pydra-core 0.0.1__py2.py3-none-any.whl → 0.0.2__py2.py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (364) hide show
  1. pydra_core/__init__.py +32 -32
  2. pydra_core/common/common.py +98 -98
  3. pydra_core/common/enum.py +63 -63
  4. pydra_core/common/interpolate.py +345 -345
  5. pydra_core/common/probability.py +293 -293
  6. pydra_core/core/calculation.py +51 -51
  7. pydra_core/core/datamodels/frequency_line.py +60 -60
  8. pydra_core/core/exceedance_frequency_line.py +224 -224
  9. pydra_core/core/exceedance_frequency_line_experimental.py +163 -163
  10. pydra_core/core/hbn.py +226 -226
  11. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017.txt +36 -36
  12. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017_metOnzHeid.txt +45 -45
  13. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_metOnzHeid_v02.txt +50 -50
  14. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_v02.txt +42 -42
  15. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_metOnzHeid_v02.txt +56 -56
  16. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_v02.txt +48 -48
  17. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_metOnzHeid_v02.txt +56 -56
  18. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_v02.txt +48 -48
  19. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_metOnzHeid_v02.txt +50 -50
  20. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_v02.txt +42 -42
  21. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_metOnzHeid_v02.txt +56 -56
  22. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_v02.txt +48 -48
  23. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_metOnzHeid_v02.txt +51 -51
  24. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_v02.txt +44 -44
  25. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_Ref.txt +27 -27
  26. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017.txt +30 -30
  27. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017_metOnzHeid.txt +32 -32
  28. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015.txt +44 -44
  29. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015_metOnzHeid.txt +33 -33
  30. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050.txt +44 -44
  31. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050_metOnzHeid.txt +33 -33
  32. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100.txt +44 -44
  33. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100_metOnzHeid.txt +38 -38
  34. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015.txt +44 -44
  35. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015_metOnzHeid.txt +33 -33
  36. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050.txt +44 -44
  37. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050_metOnzHeid.txt +33 -33
  38. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100.txt +44 -44
  39. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100_metOnzHeid.txt +33 -33
  40. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_Ref.txt +13 -13
  41. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017.txt +47 -47
  42. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017_metOnzHeid.txt +47 -47
  43. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015.txt +49 -49
  44. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +58 -58
  45. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050.txt +49 -49
  46. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +58 -58
  47. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100.txt +49 -49
  48. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +58 -58
  49. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015.txt +49 -49
  50. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +58 -58
  51. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050.txt +49 -49
  52. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +58 -58
  53. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100.txt +49 -49
  54. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +58 -58
  55. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_Ref.txt +20 -20
  56. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017.txt +33 -33
  57. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017_metOnzHeid.txt +59 -59
  58. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015.txt +49 -49
  59. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_BenedenRijn.txt +49 -49
  60. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +62 -62
  61. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid_BenedenRijn.txt +65 -65
  62. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050.txt +49 -49
  63. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_BenedenRijn.txt +49 -49
  64. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +62 -62
  65. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid_BenedenRijn.txt +64 -64
  66. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100.txt +49 -49
  67. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_BenedenRijn.txt +49 -49
  68. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +62 -62
  69. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid_BenedenRijn.txt +64 -64
  70. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015.txt +50 -50
  71. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_BenedenRijn.txt +50 -50
  72. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +62 -62
  73. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid_BenedenRijn.txt +64 -64
  74. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050.txt +50 -50
  75. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_BenedenRijn.txt +50 -50
  76. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +62 -62
  77. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid_BenedenRijn.txt +64 -64
  78. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100.txt +50 -50
  79. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_BenedenRijn.txt +50 -50
  80. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +62 -62
  81. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid_BenedenRijn.txt +65 -65
  82. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_Ref.txt +22 -22
  83. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017.txt +55 -55
  84. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017_metOnzHeid.txt +55 -55
  85. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015.txt +46 -46
  86. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015_metOnzHeid.txt +64 -64
  87. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050.txt +46 -46
  88. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050_metOnzHeid.txt +64 -64
  89. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100.txt +46 -46
  90. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100_metOnzHeid.txt +64 -64
  91. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015.txt +47 -47
  92. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015_metOnzHeid.txt +64 -64
  93. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050.txt +47 -47
  94. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050_metOnzHeid.txt +64 -64
  95. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100.txt +47 -47
  96. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100_metOnzHeid.txt +64 -64
  97. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_Ref.txt +14 -14
  98. pydra_core/data/statistics/Golfvorm/Borgharen/Golfvormen_Borgharen.txt +76 -76
  99. pydra_core/data/statistics/Golfvorm/Dalfsen/Golfvormen_Dalfsen.txt +83 -83
