pydra-core 0.0.1__py2.py3-none-any.whl → 0.0.2__py2.py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (364) hide show
  1. pydra_core/__init__.py +32 -32
  2. pydra_core/common/common.py +98 -98
  3. pydra_core/common/enum.py +63 -63
  4. pydra_core/common/interpolate.py +345 -345
  5. pydra_core/common/probability.py +293 -293
  6. pydra_core/core/calculation.py +51 -51
  7. pydra_core/core/datamodels/frequency_line.py +60 -60
  8. pydra_core/core/exceedance_frequency_line.py +224 -224
  9. pydra_core/core/exceedance_frequency_line_experimental.py +163 -163
  10. pydra_core/core/hbn.py +226 -226
  11. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017.txt +36 -36
  12. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017_metOnzHeid.txt +45 -45
  13. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_metOnzHeid_v02.txt +50 -50
  14. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_v02.txt +42 -42
  15. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_metOnzHeid_v02.txt +56 -56
  16. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_v02.txt +48 -48
  17. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_metOnzHeid_v02.txt +56 -56
  18. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_v02.txt +48 -48
  19. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_metOnzHeid_v02.txt +50 -50
  20. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_v02.txt +42 -42
  21. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_metOnzHeid_v02.txt +56 -56
  22. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_v02.txt +48 -48
  23. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_metOnzHeid_v02.txt +51 -51
  24. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_v02.txt +44 -44
  25. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_Ref.txt +27 -27
  26. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017.txt +30 -30
  27. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017_metOnzHeid.txt +32 -32
  28. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015.txt +44 -44
  29. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015_metOnzHeid.txt +33 -33
  30. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050.txt +44 -44
  31. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050_metOnzHeid.txt +33 -33
  32. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100.txt +44 -44
  33. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100_metOnzHeid.txt +38 -38
  34. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015.txt +44 -44
  35. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015_metOnzHeid.txt +33 -33
  36. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050.txt +44 -44
  37. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050_metOnzHeid.txt +33 -33
  38. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100.txt +44 -44
  39. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100_metOnzHeid.txt +33 -33
  40. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_Ref.txt +13 -13
  41. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017.txt +47 -47
  42. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017_metOnzHeid.txt +47 -47
  43. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015.txt +49 -49
  44. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +58 -58
  45. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050.txt +49 -49
  46. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +58 -58
  47. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100.txt +49 -49
  48. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +58 -58
  49. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015.txt +49 -49
  50. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +58 -58
  51. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050.txt +49 -49
  52. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +58 -58
  53. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100.txt +49 -49
  54. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +58 -58
  55. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_Ref.txt +20 -20
  56. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017.txt +33 -33
  57. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017_metOnzHeid.txt +59 -59
  58. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015.txt +49 -49
  59. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_BenedenRijn.txt +49 -49
  60. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +62 -62
  61. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid_BenedenRijn.txt +65 -65
  62. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050.txt +49 -49
  63. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_BenedenRijn.txt +49 -49
  64. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +62 -62
  65. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid_BenedenRijn.txt +64 -64
  66. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100.txt +49 -49
  67. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_BenedenRijn.txt +49 -49
  68. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +62 -62
  69. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid_BenedenRijn.txt +64 -64
  70. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015.txt +50 -50
  71. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_BenedenRijn.txt +50 -50
  72. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +62 -62
  73. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid_BenedenRijn.txt +64 -64
  74. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050.txt +50 -50
  75. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_BenedenRijn.txt +50 -50
  76. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +62 -62
  77. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid_BenedenRijn.txt +64 -64
  78. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100.txt +50 -50
  79. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_BenedenRijn.txt +50 -50
  80. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +62 -62
  81. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid_BenedenRijn.txt +65 -65
  82. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_Ref.txt +22 -22
  83. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017.txt +55 -55
  84. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017_metOnzHeid.txt +55 -55
  85. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015.txt +46 -46
  86. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015_metOnzHeid.txt +64 -64
  87. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050.txt +46 -46
  88. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050_metOnzHeid.txt +64 -64
  89. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100.txt +46 -46
  90. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100_metOnzHeid.txt +64 -64
  91. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015.txt +47 -47
  92. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015_metOnzHeid.txt +64 -64
  93. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050.txt +47 -47
  94. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050_metOnzHeid.txt +64 -64
  95. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100.txt +47 -47
  96. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100_metOnzHeid.txt +64 -64
  97. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_Ref.txt +14 -14
  98. pydra_core/data/statistics/Golfvorm/Borgharen/Golfvormen_Borgharen.txt +76 -76
