 -14
  6. pyerualjetwork/model_operations_cuda.py +16 -17
  7. pyerualjetwork/plan.py +87 -268
  8. pyerualjetwork/plan_cuda.py +82 -276
  9. pyerualjetwork/planeat.py +12 -44
  10. pyerualjetwork/planeat_cuda.py +9 -45
  11. pyerualjetwork/visualizations.py +29 -26
  12. pyerualjetwork/visualizations_cuda.py +19 -20
  13. {pyerualjetwork-4.3.8.dev15.dist-info → pyerualjetwork-4.3.9b0.dist-info}/METADATA +2 -19
  14. pyerualjetwork-4.3.9b0.dist-info/RECORD +24 -0
  15. pyerualjetwork-4.3.9b0.dist-info/top_level.txt +1 -0
  16. pyerualjetwork-4.3.8.dev15.dist-info/RECORD +0 -45
  17. pyerualjetwork-4.3.8.dev15.dist-info/top_level.txt +0 -2
  18. pyerualjetwork_afterburner/__init__.py +0 -11
  19. pyerualjetwork_afterburner/activation_functions.py +0 -290
  20. pyerualjetwork_afterburner/activation_functions_cuda.py +0 -289
  21. pyerualjetwork_afterburner/data_operations.py +0 -406
  22. pyerualjetwork_afterburner/data_operations_cuda.py +0 -461
  23. pyerualjetwork_afterburner/help.py +0 -17
  24. pyerualjetwork_afterburner/loss_functions.py +0 -21
  25. pyerualjetwork_afterburner/loss_functions_cuda.py +0 -21
  26. pyerualjetwork_afterburner/memory_operations.py +0 -298
  27. pyerualjetwork_afterburner/metrics.py +0 -190
  28. pyerualjetwork_afterburner/metrics_cuda.py +0 -163
  29. pyerualjetwork_afterburner/model_operations.py +0 -408
  30. pyerualjetwork_afterburner/model_operations_cuda.py +0 -420
  31. pyerualjetwork_afterburner/parallel.py +0 -118
  32. pyerualjetwork_afterburner/plan.py +0 -432
  33. pyerualjetwork_afterburner/plan_cuda.py +0 -441
  34. pyerualjetwork_afterburner/planeat.py +0 -793
  35. pyerualjetwork_afterburner/planeat_cuda.py +0 -752
  36. pyerualjetwork_afterburner/ui.py +0 -22
  37. pyerualjetwork_afterburner/visualizations.py +0 -823
  38. pyerualjetwork_afterburner/visualizations_cuda.py +0 -825
  39. {pyerualjetwork-4.3.8.dev15.dist-info → pyerualjetwork-4.3.9b0.dist-info}/WHEEL +0 -0
pyerualjetwork/plan.py CHANGED
@@ -16,31 +16,21 @@ PYERUALJETWORK document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
16
16
  """
17
17
 
18
18
  import numpy as np
19
- import math
20
19
 
21
20
  ### LIBRARY IMPORTS ###
22
21
  from .ui import loading_bars, initialize_loading_bar
23
- from .data_operations import normalization, decode_one_hot, batcher
22
+ from .data_operations import normalization, batcher
24
23
  from .loss_functions import binary_crossentropy, categorical_crossentropy
25
- from .activation_functions import apply_activation, Softmax, all_activations
24
+ from .activation_functions import apply_activation, all_activations
26
25
  from .metrics import metrics
27
26
  from .model_operations import get_acc, get_preds, get_preds_softmax
28
27
  from .memory_operations import optimize_labels
29
28
  from .visualizations import (
30
29
  draw_neural_web,
31
- update_neural_web_for_fit,
32
- plot_evaluate,
33
- update_neuron_history,
34
- initialize_visualization_for_fit,
35
- update_weight_visualization_for_fit,
36
- update_decision_boundary_for_fit,
37
- update_validation_history_for_fit,
38
- display_visualization_for_fit,
39
30
  display_visualizations_for_learner,
40
31
  update_history_plots_for_learner,
41
32
  initialize_visualization_for_learner,
42
- update_neuron_history_for_learner,
43
- show
33
+ update_neuron_history_for_learner
44
34
  )
45
35
 