  100. pydra_core/data/statistics/Golfvorm/Grevelingenmeer/Golfvormen_Grevelingenmeer.txt +33 -33
  101. pydra_core/data/statistics/Golfvorm/IJsselmeer/Golfvormen_IJsselmeer.txt +83 -83
  102. pydra_core/data/statistics/Golfvorm/Lith/Golfvormen_Lith.txt +76 -76
  103. pydra_core/data/statistics/Golfvorm/Lobith/Golfvormen_Lobith.txt +76 -76
  104. pydra_core/data/statistics/Golfvorm/Markermeer/Golfvormen_Markermeer.txt +139 -139
  105. pydra_core/data/statistics/Golfvorm/Olst/Golfvormen_Olst.txt +83 -83
  106. pydra_core/data/statistics/Golfvorm/Veerse Meer/Golfvormen_Veersemeer.txt +53 -53
  107. pydra_core/data/statistics/Golfvorm/Veluwerandmeer/Golfvormen_Veluwerandmeer.txt +139 -139
  108. pydra_core/data/statistics/Golfvorm/Volkerak-Zoommeer/Golfvormen_Volkerakzoommeer.txt +73 -73
  109. pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017.txt +12 -12
  110. pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017_metOnzHeid.txt +24 -24
  111. pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_v01.txt +12 -12
  112. pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017.txt +25 -25
  113. pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017_metOnzHeid.txt +39 -39
  114. pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_v01.txt +14 -14
  115. pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017.txt +18 -18
  116. pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017_metOnzHeid.txt +37 -37
  117. pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_v01.txt +10 -10
  118. pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_excl_peilverhoging.txt +13 -13
  119. pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_v01.txt +15 -15
  120. pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017.txt +13 -13
  121. pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017_metOnzHeid.txt +36 -36
  122. pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_v01.txt +13 -13
  123. pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM.txt +17 -17
  124. pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM_metOnzHeid.txt +42 -42
  125. pydra_core/data/statistics/Restant/Oosterschelde/BesliskansenOSKering.txt +524 -524
  126. pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_2023.txt +7 -7
  127. pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_OS.txt +13 -13
  128. pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS.txt +14 -14
  129. pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS_40_60_80uur_2023.txt +16 -16
  130. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2008.txt +23 -23
  131. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2013.txt +18 -18
  132. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2017.txt +18 -18
  133. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2023.txt +13 -13
  134. pydra_core/data/statistics/Restant/Up2U/Up2U10.dat +59 -59
  135. pydra_core/data/statistics/Restant/Up2U/Up2Up.dat +59 -59
  136. pydra_core/data/statistics/Restant/Up2U/Up2Ustar.dat +59 -59
  137. pydra_core/data/statistics/Restant/hulpdijken.txt +59 -59
  138. pydra_core/data/statistics/Restant/hulpgolfhoogtes.txt +23 -23
  139. pydra_core/data/statistics/Restant/hulpgolfperiodes.txt +38 -38
  140. pydra_core/data/statistics/Restant/kansstormduur.txt +8 -8
  141. pydra_core/data/statistics/Restant/pwind_west.txt +33 -33
  142. pydra_core/data/statistics/Restant/pwind_west_met_Volkerfactor.txt +33 -33
  143. pydra_core/data/statistics/Restant/pwind_west_zonder_Volkerfactor.txt +33 -33
  144. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden.txt +18 -18
  145. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden_2017.txt +22 -22
  146. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord.txt +18 -18
  147. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord_2017.txt +22 -22
  148. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid.txt +18 -18
  149. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid_2017.txt +22 -22
  150. pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS.txt +21 -21
  151. pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_16sectoren_2023.txt +23 -23
  152. pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_2017.txt +21 -21
  153. pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost.txt +18 -18
  154. pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost_2017.txt +22 -22
  155. pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west.txt +18 -18
  156. pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west_2017.txt +22 -22
  157. pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS.txt +18 -18
  158. pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS_2017.txt +22 -22
  159. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Maas 2017.csv +630 -630
  160. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Rijn 2017.csv +630 -630
  161. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Hollandsche IJsselkering.csv +757 -757
  162. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Oosterscheldekering 2017.csv +55080 -55080
  163. pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_2017.txt +18 -18
  164. pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_v00.txt +14 -14
  165. pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_2017.txt +19 -19
  166. pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_v01.txt +15 -15
  167. pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_2017.txt +13 -13
  168. pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_v01.txt +13 -13
  169. pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_2017.txt +19 -19
  170. pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_v01.txt +14 -14
  171. pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_2017.txt +18 -18
  172. pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_v01.txt +17 -17
  173. pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_2017.txt +18 -18
  174. pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_v01.txt +16 -16
  175. pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_2017.txt +19 -19
  176. pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_v01.txt +11 -11
  177. pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_2017.txt +19 -19
  178. pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_v01.txt +15 -15
  179. pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_excl_peilverhoging.txt +12 -12
  180. pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_v01.txt +15 -15
  181. pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_2017.txt +11 -11
  182. pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_v01.txt +11 -11
  183. pydra_core/data/statistics/Topduur/Volkerak-Zoommeer/Topduur_Volkerakzoommeer_BER-VZM.txt +17 -17
  184. pydra_core/data/statistics/Windrichting/Deelen/Richtingskansen_Deelen_2017.txt +27 -27
  185. pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust.txt +16 -16
  186. pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust_2017.txt +23 -23
  187. pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_16sectoren_OS_2023.txt +30 -30
  188. pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS.txt +19 -19
  189. pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS_2017.txt +23 -23
  190. pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren.txt +19 -19
  191. pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren_2017.txt +19 -19
  192. pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_2017.txt +27 -27
