pydra-core 0.0.1__py2.py3-none-any.whl → 0.0.2__py2.py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pydra_core/__init__.py +32 -32
- pydra_core/common/common.py +98 -98
- pydra_core/common/enum.py +63 -63
- pydra_core/common/interpolate.py +345 -345
- pydra_core/common/probability.py +293 -293
- pydra_core/core/calculation.py +51 -51
- pydra_core/core/datamodels/frequency_line.py +60 -60
- pydra_core/core/exceedance_frequency_line.py +224 -224
- pydra_core/core/exceedance_frequency_line_experimental.py +163 -163
- pydra_core/core/hbn.py +226 -226
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017.txt +36 -36
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017_metOnzHeid.txt +45 -45
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_metOnzHeid_v02.txt +50 -50
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_v02.txt +42 -42
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_metOnzHeid_v02.txt +56 -56
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_v02.txt +48 -48
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_metOnzHeid_v02.txt +56 -56
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_v02.txt +48 -48
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_metOnzHeid_v02.txt +50 -50
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_v02.txt +42 -42
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_metOnzHeid_v02.txt +56 -56
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_v02.txt +48 -48
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_metOnzHeid_v02.txt +51 -51
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_v02.txt +44 -44
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_Ref.txt +27 -27
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017.txt +30 -30
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017_metOnzHeid.txt +32 -32
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100_metOnzHeid.txt +38 -38
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_Ref.txt +13 -13
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017.txt +47 -47
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017_metOnzHeid.txt +47 -47
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_Ref.txt +20 -20
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017.txt +33 -33
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017_metOnzHeid.txt +59 -59
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_BenedenRijn.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid_BenedenRijn.txt +65 -65
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_BenedenRijn.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid_BenedenRijn.txt +64 -64
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_BenedenRijn.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid_BenedenRijn.txt +64 -64
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_BenedenRijn.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid_BenedenRijn.txt +64 -64
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_BenedenRijn.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid_BenedenRijn.txt +64 -64
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_BenedenRijn.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid_BenedenRijn.txt +65 -65
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_Ref.txt +22 -22
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017.txt +55 -55
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017_metOnzHeid.txt +55 -55
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015.txt +46 -46
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050.txt +46 -46
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100.txt +46 -46
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015.txt +47 -47
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050.txt +47 -47
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100.txt +47 -47
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_Ref.txt +14 -14
- pydra_core/data/statistics/Golfvorm/Borgharen/Golfvormen_Borgharen.txt +76 -76
- pydra_core/data/statistics/Golfvorm/Dalfsen/Golfvormen_Dalfsen.txt +83 -83
- pydra_core/data/statistics/Golfvorm/Grevelingenmeer/Golfvormen_Grevelingenmeer.txt +33 -33
- pydra_core/data/statistics/Golfvorm/IJsselmeer/Golfvormen_IJsselmeer.txt +83 -83
- pydra_core/data/statistics/Golfvorm/Lith/Golfvormen_Lith.txt +76 -76
- pydra_core/data/statistics/Golfvorm/Lobith/Golfvormen_Lobith.txt +76 -76
- pydra_core/data/statistics/Golfvorm/Markermeer/Golfvormen_Markermeer.txt +139 -139
- pydra_core/data/statistics/Golfvorm/Olst/Golfvormen_Olst.txt +83 -83
- pydra_core/data/statistics/Golfvorm/Veerse Meer/Golfvormen_Veersemeer.txt +53 -53
- pydra_core/data/statistics/Golfvorm/Veluwerandmeer/Golfvormen_Veluwerandmeer.txt +139 -139
- pydra_core/data/statistics/Golfvorm/Volkerak-Zoommeer/Golfvormen_Volkerakzoommeer.txt +73 -73
- pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017.txt +12 -12
- pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017_metOnzHeid.txt +24 -24
- pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_v01.txt +12 -12
- pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017.txt +25 -25
- pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017_metOnzHeid.txt +39 -39
- pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_v01.txt +14 -14
- pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017.txt +18 -18
- pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017_metOnzHeid.txt +37 -37
- pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_v01.txt +10 -10
- pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_excl_peilverhoging.txt +13 -13
- pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_v01.txt +15 -15
- pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017.txt +13 -13
- pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017_metOnzHeid.txt +36 -36
- pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_v01.txt +13 -13
- pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM.txt +17 -17
- pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM_metOnzHeid.txt +42 -42
- pydra_core/data/statistics/Restant/Oosterschelde/BesliskansenOSKering.txt +524 -524
- pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_2023.txt +7 -7
- pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_OS.txt +13 -13
- pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS.txt +14 -14
- pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS_40_60_80uur_2023.txt +16 -16
- pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2008.txt +23 -23
- pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2013.txt +18 -18
- pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2017.txt +18 -18
- pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2023.txt +13 -13
- pydra_core/data/statistics/Restant/Up2U/Up2U10.dat +59 -59
- pydra_core/data/statistics/Restant/Up2U/Up2Up.dat +59 -59
- pydra_core/data/statistics/Restant/Up2U/Up2Ustar.dat +59 -59