46
36
  ### GLOBAL VARIABLES ###
@@ -52,18 +42,9 @@ bar_format_learner = loading_bars()[1]
52
42
  def fit(
53
43
  x_train,
54
44
  y_train,
55
- val=False,
56
- val_count=None,
57
45
  activation_potentiation=['linear'],
58
- x_val=None,
59
- y_val=None,
60
- show_training=None,
61
- interval=100,
62
- LTD=0,
63
- decision_boundary_status=True,
64
- train_bar=True,
65
- auto_normalization=True,
66
- neurons_history=False,
46
+ W=None,
47
+ normalization=False,
67
48
  dtype=np.float32
68
49
  ):
69
50
  """
@@ -71,110 +52,39 @@ def fit(
71
52
 
72
53
  fit Args:
73
54
 
74
- x_train (list[num]): List or numarray of input data.
55
+ x_train (aray-like[num]): List or numarray of input data.
75
56
 
76
- y_train (list[num]): List or numarray of target labels. (one hot encoded)
77
-
78
- val (None or True): validation in training process ? None or True default: None (optional)
79
-
80
- val_count (None or int): After how many examples learned will an accuracy test be performed? default: 10=(%10) it means every approximately 10 step (optional)
57
+ y_train (aray-like[num]): List or numarray of target labels. (one hot encoded)
81
58
 
82
59
  activation_potentiation (list): For deeper PLAN networks, activation function parameters. For more information please run this code: plan.activations_list() default: [None] (optional)
83
60
 
84
- x_val (list[num]): List of validation data. default: x_train (optional)
85
-
86
- y_val (list[num]): (list[num]): List of target labels. (one hot encoded) default: y_train (optional)
87
-
88
- show_training (bool, str): True or None default: None (optional)
89
-
90
- LTD (int): Long Term Depression Hyperparameter for train PLAN neural network default: 0 (optional)
91
-
92
- interval (float, int): frame delay (milisecond) parameter for Training Report (show_training=True) This parameter effects to your Training Report performance. Lower value is more diffucult for Low end PC's (33.33 = 30 FPS, 16.67 = 60 FPS) default: 100 (optional)
93
-
94
- decision_boundary_status (bool): If the visualization of validation and training history is enabled during training, should the decision boundaries also be visualized? True or False. Default is True. (optional)
95
-
96
- train_bar (bool): Training loading bar? True or False. Default is True. (optional)
97
-
98
- auto_normalization(bool): Normalization process during training. May effect training time and model quality. True or False. Default is True. (optional)
61
+ W (numpy.ndarray): If you want to re-continue or update model
99
62
 
100
- neurons_history (bool, optional): Shows the history of changes that neurons undergo during the CL (Cumulative Learning) stages. True or False. Default is False. (optional)
63
+ normalization (bool, optional): Normalization may solves overflow problem. Default: False
101
64
 
102
65
  dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
103
66
 
104
67
  Returns:
105
- numpyarray([num]): (Weight matrix).
68
+ numpyarray: (Weight matrix).
106
69
  """
107
70
 
108
- # Pre-checks
71
+ # Pre-check
72
+
73
+ if len(x_train) != len(y_train): raise ValueError("x_train and y_train must have the same length.")
109
74
 
110
- x_train = x_train.astype(dtype, copy=False)
75
+ weight = np.zeros((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False) if W is None else W
111
76
 