  193. pydra_core/data/statistics/Windrichting/Schiphol/kanswindrichting_v01.txt +28 -28
  194. pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ.txt +16 -16
  195. pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ_2017.txt +23 -23
  196. pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS.txt +16 -16
  197. pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS_2017.txt +23 -23
  198. pydra_core/data/statistics/Windsnelheid/De Kooy/OvkansWindsnelheid_Texel.txt +69 -69
  199. pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017.txt +91 -91
  200. pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017_metOnzHeid.txt +91 -91
  201. pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017.txt +90 -90
  202. pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017_metOnzHeid.txt +90 -90
  203. pydra_core/data/statistics/Windsnelheid/Hoek van Holland/OvkansWindsnelheid_Hoek van Holland.txt +69 -69
  204. pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017.txt +91 -91
  205. pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017_metOnzHeid.txt +91 -91
  206. pydra_core/data/statistics/Windsnelheid/IJmuiden/OvkansWindsnelheid_IJmuiden.txt +69 -69
  207. pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017.txt +91 -91
  208. pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017_metOnzHeid.txt +91 -91
  209. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren.txt +50 -50
  210. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017.txt +90 -90
  211. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metOnzHeid.txt +90 -90
  212. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag.txt +96 -96
  213. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
  214. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag.txt +96 -96
  215. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
  216. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017.txt +90 -90
  217. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017_metOnzHeid.txt +90 -90
  218. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017.txt +90 -90
  219. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017_metOnzHeid.txt +90 -90
  220. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol.txt +57 -57
  221. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_10%.txt +63 -63
  222. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_5%.txt +61 -61
  223. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_B_met volker.txt +59 -59
  224. pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_OS.txt +66 -66
  225. pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_Vlissingen.txt +69 -69
  226. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023.txt +91 -91
  227. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023_metOnzHeid.txt +90 -90
  228. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017.txt +91 -91
  229. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metOnzHeid.txt +91 -91
  230. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag.txt +96 -96
  231. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag_metOnzHeid.txt +96 -96
  232. pydra_core/data/statistics/Windsnelheid/West-Terschelling/OvkansWindsnelheid_West-Tersch.txt +69 -69
  233. pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017.txt +91 -91
  234. pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017_metOnzHeid.txt +91 -91
  235. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017.txt +81 -81
  236. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017_metOnzHeid.txt +81 -81
  237. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017.txt +81 -81
  238. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017_metOnzHeid.txt +81 -81
  239. pydra_core/data/statistics/Zeewaterstand/Delfzijl/OvkansZee_Delfzijl.txt +70 -70
  240. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017.txt +89 -89
  241. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017_metOnzHeid.txt +89 -89
  242. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017.txt +88 -88
  243. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017_metOnzHeid.txt +88 -88
  244. pydra_core/data/statistics/Zeewaterstand/Den Helder/OvkansZee_Den Helder.txt +70 -70
  245. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017.txt +88 -88
  246. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017_metOnzHeid.txt +88 -88
  247. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017.txt +87 -87
  248. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017_metOnzHeid.txt +87 -87
  249. pydra_core/data/statistics/Zeewaterstand/Den Oever/OvkansZee_Den Oever.txt +70 -70
  250. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017.txt +71 -71
  251. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017_metOnzHeid.txt +71 -71
  252. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017.txt +70 -70
  253. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017_metOnzHeid.txt +70 -70
  254. pydra_core/data/statistics/Zeewaterstand/Hansweert/OvkansZee_Hansweert.txt +70 -70
  255. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017.txt +85 -85
  256. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  257. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017.txt +84 -84
  258. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017_metOnzHeid.txt +84 -84
  259. pydra_core/data/statistics/Zeewaterstand/Harlingen/OvkansZee_Harlingen.txt +70 -70
  260. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017.txt +84 -84
  261. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017_metOnzHeid.txt +84 -84
  262. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017.txt +83 -83
  263. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017_metOnzHeid.txt +83 -83
  264. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/OvkansZee_Hoek van Holland.txt +70 -70
  265. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017.txt +86 -86
  266. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017_metOnzHeid.txt +86 -86
  267. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017.txt +85 -85
  268. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017_metOnzHeid.txt +85 -85
  269. pydra_core/data/statistics/Zeewaterstand/Huibertgat/OvkansZee_Huibertgat.txt +70 -70
  270. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017.txt +85 -85
  271. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  272. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017.txt +85 -85
  273. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017_metOnzHeid.txt +85 -85
  274. pydra_core/data/statistics/Zeewaterstand/IJmuiden/OvkansZee_IJmuiden.txt +70 -70
  275. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017.txt +85 -85
  276. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  277. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017.txt +85 -85
  278. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017_metOnzHeid.txt +85 -85
  279. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/OvkansZee_IJmuiden_virtueel.txt +70 -70
  280. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017.txt +85 -85
  281. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  282. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017.txt +84 -84
  283. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017_metOnzHeid.txt +84 -84
  284. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/OvkansZee_Lauwersoog.txt +70 -70
  285. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2011.txt +88 -88
  286. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017.txt +88 -88