- pydra_core/data/statistics/Restant/hulpdijken.txt +59 -59
- pydra_core/data/statistics/Restant/hulpgolfhoogtes.txt +23 -23
- pydra_core/data/statistics/Restant/hulpgolfperiodes.txt +38 -38
- pydra_core/data/statistics/Restant/kansstormduur.txt +8 -8
- pydra_core/data/statistics/Restant/pwind_west.txt +33 -33
- pydra_core/data/statistics/Restant/pwind_west_met_Volkerfactor.txt +33 -33
- pydra_core/data/statistics/Restant/pwind_west_zonder_Volkerfactor.txt +33 -33
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS.txt +21 -21
- pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_16sectoren_2023.txt +23 -23
- pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_2017.txt +21 -21
- pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS_2017.txt +22 -22
- pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Maas 2017.csv +630 -630
- pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Rijn 2017.csv +630 -630
- pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Hollandsche IJsselkering.csv +757 -757
- pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Oosterscheldekering 2017.csv +55080 -55080
- pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_2017.txt +18 -18
- pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_v00.txt +14 -14
- pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_2017.txt +19 -19
- pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_v01.txt +15 -15
- pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_2017.txt +13 -13
- pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_v01.txt +13 -13
- pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_2017.txt +19 -19
- pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_v01.txt +14 -14
- pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_2017.txt +18 -18
- pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_v01.txt +17 -17
- pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_2017.txt +18 -18
- pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_v01.txt +16 -16
- pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_2017.txt +19 -19
- pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_v01.txt +11 -11
- pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_2017.txt +19 -19
- pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_v01.txt +15 -15
- pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_excl_peilverhoging.txt +12 -12
- pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_v01.txt +15 -15
- pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_2017.txt +11 -11
- pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_v01.txt +11 -11
- pydra_core/data/statistics/Topduur/Volkerak-Zoommeer/Topduur_Volkerakzoommeer_BER-VZM.txt +17 -17
- pydra_core/data/statistics/Windrichting/Deelen/Richtingskansen_Deelen_2017.txt +27 -27
- pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust.txt +16 -16
- pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust_2017.txt +23 -23
- pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_16sectoren_OS_2023.txt +30 -30
- pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS.txt +19 -19
- pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS_2017.txt +23 -23
- pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren.txt +19 -19
- pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren_2017.txt +19 -19
- pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_2017.txt +27 -27
- pydra_core/data/statistics/Windrichting/Schiphol/kanswindrichting_v01.txt +28 -28
- pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ.txt +16 -16
- pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ_2017.txt +23 -23
- pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS.txt +16 -16
- pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS_2017.txt +23 -23
- pydra_core/data/statistics/Windsnelheid/De Kooy/OvkansWindsnelheid_Texel.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Hoek van Holland/OvkansWindsnelheid_Hoek van Holland.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/IJmuiden/OvkansWindsnelheid_IJmuiden.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren.txt +50 -50
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol.txt +57 -57
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_10%.txt +63 -63
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_5%.txt +61 -61
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_B_met volker.txt +59 -59
- pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_OS.txt +66 -66
- pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_Vlissingen.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag_metOnzHeid.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/West-Terschelling/OvkansWindsnelheid_West-Tersch.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017.txt +81 -81
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017_metOnzHeid.txt +81 -81
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017.txt +81 -81
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017_metOnzHeid.txt +81 -81
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/OvkansZee_Delfzijl.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017.txt +89 -89
- pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017_metOnzHeid.txt +89 -89
- pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017_metOnzHeid.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Den Helder/OvkansZee_Den Helder.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017_metOnzHeid.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017.txt +87 -87
- pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017_metOnzHeid.txt +87 -87
- pydra_core/data/statistics/Zeewaterstand/Den Oever/OvkansZee_Den Oever.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017.txt +71 -71
- pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017_metOnzHeid.txt +71 -71
- pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017_metOnzHeid.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Hansweert/OvkansZee_Hansweert.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017_metOnzHeid.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Harlingen/OvkansZee_Harlingen.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017_metOnzHeid.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017.txt +83 -83
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017_metOnzHeid.txt +83 -83
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/OvkansZee_Hoek van Holland.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017.txt +86 -86
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017_metOnzHeid.txt +86 -86
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/OvkansZee_Huibertgat.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/OvkansZee_IJmuiden.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/OvkansZee_IJmuiden_virtueel.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017_metOnzHeid.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/OvkansZee_Lauwersoog.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2011.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017_metOnzheid.txt +92 -92