  99. pydra_core/data/statistics/Golfvorm/Dalfsen/Golfvormen_Dalfsen.txt +83 -83
  100. pydra_core/data/statistics/Golfvorm/Grevelingenmeer/Golfvormen_Grevelingenmeer.txt +33 -33
  101. pydra_core/data/statistics/Golfvorm/IJsselmeer/Golfvormen_IJsselmeer.txt +83 -83
  102. pydra_core/data/statistics/Golfvorm/Lith/Golfvormen_Lith.txt +76 -76
  103. pydra_core/data/statistics/Golfvorm/Lobith/Golfvormen_Lobith.txt +76 -76
  104. pydra_core/data/statistics/Golfvorm/Markermeer/Golfvormen_Markermeer.txt +139 -139
  105. pydra_core/data/statistics/Golfvorm/Olst/Golfvormen_Olst.txt +83 -83
  106. pydra_core/data/statistics/Golfvorm/Veerse Meer/Golfvormen_Veersemeer.txt +53 -53
  107. pydra_core/data/statistics/Golfvorm/Veluwerandmeer/Golfvormen_Veluwerandmeer.txt +139 -139
  108. pydra_core/data/statistics/Golfvorm/Volkerak-Zoommeer/Golfvormen_Volkerakzoommeer.txt +73 -73
  109. pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017.txt +12 -12
  110. pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017_metOnzHeid.txt +24 -24
  111. pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_v01.txt +12 -12
  112. pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017.txt +25 -25
  113. pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017_metOnzHeid.txt +39 -39
  114. pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_v01.txt +14 -14
  115. pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017.txt +18 -18
  116. pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017_metOnzHeid.txt +37 -37
  117. pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_v01.txt +10 -10
  118. pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_excl_peilverhoging.txt +13 -13
  119. pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_v01.txt +15 -15
  120. pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017.txt +13 -13
  121. pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017_metOnzHeid.txt +36 -36
  122. pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_v01.txt +13 -13
  123. pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM.txt +17 -17
  124. pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM_metOnzHeid.txt +42 -42
  125. pydra_core/data/statistics/Restant/Oosterschelde/BesliskansenOSKering.txt +524 -524
  126. pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_2023.txt +7 -7
  127. pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_OS.txt +13 -13
  128. pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS.txt +14 -14
  129. pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS_40_60_80uur_2023.txt +16 -16
  130. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2008.txt +23 -23
  131. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2013.txt +18 -18
  132. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2017.txt +18 -18
  133. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2023.txt +13 -13
  134. pydra_core/data/statistics/Restant/Up2U/Up2U10.dat +59 -59
  135. pydra_core/data/statistics/Restant/Up2U/Up2Up.dat +59 -59
  136. pydra_core/data/statistics/Restant/Up2U/Up2Ustar.dat +59 -59
  137. pydra_core/data/statistics/Restant/hulpdijken.txt +59 -59
  138. pydra_core/data/statistics/Restant/hulpgolfhoogtes.txt +23 -23
  139. pydra_core/data/statistics/Restant/hulpgolfperiodes.txt +38 -38
  140. pydra_core/data/statistics/Restant/kansstormduur.txt +8 -8
  141. pydra_core/data/statistics/Restant/pwind_west.txt +33 -33
  142. pydra_core/data/statistics/Restant/pwind_west_met_Volkerfactor.txt +33 -33
  143. pydra_core/data/statistics/Restant/pwind_west_zonder_Volkerfactor.txt +33 -33
  144. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden.txt +18 -18
  145. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden_2017.txt +22 -22
  146. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord.txt +18 -18
  147. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord_2017.txt +22 -22
  148. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid.txt +18 -18
  149. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid_2017.txt +22 -22
  150. pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS.txt +21 -21
  151. pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_16sectoren_2023.txt +23 -23
  152. pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_2017.txt +21 -21
  153. pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost.txt +18 -18
  154. pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost_2017.txt +22 -22
  155. pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west.txt +18 -18
  156. pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west_2017.txt +22 -22
  157. pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS.txt +18 -18
  158. pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS_2017.txt +22 -22
  159. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Maas 2017.csv +630 -630
  160. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Rijn 2017.csv +630 -630
  161. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Hollandsche IJsselkering.csv +757 -757
  162. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Oosterscheldekering 2017.csv +55080 -55080
  163. pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_2017.txt +18 -18
  164. pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_v00.txt +14 -14
  165. pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_2017.txt +19 -19
  166. pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_v01.txt +15 -15
  167. pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_2017.txt +13 -13
  168. pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_v01.txt +13 -13
  169. pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_2017.txt +19 -19
  170. pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_v01.txt +14 -14
  171. pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_2017.txt +18 -18
  172. pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_v01.txt +17 -17
  173. pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_2017.txt +18 -18
  174. pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_v01.txt +16 -16
  175. pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_2017.txt +19 -19
  176. pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_v01.txt +11 -11
  177. pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_2017.txt +19 -19
  178. pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_v01.txt +15 -15
  179. pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_excl_peilverhoging.txt +12 -12
  180. pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_v01.txt +15 -15
  181. pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_2017.txt +11 -11
  182. pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_v01.txt +11 -11
  183. pydra_core/data/statistics/Topduur/Volkerak-Zoommeer/Topduur_Volkerakzoommeer_BER-VZM.txt +17 -17
  184. pydra_core/data/statistics/Windrichting/Deelen/Richtingskansen_Deelen_2017.txt +27 -27
  185. pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust.txt +16 -16
  186. pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust_2017.txt +23 -23
  187. pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_16sectoren_OS_2023.txt +30 -30
  188. pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS.txt +19 -19
  189. pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS_2017.txt +23 -23
  190. pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren.txt +19 -19
  191. pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren_2017.txt +19 -19