112
- if train_bar and val:
113
- train_progress = initialize_loading_bar(total=len(x_train), ncols=71, desc='Fitting', bar_format=bar_format_normal)
114
- elif train_bar and val == False:
115
- train_progress = initialize_loading_bar(total=len(x_train), ncols=44, desc='Fitting', bar_format=bar_format_normal)
116
-
117
- if len(x_train) != len(y_train):
118
- raise ValueError("x_train and y_train must have the same length.")
119
-
120
- if val and (x_val is None and y_val is None):
121
- x_val, y_val = x_train, y_train
122
-
123
- elif val and (x_val is not None and y_val is not None):
124
- x_val = x_val.astype(dtype, copy=False)
125
- y_val = y_val.astype(dtype, copy=False)
126
-
127
- val_list = [] if val else None
128
- val_count = val_count or 10
129
- # Defining weights
130
- STPW = np.ones((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False) # STPW = SHORT TIME POTENTIATION WEIGHT
131
- LTPW = np.zeros((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False) # LTPW = LONG TIME POTENTIATION WEIGHT
132
- # Initialize visualization
133
- vis_objects = initialize_visualization_for_fit(val, show_training, neurons_history, x_train, y_train)
134
-
135
- # Training process
136
- for index, inp in enumerate(x_train):
137
- inp = np.array(inp, copy=False).ravel()
138
- y_decoded = decode_one_hot(y_train[index])
139
- # Weight updates
140
- STPW = feed_forward(inp, STPW, is_training=True, Class=y_decoded, activation_potentiation=activation_potentiation, LTD=LTD)
141
- LTPW += normalization(STPW, dtype=dtype) if auto_normalization else STPW
142
- if val and index != 0:
143
- if index % math.ceil((val_count / len(x_train)) * 100) == 0:
144
- val_acc = evaluate(x_val, y_val, loading_bar_status=False, activation_potentiation=activation_potentiation, W=LTPW)[get_acc()]
145
- val_list.append(val_acc)
146
-
147
- # Visualization updates
148
- if show_training:
149
- update_weight_visualization_for_fit(vis_objects['ax'][0, 0], LTPW, vis_objects['artist2'])
150
- if decision_boundary_status:
151
- update_decision_boundary_for_fit(vis_objects['ax'][0, 1], x_val, y_val, activation_potentiation, LTPW, vis_objects['artist1'])
152
- update_validation_history_for_fit(vis_objects['ax'][1, 1], val_list, vis_objects['artist3'])
153
- update_neural_web_for_fit(W=LTPW, G=vis_objects['G'], ax=vis_objects['ax'][1, 0], artist=vis_objects['artist4'])
154
- if neurons_history:
155
- update_neuron_history(LTPW, row=vis_objects['row'], col=vis_objects['col'], class_count=len(y_train[0]), fig1=vis_objects['fig1'], ax1=vis_objects['ax1'], artist5=vis_objects['artist5'], acc=val_acc)
156
- if train_bar:
157
- train_progress.update(1)
158
-
159
- STPW = np.ones((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False)
160
-
161
- # Finalize visualization
162
- if show_training:
163
- ani1 = display_visualization_for_fit(vis_objects['fig'], vis_objects['artist1'], interval)
164
- ani2 = display_visualization_for_fit(vis_objects['fig'], vis_objects['artist2'], interval)
165
- ani3 = display_visualization_for_fit(vis_objects['fig'], vis_objects['artist3'], interval)
166
- ani4 = display_visualization_for_fit(vis_objects['fig'], vis_objects['artist4'], interval)
167
- show()
77
+ if normalization is True: x_train = normalization(apply_activation(x_train, activation_potentiation))
78
+ elif normalization is False: x_train = apply_activation(x_train, activation_potentiation)
79
+ else: raise ValueError('normalization parameter only be True or False')
168
80
 
169
- if neurons_history:
170
- ani5 = display_visualization_for_fit(vis_objects['fig1'], vis_objects['artist5'], interval)
171
- show()
81
+ weight += y_train.T @ x_train
172
82
 
173
- return normalization(LTPW, dtype=dtype)
83
+ return normalization(weight, dtype=dtype)
174
84
 
175
85
 
176
- def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=None, batch_size=1,
177
- neural_web_history=False, show_current_activations=False, auto_normalization=True,
86
+ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=None, batch_size=1, pop_size=None,
87
+ neural_web_history=False, show_current_activations=False, normalization=False,
178
88
  neurons_history=False, early_stop=False, loss='categorical_crossentropy', show_history=False,
179
89
  interval=33.33, target_acc=None, target_loss=None,
180
90
  start_this_act=None, start_this_W=None, dtype=np.float32):
@@ -218,9 +128,9 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
218
128
 
219
129
  batch_size (float, optional): Batch size is used in the prediction process to receive train feedback by dividing the test data into chunks and selecting activations based on randomly chosen partitions. This process reduces computational cost and time while still covering the entire test set due to random selection, so it doesn't significantly impact accuracy. For example, a batch size of 0.08 means each train batch represents 8% of the train set. Default is 1. (%100 of train)
220
130
 
221
- early_stop (bool, optional): If True, implements early stopping during training.(If accuracy not improves in two gen stops learning.) Default is False.
131
+ pop_size (int, optional): Population size of each generation. Default: count of activation functions
222
132
 