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017_metOnzheid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017.txt +79 -79
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017_metOnzHeid.txt +79 -79
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017.txt +79 -79
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017_metOnzHeid.txt +79 -79
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023_metOnzHeid.txt +73 -73
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZee_OS11.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZeewaterstand_OS.txt +71 -71
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017_metOnzHeid.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/OvkansZee_Vlissingen.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017_metOnzHeid.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/OvkansZee_Vlissingen_virtueel.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017.txt +87 -87
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017_metOnzHeid.txt +87 -87
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017.txt +86 -86
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017_metOnzHeid.txt +86 -86
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/OvkansZee_West-Terschelling.txt +70 -70
- pydra_core/hrdatabase/hrdatabase.py +177 -177
- pydra_core/io/database_hr.py +598 -598
- pydra_core/io/database_settings.py +183 -183
- pydra_core/io/file_hydranl.py +92 -92
- pydra_core/location/location.py +115 -115
- pydra_core/location/model/base_model.py +270 -270
- pydra_core/location/model/loading/loading.py +368 -368
- pydra_core/location/model/loading/loading_factory.py +89 -89
- pydra_core/location/model/loading/loading_model/loading_model.py +324 -324
- pydra_core/location/model/loading/other_systems/loading_wave_overtopping.py +122 -122
- pydra_core/location/model/loading/water_systems/loading_coast.py +54 -54
- pydra_core/location/model/loading/water_systems/loading_eastern_scheldt.py +169 -169
- pydra_core/location/model/loading/water_systems/loading_ijssel_vechtdelta.py +55 -55
- pydra_core/location/model/loading/water_systems/loading_lake.py +55 -55
- pydra_core/location/model/loading/water_systems/loading_lower_rivier.py +68 -68
- pydra_core/location/model/loading/water_systems/loading_upper_river.py +55 -55
- pydra_core/location/model/statistics/other_systems/statistics_wave_overtopping.py +72 -72
- pydra_core/location/model/statistics/statistics.py +171 -171
- pydra_core/location/model/statistics/statistics_factory.py +89 -89
- pydra_core/location/model/statistics/stochastics/barrier/barrier.py +43 -43
- pydra_core/location/model/statistics/stochastics/barrier/barrier_easternscheldt.py +147 -147
- pydra_core/location/model/statistics/stochastics/barrier/barrier_europoort.py +209 -209
- pydra_core/location/model/statistics/stochastics/barrier/barrier_ramspol.py +41 -41
- pydra_core/location/model/statistics/stochastics/barrier/no_barrier.py +21 -21
- pydra_core/location/model/statistics/stochastics/discharge.py +108 -108
- pydra_core/location/model/statistics/stochastics/discrete_probability.py +55 -55
- pydra_core/location/model/statistics/stochastics/lake_level.py +158 -158
- pydra_core/location/model/statistics/stochastics/model_uncertainty.py +358 -358
- pydra_core/location/model/statistics/stochastics/sea_level/sea_level.py +53 -53
- pydra_core/location/model/statistics/stochastics/sea_level/sea_level_lower_river.py +93 -93
- pydra_core/location/model/statistics/stochastics/sea_level/sea_level_point.py +65 -65
- pydra_core/location/model/statistics/stochastics/sea_level/sea_level_triangular.py +158 -158
- pydra_core/location/model/statistics/stochastics/sigma_function.py +24 -24
- pydra_core/location/model/statistics/stochastics/wave_shape.py +624 -624
- pydra_core/location/model/statistics/stochastics/wind_speed.py +196 -196
- pydra_core/location/model/statistics/water_systems/statistics_coast.py +153 -153
- pydra_core/location/model/statistics/water_systems/statistics_eastern_scheldt.py +177 -177
- pydra_core/location/model/statistics/water_systems/statistics_ijssel_vechtdelta.py +229 -229
- pydra_core/location/model/statistics/water_systems/statistics_lake.py +86 -86
- pydra_core/location/model/statistics/water_systems/statistics_lower_river.py +321 -321
- pydra_core/location/model/statistics/water_systems/statistics_upper_river.py +86 -86
- pydra_core/location/model/water_system.py +249 -249
- pydra_core/location/model/wave_overtopping.py +25 -25
- pydra_core/location/profile/foreland.py +246 -246
- pydra_core/location/profile/lib/README.MD +10 -10
- pydra_core/location/profile/profile.py +971 -971
- pydra_core/location/profile/profile_loading.py +473 -473
- pydra_core/location/settings/settings.py +387 -387
- {pydra_core-0.0.1.dist-info → pydra_core-0.0.2.dist-info}/METADATA +18 -3
- pydra_core-0.0.2.dist-info/RECORD +389 -0
- pydra_core-0.0.1.dist-info/RECORD +0 -389
- {pydra_core-0.0.1.dist-info → pydra_core-0.0.2.dist-info}/WHEEL +0 -0
@@ -1,368 +1,368 @@
|
|
1
|
-
import numpy as np
|
2
|
-
|
3
|
-
from abc import ABC, abstractmethod
|
4
|
-
from typing import Tuple, Union
|
5
|
-
|
6
|
-
from ...settings.settings import Settings
|
7
|
-
from ....common.interpolate import InterpStruct
|
8
|
-
# from ....io.database_hr import DatabaseHR
|
9
|
-
|
10
|
-
|
11
|
-
class Loading(ABC):
|
12
|
-
"""
|
13
|
-
Loading Abstract Base Class. This class contains all LoadingModels.
|
14
|
-
|
15
|
-
Attributes
|
16
|
-
----------
|
17
|
-
settings : Settings
|
18
|
-
The Settings object
|
19
|
-
model : dict
|
20
|
-
Dictionary with all LoadingModels (wind direction, closing situation)
|
21
|
-
database : DatabaseHR
|
22
|
-
Connection with HR Database
|
23
|
-
"""
|
24
|
-
|
25
|
-
def __init__(self, settings: Settings):
|
26
|
-
"""
|
27
|
-
Init the Loading object
|
28
|
-
|
29
|
-
Parameters
|
30
|
-
----------
|
31
|
-
settings : Settings
|
32
|
-
The Settings object
|
33
|
-
"""
|
34
|
-
# Save settings and init dictionary for all models
|
35
|
-
self.settings = settings
|
36
|
-
self.model = {}
|
37
|
-
|
38
|
-
@abstractmethod
|
39
|
-
def read_loading(self) -> None:
|
40
|
-
"""
|
41
|
-
Read the HR and create Loading Models
|
42
|
-
"""
|
43
|
-
pass
|
44
|
-
|
45
|
-
def iter_models(self):
|
46
|
-
"""
|
47
|
-
Iterate through each of the LoadingModels.
|
48
|
-
LoadingModels are ordered by WindDirection, ClosingSituation
|
49
|
-
"""
|
50
|
-
for discreet, model in self.model.items():
|
51
|
-
yield discreet, model
|
52
|
-
|
53
|
-
def _extend_loadingmodels(self) -> None:
|
54
|
-
"""
|
55
|
-
Preprocess the LoadingModels.
|
56
|
-
Makes sure the discretisations in every LoadingModel are the same.