  287. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017_metOnzheid.txt +92 -92
  288. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017.txt +85 -85
  289. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017_metOnzheid.txt +85 -85
  290. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017.txt +79 -79
  291. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017_metOnzHeid.txt +79 -79
  292. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017.txt +79 -79
  293. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017_metOnzHeid.txt +79 -79
  294. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023.txt +74 -74
  295. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023_metOnzHeid.txt +73 -73
  296. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZee_OS11.txt +70 -70
  297. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZeewaterstand_OS.txt +71 -71
  298. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017.txt +74 -74
  299. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
  300. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017.txt +74 -74
  301. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017_metOnzHeid.txt +74 -74
  302. pydra_core/data/statistics/Zeewaterstand/Vlissingen/OvkansZee_Vlissingen.txt +70 -70
  303. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017.txt +74 -74
  304. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
  305. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017.txt +74 -74
  306. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017_metOnzHeid.txt +74 -74
  307. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/OvkansZee_Vlissingen_virtueel.txt +70 -70
  308. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017.txt +87 -87
  309. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017_metOnzHeid.txt +87 -87
  310. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017.txt +86 -86
  311. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017_metOnzHeid.txt +86 -86
  312. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/OvkansZee_West-Terschelling.txt +70 -70
  313. pydra_core/hrdatabase/hrdatabase.py +177 -177
  314. pydra_core/io/database_hr.py +598 -598
  315. pydra_core/io/database_settings.py +183 -183
  316. pydra_core/io/file_hydranl.py +92 -92
  317. pydra_core/location/location.py +115 -115
  318. pydra_core/location/model/base_model.py +270 -270
  319. pydra_core/location/model/loading/loading.py +368 -368
  320. pydra_core/location/model/loading/loading_factory.py +89 -89
  321. pydra_core/location/model/loading/loading_model/loading_model.py +324 -324
  322. pydra_core/location/model/loading/other_systems/loading_wave_overtopping.py +122 -122
  323. pydra_core/location/model/loading/water_systems/loading_coast.py +54 -54
  324. pydra_core/location/model/loading/water_systems/loading_eastern_scheldt.py +169 -169
  325. pydra_core/location/model/loading/water_systems/loading_ijssel_vechtdelta.py +55 -55
  326. pydra_core/location/model/loading/water_systems/loading_lake.py +55 -55
  327. pydra_core/location/model/loading/water_systems/loading_lower_rivier.py +68 -68
  328. pydra_core/location/model/loading/water_systems/loading_upper_river.py +55 -55
  329. pydra_core/location/model/statistics/other_systems/statistics_wave_overtopping.py +72 -72
  330. pydra_core/location/model/statistics/statistics.py +171 -171
  331. pydra_core/location/model/statistics/statistics_factory.py +89 -89
  332. pydra_core/location/model/statistics/stochastics/barrier/barrier.py +43 -43
  333. pydra_core/location/model/statistics/stochastics/barrier/barrier_easternscheldt.py +147 -147
  334. pydra_core/location/model/statistics/stochastics/barrier/barrier_europoort.py +209 -209
  335. pydra_core/location/model/statistics/stochastics/barrier/barrier_ramspol.py +41 -41
  336. pydra_core/location/model/statistics/stochastics/barrier/no_barrier.py +21 -21
  337. pydra_core/location/model/statistics/stochastics/discharge.py +108 -108
  338. pydra_core/location/model/statistics/stochastics/discrete_probability.py +55 -55
  339. pydra_core/location/model/statistics/stochastics/lake_level.py +158 -158
  340. pydra_core/location/model/statistics/stochastics/model_uncertainty.py +358 -358
  341. pydra_core/location/model/statistics/stochastics/sea_level/sea_level.py +53 -53
  342. pydra_core/location/model/statistics/stochastics/sea_level/sea_level_lower_river.py +93 -93
  343. pydra_core/location/model/statistics/stochastics/sea_level/sea_level_point.py +65 -65
  344. pydra_core/location/model/statistics/stochastics/sea_level/sea_level_triangular.py +158 -158
  345. pydra_core/location/model/statistics/stochastics/sigma_function.py +24 -24
  346. pydra_core/location/model/statistics/stochastics/wave_shape.py +624 -624
  347. pydra_core/location/model/statistics/stochastics/wind_speed.py +196 -196
  348. pydra_core/location/model/statistics/water_systems/statistics_coast.py +153 -153
  349. pydra_core/location/model/statistics/water_systems/statistics_eastern_scheldt.py +177 -177
  350. pydra_core/location/model/statistics/water_systems/statistics_ijssel_vechtdelta.py +229 -229
  351. pydra_core/location/model/statistics/water_systems/statistics_lake.py +86 -86
  352. pydra_core/location/model/statistics/water_systems/statistics_lower_river.py +321 -321
  353. pydra_core/location/model/statistics/water_systems/statistics_upper_river.py +86 -86
  354. pydra_core/location/model/water_system.py +249 -249
  355. pydra_core/location/model/wave_overtopping.py +25 -25
  356. pydra_core/location/profile/foreland.py +246 -246
  357. pydra_core/location/profile/lib/README.MD +10 -10
  358. pydra_core/location/profile/profile.py +971 -971
  359. pydra_core/location/profile/profile_loading.py +473 -473
  360. pydra_core/location/settings/settings.py +387 -387
  361. {pydra_core-0.0.1.dist-info → pydra_core-0.0.2.dist-info}/METADATA +18 -3
  362. pydra_core-0.0.2.dist-info/RECORD +389 -0
  363. pydra_core-0.0.1.dist-info/RECORD +0 -389
  364. {pydra_core-0.0.1.dist-info → pydra_core-0.0.2.dist-info}/WHEEL +0 -0
@@ -1,324 +1,324 @@
1
- import numpy as np
2
- import pandas as pd
3
-
4
- from typing import Dict, Union
5
-
6
- from ....profile.profile import Profile
7
- from .....common.interpolate import InterpStruct
8
-
9
-
10
- class LoadingModel:
11
- """
12
- A LoadingModel is a model for one combination of wind direction and closing situation
13
-
14
- The LoadingModel allows to process the data (e.g. extend, refine or repair)
15
- """
16
-
17
- def __init__(
18
- self,
19
- direction: float,
20
- closing_situation: int,
21
- input_variables: list,
22
- result_variables: list,
23
- ):
24
- """
25
- Init the LoadingModel.
26
-
27
- Parameters
28
- ----------
29
- direction : float
30
- Wind direction
31
- closing_situation: int
32
- Closing situation id
33
- input_variables : list
34
- The input variable symbols (e.q. [u, q])
35
- result_variables : list
36
- The result variable symbols (e.q. [h, hs, tp, tspec, dir])
37
- """
38
- # Save the arguments into the object
39
- self.direction = direction
40
- self.closing_situation = closing_situation
41
- self.input_variables = input_variables
42
- self.result_variables = result_variables
43
-
44
- def initialise(self, table: pd.DataFrame) -> None:
45
- """
46
- Create a LoadingModel from a pandas DataFrame.
47
-
48
- Parameters
49
- ----------
50
- table : pd.DataFrame
51
- DataFrame with all input and output variables.