223
- auto_normalization (bool, optional): IMPORTANT: auto_nomralization parameter works only if fit_start is True. Do not change this value if fit_start is False, because it doesnt matter.) If auto normalization=False this makes more faster training times and much better accuracy performance for some datasets. Default is True.
133
+ early_stop (bool, optional): If True, implements early stopping during training.(If accuracy not improves in two gen stops learning.) Default is False.
224
134
 
225
135
  show_current_activations (bool, optional): Should it display the activations selected according to the current strategies during learning, or not? (True or False) This can be very useful if you want to cancel the learning process and resume from where you left off later. After canceling, you will need to view the live training activations in order to choose the activations to be given to the 'start_this' parameter. Default is False
226
136
 
@@ -253,14 +163,19 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
253
163
 
254
164
  data = 'Train'
255
165
 
256
- activation_potentiation = all_activations()
166
+ except_this = ['spiral', 'circular']
167
+ activation_potentiation = [item for item in all_activations() if item not in except_this]
257
168
  activation_potentiation_len = len(activation_potentiation)
258
169
 
259
170
  # Pre-checks
260
171
 
172
+ if pop_size is None: pop_size = activation_potentiation_len
173
+
261
174
  x_train = x_train.astype(dtype, copy=False)
262
175
  y_train = optimize_labels(y_train, cuda=False)
263
176
 
177
+ if pop_size < activation_potentiation_len: raise ValueError(f"pop_size must be higher or equal to {activation_potentiation_len}")
178
+
264
179
  if gen is None:
265
180
  gen = activation_potentiation_len
266
181
 
@@ -273,9 +188,9 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
273
188
 
274
189
  # Initialize progress bar
275
190
  if batch_size == 1:
276
- ncols = 76
191
+ ncols = 78
277
192
  else:
278
- ncols = 89
193
+ ncols = 49
279
194
 
280
195
  # Initialize variables
281
196
  best_acc = 0
@@ -289,16 +204,16 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
289
204
 
290
205
  progress = initialize_loading_bar(total=activation_potentiation_len, desc="", ncols=ncols, bar_format=bar_format_learner)
291
206
 
292
- if fit_start is False:
293
- weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), population_size=activation_potentiation_len, dtype=dtype)
207
+ if fit_start is False or pop_size > activation_potentiation_len:
208
+ weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), population_size=pop_size, dtype=dtype)
294
209
 
295
210
  if start_this_act is not None and start_this_W is not None:
296
211
  weight_pop[0] = start_this_W
297
212
  act_pop[0] = start_this_act
298
213
 
299
214
  else:
300
- weight_pop = []
301
- act_pop = []
215
+ weight_pop = [0] * pop_size
216
+ act_pop = [0] * pop_size
302
217
 
303
218
  for i in range(gen):
304
219
  postfix_dict["Gen"] = str(i+1) + '/' + str(gen)
@@ -308,16 +223,16 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
308
223
  progress.last_print_n = 0
309
224
  progress.update(0)
310
225
 
311
- for j in range(activation_potentiation_len):
226
+ for j in range(pop_size):
312
227
 
313
228
  x_train_batch, y_train_batch = batcher(x_train, y_train, batch_size=batch_size)
314
229
 
315
- if fit_start is True and i == 0:
316
- act_pop.append(activation_potentiation[j])
317
- W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
318
- weight_pop.append(W)
230
+ if fit_start is True and i == 0 and j < activation_potentiation_len:
231
+ act_pop[j] = activation_potentiation[j]
232
+ W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[j], normalization=normalization, dtype=dtype)
233
+ weight_pop[j] = W
319
234
 
320
- model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], loading_bar_status=False, activation_potentiation=act_pop[j], dtype=dtype)
235
+ model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], activation_potentiation=act_pop[j])
321
236
  acc = model[get_acc()]
322
237
 
323
238
  if strategy == 'accuracy': target_pop.append(acc)
@@ -351,15 +266,14 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
351
266
  best_acc = acc
352
267
  best_weights = np.copy(weight_pop[j])
353
268
  final_activations = act_pop[j].copy() if isinstance(act_pop[j], list) else act_pop[j]
269
+
354
270
  best_model = model
355
271
 