|
57
|
-
"""
|
58
|
-
# Obtain the wind directions and closing situations
|
59
|
-
self.r = sorted(set([r[0] for r in list(self.model.keys())]))
|
60
|
-
self.k = sorted(set([k[1] for k in list(self.model.keys())]))
|
61
|
-
|
62
|
-
# Collect all unique wind speeds from all loadingmodels
|
63
|
-
utot = sorted(set([u for _, model in self.iter_models() for u in model.u]))
|
64
|
-
|
65
|
-
# Extend the stochasts in each loadingmodel
|
66
|
-
for _, model in self.iter_models():
|
67
|
-
# Extend the wind speed
|
68
|
-
model.extend("u", utot)
|
69
|
-
|
70
|
-
# Extend for discharge
|
71
|
-
if "q" in model.input_variables:
|
72
|
-
if len(model.q) > 1:
|
73
|
-
model.extend(
|
74
|
-
"q",
|
75
|
-
list(filter(None, [self.settings.q_min, self.settings.q_max])),
|
76
|
-
)
|
77
|
-
|
78
|
-
# Extend for sea level
|
79
|
-
if "m" in model.input_variables:
|
80
|
-
if len(model.m) > 1:
|
81
|
-
model.extend(
|
82
|
-
"m",
|
83
|
-
list(filter(None, [self.settings.m_min, self.settings.m_max])),
|
84
|
-
)
|
85
|
-
|
86
|
-
# Extend for lake level
|
87
|
-
if "a" in model.input_variables:
|
88
|
-
if len(model.a) > 1:
|
89
|
-
model.extend(
|
90
|
-
"a",
|
91
|
-
list(filter(None, [self.settings.a_min, self.settings.a_max])),
|
92
|
-
)
|
93
|
-
|
94
|
-
def repair_loadingmodels(
|
95
|
-
self, result_variables: Union[list, str], epsilon: float = 1e-6
|
96
|
-
) -> None:
|
97
|
-
"""
|
98
|
-
Repair the result variables for all LoadingModels
|
99
|
-
Repairs depending on the '{input_variable}_repair' flag in the Settings
|
100
|
-
|
101
|
-
Parameters
|
102
|
-
----------
|
103
|
-
result_variables : Union[list, str]
|
104
|
-
Result variables
|
105
|
-
epsilon : float
|
106
|
-
The minimum increase when repairing (default : 1e-6)
|
107
|
-
"""
|
108
|
-
# For each LoadingModel (wind direction and closing situation)
|
109
|
-
for _, model in self.iter_models():
|
110
|
-
# Loop over the inputvariables
|
111
|
-
for inpvar in model.input_variables:
|
112
|
-
# Only repair base stochastics
|
113
|
-
if inpvar not in ["u", "m", "q", "a"]:
|
114
|
-
continue
|
115
|
-
|
116
|
-
# Only if the flag '{input_variable}_repair' is True
|
117
|
-
if not getattr(self.settings, f"{inpvar}_repair"):
|
118
|
-
continue
|
119
|
-
|
120
|
-
# For each result variable
|
121
|
-
for rv in np.atleast_1d(result_variables):
|
122
|
-
# If the result variable from the argument is not in the LoadingModel or if it the wave direction, skip
|
123
|
-
if (rv not in model.result_variables) or (rv == "dir"):
|
124
|
-
continue
|
125
|
-
|
126
|
-
# Repair the LoadingModel
|
127
|
-
model.repair(inpvar, rv, epsilon)
|
128
|
-
|
129
|
-
def get_result_variable_statistic(self, result_variable: str, stat: str, args=()):
|
130
|
-
"""
|
131
|
-
Obtain statistics for a result variable. (e.g. min, max)
|
132
|
-
|
133
|
-
Parameters
|
134
|
-
----------
|
135
|
-
result_variable : str
|
136
|
-
Result variable (h, hs, tp, tspec, hbn, qov, etc.)
|
137
|
-
statistic : str
|
138
|
-
NumPy function, e.g. 'max', 'min'
|
139
|
-
args : tuple
|
140
|
-
Optional if required by NumPy function
|
141
|
-
|
142
|
-
Returns
|
143
|
-
-------
|
144
|
-
statistic : float
|
145
|
-
The statistic
|
146
|
-
"""
|
147
|
-
# Obtain raveled result variable array
|
148
|
-
arr = self.get_result_variable_raveled(result_variable)
|
149
|
-
|
150
|
-
# Obtain the statistics using the raveled result variable array
|
151
|
-
result = getattr(np, stat)(arr, *args)
|
152
|
-
|
153
|
-
# Return statistic
|
154
|
-
return result
|
155
|
-
|
156
|
-
def get_result_variable_raveled(self, result_variable: str) -> np.ndarray:
|
157
|
-
"""
|
158
|
-
Obtain all values for a result variable in one array
|
159
|
-
|
160
|
-
Parameters
|
161
|
-
----------
|
162
|
-
result_variable : str
|
163
|
-
Result variable (h, hs, tp, tspec, hbn, qov, etc.)
|
164
|
-
|
165
|
-
Returns
|
166
|
-
-------
|
167
|
-
np.ndarray
|
168
|
-
1D array with all values of a certain result variable
|
169
|
-
"""
|
170
|
-
# Loop over every discrete model and add all result variables values to an array
|
171
|
-
arr = np.concatenate(
|
172
|
-
[
|
173
|
-
getattr(model, result_variable).ravel()
|
174
|
-
for _, model in self.iter_models()
|
175
|
-
],
|
176
|
-
axis=-1,
|
177
|
-
)
|
178
|
-
|
179
|
-
# Return the array
|
180
|
-
return arr
|
181
|
-
|
182
|
-
def get_quantile_range(
|
183
|
-
self,
|
184
|
-
result_variable: str,
|
185
|
-
lower_quantile: float,
|
186
|
-
upper_quantile: float,
|
187
|
-
round_digits: int = None,
|
188
|
-
) -> Tuple[float, float]:
|
189
|
-
"""Geef kwantielen van een gekozen variabele. De uitkomst kan worden
|
190
|
-
afgerond wanneer 'rounddigits' is gegeven.
|
191
|
-
|
192
|
-
Parameters
|
193
|
-
----------
|
194
|
-
result_variable : str
|
195
|
-
Result variable (h, hs, tp, tspec, hbn, qov, etc.)
|
196
|
-
lower_quantile : float
|
197
|
-
Lower quantile, between 0.0 en 1.0
|
198
|
-
upper_quantile : float
|
199
|
-
Upper quantile, between 0.0 en 1.0
|
200
|
-
round_digits : int, optional
|
201
|
-
Aantal digits waarop afgerond wordt, standaard None
|
202
|
-
|
203
|
-
Returns
|
204
|
-
-------
|
205
|
-
tuple
|
206
|
-
Parameterwaarden voor het onder en bovenkwantiel.
|
207
|
-
"""
|
208
|
-
# Obtain all values of the result variable in the discrete models in one array
|
209
|
-
arr = self.get_result_variable_raveled(result_variable)
|
210
|
-
|
211
|
-
# Determine lower and upper quantile
|
212
|
-
lower = np.quantile(arr, lower_quantile)
|
213
|
-
upper = np.quantile(arr, upper_quantile)
|
214
|
-
|
215
|
-
# If required, apply rounding
|
216
|
-
if round_digits is not None:
|
217
|
-
lower = np.round(lower, round_digits)
|
218
|
-
upper = np.round(upper, round_digits)
|
219
|
-
|
220
|
-
# Return the quantiles
|
221
|
-
return lower, upper
|
222
|
-
|
223
|
-
def get_wave_conditions(
|
224
|
-
self,
|
225
|
-
direction: float,
|
226
|
-
waterlevel: Union[int, float, list, np.ndarray],
|
227
|
-
extrapolate: bool = True,
|
228
|
-
) -> Tuple[dict, np.ndarray]:
|
229
|
-
"""
|
230
|
-
Return the wave conditions given a wind direction and wind speed.