52
- """
53
- # Rename columns
54
- if any(ivar not in table.columns for ivar in self.input_variables):
55
- raise KeyError(
56
- f"Not all input variables are present. Expected a column for each of: {', '.join(self.input_variables)}, got: {', '.join(table.columns.tolist())}."
57
- )
58
-
59
- # Add the discretisation of each input variable to the object
60
- for key in self.input_variables:
61
- setattr(self, key, np.sort(table[key].unique()))
62
-
63
- # Init an empty grid for each result variable
64
- shape = tuple([len(getattr(self, key)) for key in self.input_variables])
65
- for var in self.result_variables:
66
- setattr(self, var, np.full(shape, np.nan))
67
-
68
- # Determine per input variabele where to put it into the results array
69
- idxs = []
70
- for key in self.input_variables:
71
- idxlist = getattr(self, key).tolist()
72
- idxs.append([idxlist.index(i) for i in table[key].array])
73
-
74
- # Add the results to the result arrays
75
- for rvid in self.result_variables:
76
- arr = getattr(self, rvid)
77
-
78
- # If the result variable is in the dataframe
79
- if rvid in table.columns:
80
- arr[tuple(idxs)] = table[rvid].to_numpy()
81
-
82
- # Otherwise, translate tspec to tp, or tp to tspec
83
- else:
84
- if rvid == "tspec" and ("tp" in table.columns):
85
- arr[tuple(idxs)] = table["tp"] / 1.1
86
- elif rvid == "tp" and ("tspec" in table.columns):
87
- arr[tuple(idxs)] = table["tspec"] * 1.1
88
- else:
89
- raise KeyError(rvid)
90
-
91
- def extend(
92
- self,
93
- input_variable: str,
94
- grid: Union[list, np.ndarray],
95
- include_bounds: bool = False,
96
- merge_grid: bool = True,
97
- ) -> None:
98
- """
99
- Extend the grid of the input variable and therefore also the output variables.
100
-
101
- Parameters
102
- ----------
103
- input_variable : str
104
- The name of the input variable.
105
- grid : Union[list, np.ndarray]
106
- The 1D grid values to which the input variable should be extended.
107
- include_bounds : bool, optional
108
- Whether or not to include values within the upper and lower bound of the input variable (default is False).
109
- merge_grid : bool, optional
110
- Whether or not to merge the new grid with the existing grid of the input variable (default is True).
111
- """
112
- # Haal de huidige discretisatie van de variabele op
113
- xp = getattr(self, input_variable)
114
- axis = self.input_variables.index(input_variable)
115
-
116
- # If include_bounds = True, add values between the min and max, otherwise add all
117
- if not include_bounds:
118
- x = np.array(
119
- [
120
- val
121
- for val in np.atleast_1d(grid)
122
- if not (xp.min() <= val <= xp.max())
123
- ]
124
- )
125
-
126
- # If merge_grid, add the grid to the existing values
127
- if merge_grid:
128
- x = np.array(sorted(set(np.atleast_1d(grid)).union(xp)))
129
-
130
- # If x is empty or the requested values are equal to those already present, continue
131
- if not any(x) or np.array_equal(x, xp):
132
- return None
133
-
134
- # Extend all result variables
135
- intstr = InterpStruct(x=x, xp=xp)
136
- for resvar in self.result_variables:
137
- # Obtain the result variable
138
- arr = getattr(self, resvar)
139
- if np.isnan(arr).any():
140
- raise ValueError(
141
- f'[ERROR] NaN values ({np.isnan(arr).sum()}) in array "{resvar}" to interpolate.'
142
- )
143
-
144
- # Interpolate wave conditions
145
- if resvar in ["hs", "tp", "tspec"]:
146
- arr = np.maximum(0.0, intstr.interp(fp=arr, axis=axis))
147
-
148
- # Interpoleer wave angle
149
- elif resvar == "dir":
150
- arr = intstr.interp_angle(fp=arr, axis=axis)
151
-
152
- # Use of VZM, (TODO find out: interpolate between 0 and 1?)
153
- elif resvar == "vzm":
154
- arr = intstr.interp(fp=arr, axis=axis)
155
-
156
- # Interpolate other values
157
- else:
158
- arr = intstr.interp(fp=arr, axis=axis)
159
-
160
- # Add the extended result variable array back to the object
161
- setattr(self, resvar, arr)
162
-
163
- # Add the extended input variable back to the object
164
- setattr(self, input_variable, x)
165
-
166
- def refine(
167
- self, result_variable: str, grid: Dict[str, Union[list, np.ndarray]]
168
- ) -> np.ndarray:
169
- """
170
- Extend the grid of the input variable and therefore also the output variables.
171
-
172
- Parameters
173
- ----------
174
- input_variable : str
175
- The name of the input variable.
176
- result_variable : str
177
- The name of the output variable.
178
- grid : Dict[str, Union[list, np.ndarray]]
179
- Input variables with their corresponding grid to extend the result_variable to
180
-
181
- Returns
182
- -------
183
- np.ndarray
184
- The adjusted grid.
185
- """
186
- # Controleer of variabele aanwezig is
187
- if result_variable not in self.result_variables:
188
- raise KeyError(
189
- f"[ERROR] Result variable '{result_variable}' not in loading model."