356
272
  final_activations = [final_activations[0]] if len(set(final_activations)) == 1 else final_activations # removing if all same
357
273
 
358
274
  if batch_size == 1:
359
- postfix_dict[f"{data} Accuracy"] = best_acc
360
- else:
361
- postfix_dict[f"{data} Batch Accuracy"] = acc
362
- progress.set_postfix(postfix_dict)
275
+ postfix_dict[f"{data} Accuracy"] = np.round(best_acc, 4)
276
+ progress.set_postfix(postfix_dict)
363
277
 
364
278
  if show_current_activations:
365
279
  print(f", Current Activations={final_activations}", end='')
@@ -370,11 +284,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
370
284
  train_loss = binary_crossentropy(y_true_batch=y_train_batch, y_pred_batch=model[get_preds_softmax()])
371
285
 
372
286
  if batch_size == 1:
373
- postfix_dict[f"{data} Loss"] = train_loss
374
- best_loss = train_loss
375
- else:
376
- postfix_dict[f"{data} Batch Loss"] = train_loss
377
- progress.set_postfix(postfix_dict)
287
+ postfix_dict[f"{data} Loss"] = np.round(train_loss, 4)
288
+ progress.set_postfix(postfix_dict)
378
289
  best_loss = train_loss
379
290
 
380
291
  # Update visualizations during training
@@ -401,7 +312,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
401
312
  # Check target accuracy
402
313
  if target_acc is not None and best_acc >= target_acc:
403
314
  progress.close()
404
- train_model = evaluate(x_train, y_train, W=best_weights, loading_bar_status=False,
315
+ train_model = evaluate(x_train, y_train, W=best_weights,
405
316
  activation_potentiation=final_activations, dtype=dtype)
406
317
 
407
318
  if loss == 'categorical_crossentropy':
@@ -412,8 +323,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
412
323
  y_pred_batch=train_model[get_preds_softmax()])
413
324
 
414
325
  print('\nActivations: ', final_activations)
415
- print(f'Train Accuracy :', train_model[get_acc()])
416
- print(f'Train Loss : ', train_loss, '\n')
326
+ print(f'Train Accuracy:', train_model[get_acc()])
327
+ print(f'Train Loss: ', train_loss, '\n')
417
328
 
418
329
  # Display final visualizations
419
330
  display_visualizations_for_learner(viz_objects, best_weights, data, best_acc,
@@ -423,7 +334,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
423
334
  # Check target loss
424
335
  if target_loss is not None and best_loss <= target_loss:
425
336
  progress.close()
426
- train_model = evaluate(x_train, y_train, W=best_weights, loading_bar_status=False,
337
+ train_model = evaluate(x_train, y_train, W=best_weights,
427
338
  activation_potentiation=final_activations, dtype=dtype)
428
339
 
429
340
  if loss == 'categorical_crossentropy':
@@ -434,8 +345,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
434
345
  y_pred_batch=train_model[get_preds_softmax()])
435
346
 
436
347
  print('\nActivations: ', final_activations)
437
- print(f'Train Accuracy :', train_model[get_acc()])
438
- print(f'Train Loss : ', train_loss, '\n')
348
+ print(f'Train Accuracy:', train_model[get_acc()])
349
+ print(f'Train Loss: ', train_loss, '\n')
439
350
 
440
351
  # Display final visualizations
441
352
  display_visualizations_for_learner(viz_objects, best_weights, data, best_acc,
@@ -447,6 +358,20 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
447
358
  best_acc_per_gen_list.append(best_acc)
448
359
  loss_list.append(best_loss)
449
360
 
361
+ if batch_size != 1:
362
+ train_model = evaluate(x_train, y_train, best_weights, final_activations)
363
+
364
+ if loss == 'categorical_crossentropy':
365
+ train_loss = categorical_crossentropy(y_true_batch=y_train,
366
+ y_pred_batch=train_model[get_preds_softmax()])
367
+ else:
368
+ train_loss = binary_crossentropy(y_true_batch=y_train,
369
+ y_pred_batch=train_model[get_preds_softmax()])
370
+
371
+ postfix_dict[f"{data} Accuracy"] = np.round(train_model[get_acc()], 4)
372
+ postfix_dict[f"{data} Loss"] = np.round(train_loss, 4)
373
+ progress.set_postfix(postfix_dict)
374
+
450
375
  weight_pop, act_pop = optimizer(np.array(weight_pop, copy=False, dtype=dtype), act_pop, i, np.array(target_pop, dtype=dtype, copy=False), bar_status=False)
451
376
  target_pop = []
452
377
 