|
231
|
-
|
232
|
-
The function assumes the wave conditions are a function of:
|
233
|
-
- The local water level
|
234
|
-
- The wind direction
|
235
|
-
- The wind speed
|
236
|
-
|
237
|
-
Parameters
|
238
|
-
----------
|
239
|
-
direction : float
|
240
|
-
The wind direction
|
241
|
-
waterlevel : Union[float, list, np.ndarray]
|
242
|
-
Water level(s)
|
243
|
-
extrapolate : bool, optional
|
244
|
-
Whether or not to extrapolate (default : True)
|
245
|
-
|
246
|
-
Returns
|
247
|
-
-------
|
248
|
-
Tuple[dict{str : np.ndarray}, np.ndarray]
|
249
|
-
1.) A dictionary with
|
250
|
-
key : The loading variable (e.g. h, hs, tspec, tp, dir)
|
251
|
-
np.ndarray : 2D array with size [u, waterlevel]
|
252
|
-
The wave conditions for different wind speed (nd-array)
|
253
|
-
2.) The wind speed discretistation (1d-array)
|
254
|
-
"""
|
255
|
-
# Convert the water level to a ndarray
|
256
|
-
if isinstance(waterlevel, (float, int)):
|
257
|
-
waterlevel = np.array([waterlevel])
|
258
|
-
elif isinstance(waterlevel, list):
|
259
|
-
waterlevel = np.array(waterlevel)
|
260
|
-
|
261
|
-
# Result variables
|
262
|
-
resvars = ["h", "hs", "tspec", "tp", "dir"]
|
263
|
-
|
264
|
-
# Obtain all loading models for one wind direction
|
265
|
-
loading_r = [model for key, model in self.model.items() if direction in key]
|
266
|
-
first_model = loading_r[0]
|
267
|
-
|
268
|
-
# Create an empty dictionary for the wave conditions
|
269
|
-
wave_conditions = {
|
270
|
-
resvar: np.zeros((len(waterlevel), len(first_model.u)), dtype=np.float32)
|
271
|
-
for resvar in resvars
|
272
|
-
}
|
273
|
-
|
274
|
-
# Change the loading shape such that all wave conditions are available per wind direction and wind speed
|
275
|
-
loading_reshaped = {}
|
276
|
-
|
277
|
-
# For each loading parameter (resvar)
|
278
|
-
for resvar in resvars:
|
279
|
-
# Obtain the loading array for each loading model, stack over the last dimension such
|
280
|
-
# that the input order of the other stochastics are unchanged: e.g. parts[model, u, m, d, p]
|
281
|
-
parts = []
|
282
|
-
for model in loading_r:
|
283
|
-
if hasattr(model, resvar):
|
284
|
-
parts.append(getattr(model, resvar))
|
285
|
-
else:
|
286
|
-
if (resvar == "tp") and hasattr(model, "tspec"):
|
287
|
-
parts.append(getattr(model, "tspec") * 1.1)
|
288
|
-
elif (resvar == "tspec") and hasattr(model, "tp"):
|
289
|
-
parts.append(getattr(model, "tp") / 1.1)
|
290
|
-
else:
|
291
|
-
raise KeyError(f'"{resvar}" not present.')
|
292
|
-
|
293
|
-
# e.g. arr[u, m, d, p, model]
|
294
|
-
arr = np.stack(parts, axis=-1)
|
295
|
-
|
296
|
-
# Reshape
|
297
|
-
upos = first_model.input_variables.index("u")
|
298
|
-
|
299
|
-
# If the axis of the wind speed is not the first dimension, swap axes
|
300
|
-
if upos != 0:
|
301
|
-
# Swap to axis with the wind speed to the first dimension
|
302
|
-
tmparr = np.swapaxes(arr, 0, upos)
|
303
|
-
|
304
|
-
# Reshaped [u, comb van (m, d, p en de sluitsituatie (model))]
|
305
|
-
reshaped = tmparr.reshape((tmparr.shape[0], np.prod(tmparr.shape[1:])))
|
306
|
-
|
307
|
-
# Otherwise, only reshape the array
|
308
|
-
else:
|
309
|
-
reshaped = arr.reshape((arr.shape[0], np.prod(arr.shape[1:])))
|
310
|
-
|
311
|
-
# Determine the order of the water levels
|
312
|
-
if resvar == "h":
|
313
|
-
order = np.argsort(reshaped, axis=1)
|
314
|
-
|
315
|
-
# Sort
|
316
|
-
i = np.arange(reshaped.shape[0])[:, None]
|
317
|
-
loading_reshaped[resvar] = reshaped[i, order]
|
318
|
-
|
319
|
-
# Obtain the waterlevels, over which will be interpolated
|
320
|
-
hbelast = loading_reshaped["h"]
|
321
|
-
|
322
|
-
# Interpolate over the water level, for the wind speed
|
323
|
-
for iu in range(len(first_model.u)):
|
324
|
-
# Prepare interpolation
|
325
|
-
index = np.unique(hbelast[iu].round(3), return_index=True)[1]
|
326
|
-
h_unique = hbelast[iu][index]
|
327
|
-
|
328
|
-
# If there is only one water level given, we dont need to interpolate
|
329
|
-
if len(h_unique) == 1:
|
330
|
-
for resvar in resvars:
|
331
|
-
wave_conditions[resvar][:, iu] = loading_reshaped[resvar][iu][index]
|
332
|
-
|
333
|
-
# For more water levels, we do need to interpolate
|
334
|
-
else:
|
335
|
-
intstr = InterpStruct(x=waterlevel, xp=h_unique)
|
336
|
-
for resvar in resvars:
|
337
|
-
# Dont interpolate the water level, we will add this at the end
|
338
|
-
if resvar == "h":
|
339
|
-
continue
|
340
|
-
fp = loading_reshaped[resvar][iu][index]
|
341
|
-
|
342
|
-
# If all result variables are 0, skip
|
343
|
-
if (fp == 0.0).all():
|
344
|
-
continue
|
345
|
-
|
346
|
-
# If there is only one result variable, apply this one
|
347
|
-
if (fp == fp[0]).all():
|
348
|
-
intbelast = fp[0]
|
349
|
-
|
350
|
-
# Otherwise, interpolate the wave loading
|
351
|
-
else:
|
352
|
-
if resvar == "dir":
|
353
|
-
intbelast = intstr.interp_angle(
|
354
|
-
fp=fp, extrapolate=extrapolate
|
355
|
-
)
|
356
|
-
else:
|
357
|
-
intbelast = np.maximum(
|
358
|
-
0, intstr.interp(fp=fp, extrapolate=extrapolate)
|
359
|
-
)
|
360
|
-
|
361
|
-
# Add the resvar to the result 'wave_conditions' dictionary
|
362
|
-
wave_conditions[resvar][:, iu] = intbelast
|
363
|
-
|
364
|
-
# Add the water level
|
365
|
-
wave_conditions["h"][:, :] = waterlevel[:, None]
|
366
|
-
|
367
|
-
# Return wave conditions and the wind speed discretisation
|
368
|
-
return wave_conditions, first_model.u
|
1
|
+
import numpy as np
|
2
|
+
|
3
|
+
from abc import ABC, abstractmethod
|
4
|
+
from typing import Tuple, Union
|
5
|
+
|
6
|
+
from ...settings.settings import Settings
|
7
|
+
from ....common.interpolate import InterpStruct
|
8
|
+
# from ....io.database_hr import DatabaseHR
|
9
|
+
|
10
|
+
|
11
|
+
class Loading(ABC):
|
12
|
+
"""
|
13
|
+
Loading Abstract Base Class. This class contains all LoadingModels.