190
- )
191
-
192
- # Obtain the array from the result variable
193
- belasting_int = getattr(self, result_variable)
194
-
195
- # Loop over the different grid items
196
- for inpvar, x in grid.items():
197
- if inpvar not in self.input_variables:
198
- raise KeyError(
199
- f"[ERROR] Input variable '{inpvar}' not in loading model ({', '.join(self.input_variables)})"
200
- )
201
-
202
- # Obtain the current grid and axis
203
- xp = getattr(self, inpvar)
204
- axis = self.input_variables.index(inpvar)
205
-
206
- # If x and xp are equal, no interpolation needed
207
- if np.array_equal(x, xp):
208
- continue
209
-
210
- # If all x in xp, just select the requested values
211
- if np.isin(x, xp).all():
212
- idx = np.isin(xp, x)
213
- belasting_int = np.take(
214
- belasting_int, indices=np.where(idx)[0], axis=axis
215
- )
216
- continue
217
-
218
- # If xp is just one value, duplicate
219
- if len(xp) == 1:
220
- belasting_int = np.tile(belasting_int, (1, 1, len(x)))
221
- continue
222
-
223
- # Interpolate
224
- intstr = InterpStruct(x=x, xp=xp)
225
-
226
- # Interpolate wave conditions
227
- if result_variable in ["hs", "tp", "tspec"]:
228
- belasting_int = np.maximum(
229
- 0.0, intstr.interp(fp=belasting_int, axis=axis)
230
- )
231
-
232
- # Interpolate wave direction
233
- elif result_variable == "dir":
234
- belasting_int = intstr.interp_angle(fp=belasting_int, axis=axis)
235
-
236
- # Use of VZM, (TODO find out: interpolate between 0 and 1?)
237
- elif result_variable == "vzm":
238
- belasting_int = intstr.interp(fp=belasting_int, axis=axis)
239
-
240
- # Interpolate other values
241
- else:
242
- belasting_int = intstr.interp(fp=belasting_int, axis=axis)
243
-
244
- # Return the interpolated array for the result variable
245
- return belasting_int
246
-
247
- def repair(
248
- self,
249
- input_variable: str,
250
- result_variables: Union[str, list] = None,
251
- epsilon: float = 1e-6,
252
- ) -> None:
253
- """
254
- Make the result values of the given output variable monotonically increasing along the axis of a given input variable.
255
-
256
- Parameters
257
- ----------
258
- input_variable : str
259
- The name of the input variable along which the result values should be made monotonically increasing.
260
- result_variables : Union[str, list]
261
- The name of the output variable to be made monotonically increasing.
262
- epsilon : float, optional
263
- The minimum difference between the values of the repaired output variable (default is 1e-6).
264
- """
265
- # Obtain the relevant axis
266
- axis = self.input_variables.index(input_variable)
267
-
268
- # If no result variables are given, take all result variables in the model
269
- if result_variables is None:
270
- result_variables = self.result_variables
271
-
272
- # Loop over the result variables
273
- for var in np.atleast_1d(result_variables):
274
- # Obtain the result variable grid
275
- arr = getattr(self, var)
276
- rows = [np.take(arr, indices=0, axis=axis)]
277
-
278
- # Make monotonous increasing over the axis of the input_variable
279
- for i in range(1, arr.shape[axis]):
280
- last = rows[-1]
281
- nxtt = np.take(arr, indices=i, axis=axis)
282
- rows.append(np.maximum(last + epsilon, nxtt))
283
-
284
- # Add the adjusted grid to the loadingmodel
285
- setattr(self, var, np.stack(rows, axis=axis))
286
-
287
- def calculate_hbn(
288
- self, profile: Profile, qcrit: float, factor_hs: float, factor_tspec: float
289
- ):
290
- """
291
- Add hbn result variables to each of the LoadingModels.
292
- If 'hbn' is already defined, it will overwrite the old result variable.
293
-
294
- Parameters
295
- ----------
296
- profile : Profile
297
- The profile
298
- qcrit : float
299
- The critical discharge
300
- factor_hs : float
301
- Factor for the significant wave height, used for model uncertainty
302
- factor_tspec : float
303
- Factor for the spectral wave period, used for model uncertainty
304
- """
305
- # Controleer of de juiste resultaatwaarden aanwezig zijn
306
- for resvar in ["h", "hs", "tspec", "dir"]:
307
- if not hasattr(self, resvar):
308
- raise KeyError(
309
- f"Resultaatvariabele '{resvar}' is nodig voor kruinhoogteberekening, maar niet aanwezig."
310
- )
311
-
312
- # Prepare wave conditions
313
- _h = self.h.ravel()
314
- _hs = np.array(self.hs * factor_hs).ravel()
315
- _tspec = np.array(self.tspec * factor_tspec).ravel()
316
- _dir = np.array(self.dir).ravel()
317
-
318
- # Calculate HBN
319
- self.hbn = np.reshape(
320
- [profile.calculate_crest_level(qcrit, _h, _hs, _tspec, _dir)], self.h.shape
321
- )
322
-
323
- # Add the result variable
324
- self.result_variables.append("hbn")
1
+ import numpy as np
2
+ import pandas as pd
3
+
4
+ from typing import Dict, Union
5
+
6
+ from ....profile.profile import Profile
7
+ from .....common.interpolate import InterpStruct
8
+
9
+
10
+ class LoadingModel:
11
+ """
12
+ A LoadingModel is a model for one combination of wind direction and closing situation
13
+
14
+ The LoadingModel allows to process the data (e.g. extend, refine or repair)
15
+ """
16
+
17
+ def __init__(
18
+ self,
19
+ direction: float,
20
+ closing_situation: int,
21
+ input_variables: list,
22
+ result_variables: list,
23
+ ):
24
+ """
25
+ Init the LoadingModel.
26
+
27
+ Parameters
28
+ ----------
29
+ direction : float
30
+ Wind direction
31
+ closing_situation: int
32
+ Closing situation id
33
+ input_variables : list
34
+ The input variable symbols (e.q. [u, q])
35
+ result_variables : list
36
+ The result variable symbols (e.q. [h, hs, tp, tspec, dir])
37
+ """
38
+ # Save the arguments into the object
39
+ self.direction = direction
40
+ self.closing_situation = closing_situation
41
+ self.input_variables = input_variables
42
+ self.result_variables = result_variables
43
+
44
+ def initialise(self, table: pd.DataFrame) -> None:
45
+ """
46
+ Create a LoadingModel from a pandas DataFrame.