@@ -454,7 +379,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
454
379
  if early_stop == True and i > 0:
455
380
  if best_acc_per_gen_list[i] == best_acc_per_gen_list[i-1]:
456
381
  progress.close()
457
- train_model = evaluate(x_train, y_train, W=best_weights, loading_bar_status=False,
382
+ train_model = evaluate(x_train, y_train, W=best_weights,
458
383
  activation_potentiation=final_activations, dtype=dtype)
459
384
 
460
385
  if loss == 'categorical_crossentropy':
@@ -465,8 +390,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
465
390
  y_pred_batch=train_model[get_preds_softmax()])
466
391
 
467
392
  print('\nActivations: ', final_activations)
468
- print(f'Train Accuracy :', train_model[get_acc()])
469
- print(f'Train Loss : ', train_loss, '\n')
393
+ print(f'Train Accuracy:', train_model[get_acc()])
394
+ print(f'Train Loss: ', train_loss, '\n')
470
395
 
471
396
  # Display final visualizations
472
397
  display_visualizations_for_learner(viz_objects, best_weights, data, best_acc,
@@ -475,7 +400,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
475
400
 
476
401
  # Final evaluation
477
402
  progress.close()
478
- train_model = evaluate(x_train, y_train, W=best_weights, loading_bar_status=False,
403
+ train_model = evaluate(x_train, y_train, W=best_weights,
479
404
  activation_potentiation=final_activations, dtype=dtype)
480
405
 
481
406
  if loss == 'categorical_crossentropy':
@@ -484,144 +409,38 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
484
409
  train_loss = binary_crossentropy(y_true_batch=y_train, y_pred_batch=train_model[get_preds_softmax()])
485
410
 
486
411
  print('\nActivations: ', final_activations)
487
- print(f'Train Accuracy :', train_model[get_acc()])
488
- print(f'Train Loss : ', train_loss, '\n')
412
+ print(f'Train Accuracy:', train_model[get_acc()])
413
+ print(f'Train Loss: ', train_loss, '\n')
489
414
 
490
415
  # Display final visualizations
491
416
  display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, train_loss, y_train, interval)
492
417
  return best_weights, best_model[get_preds()], best_acc, final_activations
493
418
 
494
419
 
495
-
496
- def feed_forward(
497
- Input, # list[num]: Input data.
498
- w, # num: Weight matrix of the neural network.
499
- is_training, # bool: Flag indicating if the function is called during training (True or False).
500
- activation_potentiation,
501
- Class='?', # int: Which class is, if training. # (list): Activation potentiation list for deep PLAN. (optional)
502
- LTD=0
503
- ) -> tuple:
504
- """
505
- Applies feature extraction process to the input data using synaptic potentiation.
506
-
507
- Args:
508
- Input (num): Input data.
509
- w (num): Weight matrix of the neural network.
510
- is_training (bool): Flag indicating if the function is called during training (True or False).
511
- Class (int): if is during training then which class(label) ? is isnt then put None.
512
- # activation_potentiation (list): ac list for deep PLAN. default: [None] ('linear') (optional)
513
-
514
- Returns:
515
- tuple: A tuple (vector) containing the neural layer result and the updated weight matrix.
516
- or
517
- num: neural network output
518
- """
519
-
520
- Output = apply_activation(Input, activation_potentiation)
521
-
522
- Input = Output
523
-
524
- if is_training == True:
525
-
526
- for _ in range(LTD):
527
-
528
- depression_vector = np.random.rand(*Input.shape)
529
-
530
- Input -= depression_vector
531
-
532
- w[Class, :] = Input
533
- return w
534
-
535
- else:
536
-
537
- neural_layer = np.dot(w, Input)
538
-
539
- return neural_layer
540
-
541
-
542
420
  def evaluate(
543
- x_test, # NumPy array: Test input data.
544
- y_test, # NumPy array: Test labels.
545
- W, # List of NumPy arrays: Neural network weight matrices.
546
- activation_potentiation=['linear'], # List of activation functions.
547
- loading_bar_status=True, # Optionally show loading bar.
548
- show_metrics=None, # Optionally show metrics.
549
- dtype=np.float32
421
+ x_test,
422
+ y_test,
423
+ W,
424
+ activation_potentiation=['linear']
550
425
  ) -> tuple:
551
426
  """
552
427
  Evaluates the neural network model using the given test data.
553
428
 