|
14
|
+
|
15
|
+
Attributes
|
16
|
+
----------
|
17
|
+
settings : Settings
|
18
|
+
The Settings object
|
19
|
+
model : dict
|
20
|
+
Dictionary with all LoadingModels (wind direction, closing situation)
|
21
|
+
database : DatabaseHR
|
22
|
+
Connection with HR Database
|
23
|
+
"""
|
24
|
+
|
25
|
+
def __init__(self, settings: Settings):
|
26
|
+
"""
|
27
|
+
Init the Loading object
|
28
|
+
|
29
|
+
Parameters
|
30
|
+
----------
|
31
|
+
settings : Settings
|
32
|
+
The Settings object
|
33
|
+
"""
|
34
|
+
# Save settings and init dictionary for all models
|
35
|
+
self.settings = settings
|
36
|
+
self.model = {}
|
37
|
+
|
38
|
+
@abstractmethod
|
39
|
+
def read_loading(self) -> None:
|
40
|
+
"""
|
41
|
+
Read the HR and create Loading Models
|
42
|
+
"""
|
43
|
+
pass
|
44
|
+
|
45
|
+
def iter_models(self):
|
46
|
+
"""
|
47
|
+
Iterate through each of the LoadingModels.
|
48
|
+
LoadingModels are ordered by WindDirection, ClosingSituation
|
49
|
+
"""
|
50
|
+
for discreet, model in self.model.items():
|
51
|
+
yield discreet, model
|
52
|
+
|
53
|
+
def _extend_loadingmodels(self) -> None:
|
54
|
+
"""
|
55
|
+
Preprocess the LoadingModels.
|
56
|
+
Makes sure the discretisations in every LoadingModel are the same.
|
57
|
+
"""
|
58
|
+
# Obtain the wind directions and closing situations
|
59
|
+
self.r = sorted(set([r[0] for r in list(self.model.keys())]))
|
60
|
+
self.k = sorted(set([k[1] for k in list(self.model.keys())]))
|
61
|
+
|
62
|
+
# Collect all unique wind speeds from all loadingmodels
|
63
|
+
utot = sorted(set([u for _, model in self.iter_models() for u in model.u]))
|
64
|
+
|
65
|
+
# Extend the stochasts in each loadingmodel
|
66
|
+
for _, model in self.iter_models():
|
67
|
+
# Extend the wind speed
|
68
|
+
model.extend("u", utot)
|
69
|
+
|
70
|
+
# Extend for discharge
|
71
|
+
if "q" in model.input_variables:
|
72
|
+
if len(model.q) > 1:
|
73
|
+
model.extend(
|
74
|
+
"q",
|
75
|
+
list(filter(None, [self.settings.q_min, self.settings.q_max])),
|
76
|
+
)
|
77
|
+
|
78
|
+
# Extend for sea level
|
79
|
+
if "m" in model.input_variables:
|
80
|
+
if len(model.m) > 1:
|
81
|
+
model.extend(
|
82
|
+
"m",
|
83
|
+
list(filter(None, [self.settings.m_min, self.settings.m_max])),
|
84
|
+
)
|
85
|
+
|
86
|
+
# Extend for lake level
|
87
|
+
if "a" in model.input_variables:
|
88
|
+
if len(model.a) > 1:
|
89
|
+
model.extend(
|
90
|
+
"a",
|
91
|
+
list(filter(None, [self.settings.a_min, self.settings.a_max])),
|
92
|
+
)
|
93
|
+
|
94
|
+
def repair_loadingmodels(
|
95
|
+
self, result_variables: Union[list, str], epsilon: float = 1e-6
|
96
|
+
) -> None:
|
97
|
+
"""
|
98
|
+
Repair the result variables for all LoadingModels
|
99
|
+
Repairs depending on the '{input_variable}_repair' flag in the Settings
|
100
|
+
|
101
|
+
Parameters
|
102
|
+
----------
|
103
|
+
result_variables : Union[list, str]
|
104
|
+
Result variables
|
105
|
+
epsilon : float
|
106
|
+
The minimum increase when repairing (default : 1e-6)
|
107
|
+
"""
|
108
|
+
# For each LoadingModel (wind direction and closing situation)
|
109
|
+
for _, model in self.iter_models():
|
110
|
+
# Loop over the inputvariables
|
111
|
+
for inpvar in model.input_variables:
|
112
|
+
# Only repair base stochastics
|
113
|
+
if inpvar not in ["u", "m", "q", "a"]:
|
114
|
+
continue
|
115
|
+
|
116
|
+
# Only if the flag '{input_variable}_repair' is True
|
117
|
+
if not getattr(self.settings, f"{inpvar}_repair"):
|
118
|
+
continue
|
119
|
+
|
120
|
+
# For each result variable
|
121
|
+
for rv in np.atleast_1d(result_variables):
|
122
|
+
# If the result variable from the argument is not in the LoadingModel or if it the wave direction, skip
|
123
|
+
if (rv not in model.result_variables) or (rv == "dir"):
|
124
|
+
continue
|
125
|
+
|
126
|
+
# Repair the LoadingModel
|
127
|
+
model.repair(inpvar, rv, epsilon)
|
128
|
+
|
129
|
+
def get_result_variable_statistic(self, result_variable: str, stat: str, args=()):
|
130
|
+
"""
|
131
|
+
Obtain statistics for a result variable. (e.g. min, max)
|
132
|
+
|
133
|
+
Parameters
|
134
|
+
----------
|
135
|
+
result_variable : str
|
136
|
+
Result variable (h, hs, tp, tspec, hbn, qov, etc.)