47
+
48
+ Parameters
49
+ ----------
50
+ table : pd.DataFrame
51
+ DataFrame with all input and output variables.
52
+ """
53
+ # Rename columns
54
+ if any(ivar not in table.columns for ivar in self.input_variables):
55
+ raise KeyError(
56
+ f"Not all input variables are present. Expected a column for each of: {', '.join(self.input_variables)}, got: {', '.join(table.columns.tolist())}."
57
+ )
58
+
59
+ # Add the discretisation of each input variable to the object
60
+ for key in self.input_variables:
61
+ setattr(self, key, np.sort(table[key].unique()))
62
+
63
+ # Init an empty grid for each result variable
64
+ shape = tuple([len(getattr(self, key)) for key in self.input_variables])
65
+ for var in self.result_variables:
66
+ setattr(self, var, np.full(shape, np.nan))
67
+
68
+ # Determine per input variabele where to put it into the results array
69
+ idxs = []
70
+ for key in self.input_variables:
71
+ idxlist = getattr(self, key).tolist()
72
+ idxs.append([idxlist.index(i) for i in table[key].array])
73
+
74
+ # Add the results to the result arrays
75
+ for rvid in self.result_variables:
76
+ arr = getattr(self, rvid)
77
+
78
+ # If the result variable is in the dataframe
79
+ if rvid in table.columns:
80
+ arr[tuple(idxs)] = table[rvid].to_numpy()
81
+
82
+ # Otherwise, translate tspec to tp, or tp to tspec
83
+ else:
84
+ if rvid == "tspec" and ("tp" in table.columns):
85
+ arr[tuple(idxs)] = table["tp"] / 1.1
86
+ elif rvid == "tp" and ("tspec" in table.columns):
87
+ arr[tuple(idxs)] = table["tspec"] * 1.1
88
+ else:
89
+ raise KeyError(rvid)
90
+
91
+ def extend(
92
+ self,
93
+ input_variable: str,
94
+ grid: Union[list, np.ndarray],
95
+ include_bounds: bool = False,
96
+ merge_grid: bool = True,
97
+ ) -> None:
98
+ """
99
+ Extend the grid of the input variable and therefore also the output variables.
100
+
101
+ Parameters
102
+ ----------
103
+ input_variable : str
104
+ The name of the input variable.
105
+ grid : Union[list, np.ndarray]
106
+ The 1D grid values to which the input variable should be extended.
107
+ include_bounds : bool, optional
108
+ Whether or not to include values within the upper and lower bound of the input variable (default is False).
109
+ merge_grid : bool, optional
110
+ Whether or not to merge the new grid with the existing grid of the input variable (default is True).
111
+ """
112
+ # Haal de huidige discretisatie van de variabele op
113
+ xp = getattr(self, input_variable)
114
+ axis = self.input_variables.index(input_variable)
115
+
116
+ # If include_bounds = True, add values between the min and max, otherwise add all
117
+ if not include_bounds:
118
+ x = np.array(
119
+ [
120
+ val
121
+ for val in np.atleast_1d(grid)
122
+ if not (xp.min() <= val <= xp.max())
123
+ ]
124
+ )
125
+
126
+ # If merge_grid, add the grid to the existing values
127
+ if merge_grid:
128
+ x = np.array(sorted(set(np.atleast_1d(grid)).union(xp)))
129
+
130
+ # If x is empty or the requested values are equal to those already present, continue
131
+ if not any(x) or np.array_equal(x, xp):
132
+ return None
133
+
134
+ # Extend all result variables
135
+ intstr = InterpStruct(x=x, xp=xp)
136
+ for resvar in self.result_variables:
137
+ # Obtain the result variable
138
+ arr = getattr(self, resvar)
139
+ if np.isnan(arr).any():
140
+ raise ValueError(
141
+ f'[ERROR] NaN values ({np.isnan(arr).sum()}) in array "{resvar}" to interpolate.'
142
+ )
143
+
144
+ # Interpolate wave conditions
145
+ if resvar in ["hs", "tp", "tspec"]:
146
+ arr = np.maximum(0.0, intstr.interp(fp=arr, axis=axis))
147
+
148
+ # Interpoleer wave angle
149
+ elif resvar == "dir":
150
+ arr = intstr.interp_angle(fp=arr, axis=axis)
151
+
152
+ # Use of VZM, (TODO find out: interpolate between 0 and 1?)
153
+ elif resvar == "vzm":
154
+ arr = intstr.interp(fp=arr, axis=axis)
155
+
156
+ # Interpolate other values
157
+ else:
158
+ arr = intstr.interp(fp=arr, axis=axis)
159
+
160
+ # Add the extended result variable array back to the object
161
+ setattr(self, resvar, arr)
162
+
163
+ # Add the extended input variable back to the object
164
+ setattr(self, input_variable, x)
165
+
166
+ def refine(
167
+ self, result_variable: str, grid: Dict[str, Union[list, np.ndarray]]
168
+ ) -> np.ndarray:
169
+ """
170
+ Extend the grid of the input variable and therefore also the output variables.
171
+
172
+ Parameters
173
+ ----------
174
+ input_variable : str
175
+ The name of the input variable.
176
+ result_variable : str
177
+ The name of the output variable.
178
+ grid : Dict[str, Union[list, np.ndarray]]
179
+ Input variables with their corresponding grid to extend the result_variable to
180
+
181
+ Returns
182
+ -------
183
+ np.ndarray
184
+ The adjusted grid.