554
429
  Args:
555
- x_test (np.ndarray): Test input data.
556
-
557
- y_test (np.ndarray): Test labels. one-hot encoded.
558
-
559
- W (list[np.ndarray]): List of neural network weight matrices.
560
-
561
- activation_potentiation (list): List of activation functions.
562
-
563
- loading_bar_status (bool): Option to show a loading bar (optional).
564
-
565
- show_metrics (bool): Option to show metrics (optional).
430
+ x_test (np.ndarray): Test data.
566
431
 
567
- dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!]
432
+ y_test (np.ndarray): Test labels (one-hot encoded).
568
433
 
434
+ W (np.ndarray): Neural net weight matrix.
435
+
436
+ activation_potentiation (list): Activation list. Default = ['linear'].
437
+
569
438
  Returns:
570
- tuple: Predicted labels, model accuracy, and other evaluation metrics.
439
+ tuple: Model (list).
571
440
  """
572
- # Pre-checks
573
-
574
- x_test = x_test.astype(dtype, copy=False)
575
-
576
- if len(y_test[0]) < 256:
577
- if y_test.dtype != np.uint8:
578
- y_test = np.array(y_test, copy=False).astype(np.uint8, copy=False)
579
- elif len(y_test[0]) <= 32767:
580
- if y_test.dtype != np.uint16:
581
- y_test = np.array(y_test, copy=False).astype(np.uint16, copy=False)
582
- else:
583
- if y_test.dtype != np.uint32:
584
- y_test = np.array(y_test, copy=False).astype(np.uint32, copy=False)
585
-
586
- predict_probabilitys = np.empty((len(x_test), W.shape[0]), dtype=dtype)
587
- real_classes = np.empty(len(x_test), dtype=y_test.dtype)
588
- predict_classes = np.empty(len(x_test), dtype=y_test.dtype)
589
-
590
- true_predict = 0
591
- acc_list = np.empty(len(x_test), dtype=dtype)
592
-
593
- if loading_bar_status:
594
- loading_bar = initialize_loading_bar(total=len(x_test), ncols=64, desc='Testing', bar_format=bar_format_normal)
595
-
596
- for inpIndex in range(len(x_test)):
597
- Input = x_test[inpIndex].ravel()
598
-
599
- neural_layer = Input
600
-
601
- neural_layer = feed_forward(neural_layer, np.copy(W), is_training=False, Class='?', activation_potentiation=activation_potentiation)
602
-
603
- predict_probabilitys[inpIndex] = Softmax(neural_layer)
604
-
605
- RealOutput = np.argmax(y_test[inpIndex])
606
- real_classes[inpIndex] = RealOutput
607
- PredictedOutput = np.argmax(neural_layer)
608
- predict_classes[inpIndex] = PredictedOutput
609
-
610
- if RealOutput == PredictedOutput:
611
- true_predict += 1
612
-
613
- acc = true_predict / (inpIndex + 1)
614
- acc_list[inpIndex] = acc
615
-
616
- if loading_bar_status:
617
- loading_bar.update(1)
618
- loading_bar.set_postfix({"Test Accuracy": acc})
619
-
620
- if loading_bar_status:
621
- loading_bar.close()
622
441
 
623
- if show_metrics:
624
- # Plot the evaluation metrics
625
- plot_evaluate(x_test, y_test, predict_classes, acc_list, W=np.copy(W), activation_potentiation=activation_potentiation)
442
+ x_test = apply_activation(x_test, activation_potentiation)
443
+ result = x_test @ W.T
444
+ softmax_preds = np.exp(result) / np.sum(np.exp(result), axis=1, keepdims=True); accuracy = (np.argmax(result, axis=1) == np.argmax(y_test, axis=1)).mean()
626
445
 
627
- return W, predict_classes, acc_list[-1], None, None, predict_probabilitys
446
+ return W, None, accuracy, None, None, softmax_preds