|
137
|
+
statistic : str
|
138
|
+
NumPy function, e.g. 'max', 'min'
|
139
|
+
args : tuple
|
140
|
+
Optional if required by NumPy function
|
141
|
+
|
142
|
+
Returns
|
143
|
+
-------
|
144
|
+
statistic : float
|
145
|
+
The statistic
|
146
|
+
"""
|
147
|
+
# Obtain raveled result variable array
|
148
|
+
arr = self.get_result_variable_raveled(result_variable)
|
149
|
+
|
150
|
+
# Obtain the statistics using the raveled result variable array
|
151
|
+
result = getattr(np, stat)(arr, *args)
|
152
|
+
|
153
|
+
# Return statistic
|
154
|
+
return result
|
155
|
+
|
156
|
+
def get_result_variable_raveled(self, result_variable: str) -> np.ndarray:
|
157
|
+
"""
|
158
|
+
Obtain all values for a result variable in one array
|
159
|
+
|
160
|
+
Parameters
|
161
|
+
----------
|
162
|
+
result_variable : str
|
163
|
+
Result variable (h, hs, tp, tspec, hbn, qov, etc.)
|
164
|
+
|
165
|
+
Returns
|
166
|
+
-------
|
167
|
+
np.ndarray
|
168
|
+
1D array with all values of a certain result variable
|
169
|
+
"""
|
170
|
+
# Loop over every discrete model and add all result variables values to an array
|
171
|
+
arr = np.concatenate(
|
172
|
+
[
|
173
|
+
getattr(model, result_variable).ravel()
|
174
|
+
for _, model in self.iter_models()
|
175
|
+
],
|
176
|
+
axis=-1,
|
177
|
+
)
|
178
|
+
|
179
|
+
# Return the array
|
180
|
+
return arr
|
181
|
+
|
182
|
+
def get_quantile_range(
|
183
|
+
self,
|
184
|
+
result_variable: str,
|
185
|
+
lower_quantile: float,
|
186
|
+
upper_quantile: float,
|
187
|
+
round_digits: int = None,
|
188
|
+
) -> Tuple[float, float]:
|
189
|
+
"""Geef kwantielen van een gekozen variabele. De uitkomst kan worden
|
190
|
+
afgerond wanneer 'rounddigits' is gegeven.
|
191
|
+
|
192
|
+
Parameters
|
193
|
+
----------
|
194
|
+
result_variable : str
|
195
|
+
Result variable (h, hs, tp, tspec, hbn, qov, etc.)
|
196
|
+
lower_quantile : float
|
197
|
+
Lower quantile, between 0.0 en 1.0
|
198
|
+
upper_quantile : float
|
199
|
+
Upper quantile, between 0.0 en 1.0
|
200
|
+
round_digits : int, optional
|
201
|
+
Aantal digits waarop afgerond wordt, standaard None
|
202
|
+
|
203
|
+
Returns
|
204
|
+
-------
|
205
|
+
tuple
|
206
|
+
Parameterwaarden voor het onder en bovenkwantiel.
|
207
|
+
"""
|
208
|
+
# Obtain all values of the result variable in the discrete models in one array
|
209
|
+
arr = self.get_result_variable_raveled(result_variable)
|
210
|
+
|
211
|
+
# Determine lower and upper quantile
|
212
|
+
lower = np.quantile(arr, lower_quantile)
|
213
|
+
upper = np.quantile(arr, upper_quantile)
|
214
|
+
|
215
|
+
# If required, apply rounding
|
216
|
+
if round_digits is not None:
|
217
|
+
lower = np.round(lower, round_digits)
|
218
|
+
upper = np.round(upper, round_digits)
|
219
|
+
|
220
|
+
# Return the quantiles
|
221
|
+
return lower, upper
|
222
|
+
|
223
|
+
def get_wave_conditions(
|
224
|
+
self,
|
225
|
+
direction: float,
|
226
|
+
waterlevel: Union[int, float, list, np.ndarray],
|
227
|
+
extrapolate: bool = True,
|
228
|
+
) -> Tuple[dict, np.ndarray]:
|
229
|
+
"""
|
230
|
+
Return the wave conditions given a wind direction and wind speed.