185
+ """
186
+ # Controleer of variabele aanwezig is
187
+ if result_variable not in self.result_variables:
188
+ raise KeyError(
189
+ f"[ERROR] Result variable '{result_variable}' not in loading model."
190
+ )
191
+
192
+ # Obtain the array from the result variable
193
+ belasting_int = getattr(self, result_variable)
194
+
195
+ # Loop over the different grid items
196
+ for inpvar, x in grid.items():
197
+ if inpvar not in self.input_variables:
198
+ raise KeyError(
199
+ f"[ERROR] Input variable '{inpvar}' not in loading model ({', '.join(self.input_variables)})"
200
+ )
201
+
202
+ # Obtain the current grid and axis
203
+ xp = getattr(self, inpvar)
204
+ axis = self.input_variables.index(inpvar)
205
+
206
+ # If x and xp are equal, no interpolation needed
207
+ if np.array_equal(x, xp):
208
+ continue
209
+
210
+ # If all x in xp, just select the requested values
211
+ if np.isin(x, xp).all():
212
+ idx = np.isin(xp, x)
213
+ belasting_int = np.take(
214
+ belasting_int, indices=np.where(idx)[0], axis=axis
215
+ )
216
+ continue
217
+
218
+ # If xp is just one value, duplicate
219
+ if len(xp) == 1:
220
+ belasting_int = np.tile(belasting_int, (1, 1, len(x)))
221
+ continue
222
+
223
+ # Interpolate
224
+ intstr = InterpStruct(x=x, xp=xp)
225
+
226
+ # Interpolate wave conditions
227
+ if result_variable in ["hs", "tp", "tspec"]:
228
+ belasting_int = np.maximum(
229
+ 0.0, intstr.interp(fp=belasting_int, axis=axis)
230
+ )
231
+
232
+ # Interpolate wave direction
233
+ elif result_variable == "dir":
234
+ belasting_int = intstr.interp_angle(fp=belasting_int, axis=axis)
235
+
236
+ # Use of VZM, (TODO find out: interpolate between 0 and 1?)
237
+ elif result_variable == "vzm":
238
+ belasting_int = intstr.interp(fp=belasting_int, axis=axis)
239
+
240
+ # Interpolate other values
241
+ else:
242
+ belasting_int = intstr.interp(fp=belasting_int, axis=axis)
243
+
244
+ # Return the interpolated array for the result variable
245
+ return belasting_int
246
+
247
+ def repair(
248
+ self,
249
+ input_variable: str,
250
+ result_variables: Union[str, list] = None,
251
+ epsilon: float = 1e-6,
252
+ ) -> None:
253
+ """
254
+ Make the result values of the given output variable monotonically increasing along the axis of a given input variable.
255
+
256
+ Parameters
257
+ ----------
258
+ input_variable : str
259
+ The name of the input variable along which the result values should be made monotonically increasing.
260
+ result_variables : Union[str, list]
261
+ The name of the output variable to be made monotonically increasing.
262
+ epsilon : float, optional
263
+ The minimum difference between the values of the repaired output variable (default is 1e-6).
264
+ """
265
+ # Obtain the relevant axis
266
+ axis = self.input_variables.index(input_variable)
267
+
268
+ # If no result variables are given, take all result variables in the model
269
+ if result_variables is None:
270
+ result_variables = self.result_variables
271
+
272
+ # Loop over the result variables
273
+ for var in np.atleast_1d(result_variables):
274
+ # Obtain the result variable grid
275
+ arr = getattr(self, var)
276
+ rows = [np.take(arr, indices=0, axis=axis)]
277
+
278
+ # Make monotonous increasing over the axis of the input_variable
279
+ for i in range(1, arr.shape[axis]):
280
+ last = rows[-1]
281
+ nxtt = np.take(arr, indices=i, axis=axis)
282
+ rows.append(np.maximum(last + epsilon, nxtt))
283
+
284
+ # Add the adjusted grid to the loadingmodel
285
+ setattr(self, var, np.stack(rows, axis=axis))
286
+
287
+ def calculate_hbn(
288
+ self, profile: Profile, qcrit: float, factor_hs: float, factor_tspec: float
289
+ ):
290
+ """
291
+ Add hbn result variables to each of the LoadingModels.
292
+ If 'hbn' is already defined, it will overwrite the old result variable.
293
+
294
+ Parameters
295
+ ----------
296
+ profile : Profile
297
+ The profile
298
+ qcrit : float
299
+ The critical discharge
300
+ factor_hs : float
301
+ Factor for the significant wave height, used for model uncertainty
302
+ factor_tspec : float
303
+ Factor for the spectral wave period, used for model uncertainty
304
+ """
305
+ # Controleer of de juiste resultaatwaarden aanwezig zijn
306
+ for resvar in ["h", "hs", "tspec", "dir"]:
307
+ if not hasattr(self, resvar):
308
+ raise KeyError(
309
+ f"Resultaatvariabele '{resvar}' is nodig voor kruinhoogteberekening, maar niet aanwezig."
310
+ )
311
+
312
+ # Prepare wave conditions
313
+ _h = self.h.ravel()
314
+ _hs = np.array(self.hs * factor_hs).ravel()
315
+ _tspec = np.array(self.tspec * factor_tspec).ravel()
316
+ _dir = np.array(self.dir).ravel()
317
+
318
+ # Calculate HBN
319
+ self.hbn = np.reshape(
320
+ [profile.calculate_crest_level(qcrit, _h, _hs, _tspec, _dir)], self.h.shape
321
+ )
322
+
323
+ # Add the result variable
324
+ self.result_variables.append("hbn")