|
231
|
+
|
232
|
+
The function assumes the wave conditions are a function of:
|
233
|
+
- The local water level
|
234
|
+
- The wind direction
|
235
|
+
- The wind speed
|
236
|
+
|
237
|
+
Parameters
|
238
|
+
----------
|
239
|
+
direction : float
|
240
|
+
The wind direction
|
241
|
+
waterlevel : Union[float, list, np.ndarray]
|
242
|
+
Water level(s)
|
243
|
+
extrapolate : bool, optional
|
244
|
+
Whether or not to extrapolate (default : True)
|
245
|
+
|
246
|
+
Returns
|
247
|
+
-------
|
248
|
+
Tuple[dict{str : np.ndarray}, np.ndarray]
|
249
|
+
1.) A dictionary with
|
250
|
+
key : The loading variable (e.g. h, hs, tspec, tp, dir)
|
251
|
+
np.ndarray : 2D array with size [u, waterlevel]
|
252
|
+
The wave conditions for different wind speed (nd-array)
|
253
|
+
2.) The wind speed discretistation (1d-array)
|
254
|
+
"""
|
255
|
+
# Convert the water level to a ndarray
|
256
|
+
if isinstance(waterlevel, (float, int)):
|
257
|
+
waterlevel = np.array([waterlevel])
|
258
|
+
elif isinstance(waterlevel, list):
|
259
|
+
waterlevel = np.array(waterlevel)
|
260
|
+
|
261
|
+
# Result variables
|
262
|
+
resvars = ["h", "hs", "tspec", "tp", "dir"]
|
263
|
+
|
264
|
+
# Obtain all loading models for one wind direction
|
265
|
+
loading_r = [model for key, model in self.model.items() if direction in key]
|
266
|
+
first_model = loading_r[0]
|
267
|
+
|
268
|
+
# Create an empty dictionary for the wave conditions
|
269
|
+
wave_conditions = {
|
270
|
+
resvar: np.zeros((len(waterlevel), len(first_model.u)), dtype=np.float32)
|
271
|
+
for resvar in resvars
|
272
|
+
}
|
273
|
+
|
274
|
+
# Change the loading shape such that all wave conditions are available per wind direction and wind speed
|
275
|
+
loading_reshaped = {}
|
276
|
+
|
277
|
+
# For each loading parameter (resvar)
|
278
|
+
for resvar in resvars:
|
279
|
+
# Obtain the loading array for each loading model, stack over the last dimension such
|
280
|
+
# that the input order of the other stochastics are unchanged: e.g. parts[model, u, m, d, p]
|
281
|
+
parts = []
|
282
|
+
for model in loading_r:
|
283
|
+
if hasattr(model, resvar):
|
284
|
+
parts.append(getattr(model, resvar))
|
285
|
+
else:
|
286
|
+
if (resvar == "tp") and hasattr(model, "tspec"):
|
287
|
+
parts.append(getattr(model, "tspec") * 1.1)
|
288
|
+
elif (resvar == "tspec") and hasattr(model, "tp"):
|
289
|
+
parts.append(getattr(model, "tp") / 1.1)
|
290
|
+
else:
|
291
|
+
raise KeyError(f'"{resvar}" not present.')
|
292
|
+
|
293
|
+
# e.g. arr[u, m, d, p, model]
|
294
|
+
arr = np.stack(parts, axis=-1)
|
295
|
+
|
296
|
+
# Reshape
|
297
|
+
upos = first_model.input_variables.index("u")
|
298
|
+
|
299
|
+
# If the axis of the wind speed is not the first dimension, swap axes
|
300
|
+
if upos != 0:
|
301
|
+
# Swap to axis with the wind speed to the first dimension
|
302
|
+
tmparr = np.swapaxes(arr, 0, upos)
|
303
|
+
|
304
|
+
# Reshaped [u, comb van (m, d, p en de sluitsituatie (model))]
|
305
|
+
reshaped = tmparr.reshape((tmparr.shape[0], np.prod(tmparr.shape[1:])))
|
306
|
+
|
307
|
+
# Otherwise, only reshape the array
|
308
|
+
else:
|
309
|
+
reshaped = arr.reshape((arr.shape[0], np.prod(arr.shape[1:])))
|
310
|
+
|
311
|
+
# Determine the order of the water levels
|
312
|
+
if resvar == "h":
|
313
|
+
order = np.argsort(reshaped, axis=1)
|
314
|
+
|
315
|
+
# Sort
|
316
|
+
i = np.arange(reshaped.shape[0])[:, None]
|
317
|
+
loading_reshaped[resvar] = reshaped[i, order]
|
318
|
+
|
319
|
+
# Obtain the waterlevels, over which will be interpolated
|
320
|
+
hbelast = loading_reshaped["h"]
|
321
|
+
|
322
|
+
# Interpolate over the water level, for the wind speed
|
323
|
+
for iu in range(len(first_model.u)):
|
324
|
+
# Prepare interpolation
|
325
|
+
index = np.unique(hbelast[iu].round(3), return_index=True)[1]
|
326
|
+
h_unique = hbelast[iu][index]
|
327
|
+
|
328
|
+
# If there is only one water level given, we dont need to interpolate
|
329
|
+
if len(h_unique) == 1:
|
330
|
+
for resvar in resvars:
|
331
|
+
wave_conditions[resvar][:, iu] = loading_reshaped[resvar][iu][index]
|
332
|
+
|
333
|
+
# For more water levels, we do need to interpolate
|
334
|
+
else:
|
335
|
+
intstr = InterpStruct(x=waterlevel, xp=h_unique)
|
336
|
+
for resvar in resvars:
|
337
|
+
# Dont interpolate the water level, we will add this at the end
|
338
|
+
if resvar == "h":
|
339
|
+
continue
|
340
|
+
fp = loading_reshaped[resvar][iu][index]
|
341
|
+
|
342
|
+
# If all result variables are 0, skip
|
343
|
+
if (fp == 0.0).all():
|
344
|
+
continue
|
345
|
+
|
346
|
+
# If there is only one result variable, apply this one
|
347
|
+
if (fp == fp[0]).all():
|
348
|
+
intbelast = fp[0]
|
349
|
+
|
350
|
+
# Otherwise, interpolate the wave loading
|
351
|
+
else:
|
352
|
+
if resvar == "dir":
|
353
|
+
intbelast = intstr.interp_angle(
|
354
|
+
fp=fp, extrapolate=extrapolate
|
355
|
+
)
|
356
|
+
else:
|
357
|
+
intbelast = np.maximum(
|
358
|
+
0, intstr.interp(fp=fp, extrapolate=extrapolate)
|
359
|
+
)
|
360
|
+
|
361
|
+
# Add the resvar to the result 'wave_conditions' dictionary
|
362
|
+
wave_conditions[resvar][:, iu] = intbelast
|
363
|
+
|
364
|
+
# Add the water level
|
365
|
+
wave_conditions["h"][:, :] = waterlevel[:, None]
|
366
|
+
|
367
|
+
# Return wave conditions and the wind speed discretisation
|
368
|
+
return wave_conditions, first_model.u
|