  192. pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_2017.txt +27 -27
  193. pydra_core/data/statistics/Windrichting/Schiphol/kanswindrichting_v01.txt +28 -28
  194. pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ.txt +16 -16
  195. pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ_2017.txt +23 -23
  196. pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS.txt +16 -16
  197. pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS_2017.txt +23 -23
  198. pydra_core/data/statistics/Windsnelheid/De Kooy/OvkansWindsnelheid_Texel.txt +69 -69
  199. pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017.txt +91 -91
  200. pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017_metOnzHeid.txt +91 -91
  201. pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017.txt +90 -90
  202. pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017_metOnzHeid.txt +90 -90
  203. pydra_core/data/statistics/Windsnelheid/Hoek van Holland/OvkansWindsnelheid_Hoek van Holland.txt +69 -69
  204. pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017.txt +91 -91
  205. pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017_metOnzHeid.txt +91 -91
  206. pydra_core/data/statistics/Windsnelheid/IJmuiden/OvkansWindsnelheid_IJmuiden.txt +69 -69
  207. pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017.txt +91 -91
  208. pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017_metOnzHeid.txt +91 -91
  209. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren.txt +50 -50
  210. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017.txt +90 -90
  211. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metOnzHeid.txt +90 -90
  212. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag.txt +96 -96
  213. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
  214. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag.txt +96 -96
  215. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
  216. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017.txt +90 -90
  217. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017_metOnzHeid.txt +90 -90
  218. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017.txt +90 -90
  219. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017_metOnzHeid.txt +90 -90
  220. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol.txt +57 -57
  221. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_10%.txt +63 -63
  222. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_5%.txt +61 -61
  223. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_B_met volker.txt +59 -59
  224. pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_OS.txt +66 -66
  225. pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_Vlissingen.txt +69 -69
  226. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023.txt +91 -91
  227. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023_metOnzHeid.txt +90 -90
  228. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017.txt +91 -91
  229. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metOnzHeid.txt +91 -91
  230. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag.txt +96 -96
  231. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag_metOnzHeid.txt +96 -96
  232. pydra_core/data/statistics/Windsnelheid/West-Terschelling/OvkansWindsnelheid_West-Tersch.txt +69 -69
  233. pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017.txt +91 -91
  234. pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017_metOnzHeid.txt +91 -91
  235. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017.txt +81 -81
  236. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017_metOnzHeid.txt +81 -81
  237. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017.txt +81 -81
  238. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017_metOnzHeid.txt +81 -81
  239. pydra_core/data/statistics/Zeewaterstand/Delfzijl/OvkansZee_Delfzijl.txt +70 -70
  240. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017.txt +89 -89
  241. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017_metOnzHeid.txt +89 -89
  242. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017.txt +88 -88
  243. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017_metOnzHeid.txt +88 -88
  244. pydra_core/data/statistics/Zeewaterstand/Den Helder/OvkansZee_Den Helder.txt +70 -70
  245. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017.txt +88 -88
  246. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017_metOnzHeid.txt +88 -88
  247. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017.txt +87 -87
  248. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017_metOnzHeid.txt +87 -87
  249. pydra_core/data/statistics/Zeewaterstand/Den Oever/OvkansZee_Den Oever.txt +70 -70
  250. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017.txt +71 -71
  251. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017_metOnzHeid.txt +71 -71
  252. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017.txt +70 -70
  253. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017_metOnzHeid.txt +70 -70
  254. pydra_core/data/statistics/Zeewaterstand/Hansweert/OvkansZee_Hansweert.txt +70 -70
  255. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017.txt +85 -85
  256. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  257. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017.txt +84 -84
  258. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017_metOnzHeid.txt +84 -84
  259. pydra_core/data/statistics/Zeewaterstand/Harlingen/OvkansZee_Harlingen.txt +70 -70
  260. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017.txt +84 -84
  261. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017_metOnzHeid.txt +84 -84
  262. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017.txt +83 -83
  263. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017_metOnzHeid.txt +83 -83
  264. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/OvkansZee_Hoek van Holland.txt +70 -70
  265. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017.txt +86 -86
  266. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017_metOnzHeid.txt +86 -86
  267. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017.txt +85 -85
  268. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017_metOnzHeid.txt +85 -85
  269. pydra_core/data/statistics/Zeewaterstand/Huibertgat/OvkansZee_Huibertgat.txt +70 -70
  270. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017.txt +85 -85
  271. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  272. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017.txt +85 -85
  273. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017_metOnzHeid.txt +85 -85
  274. pydra_core/data/statistics/Zeewaterstand/IJmuiden/OvkansZee_IJmuiden.txt +70 -70
  275. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017.txt +85 -85
  276. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  277. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017.txt +85 -85
  278. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017_metOnzHeid.txt +85 -85
  279. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/OvkansZee_IJmuiden_virtueel.txt +70 -70
  280. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017.txt +85 -85
  281. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  282. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017.txt +84 -84
  283. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017_metOnzHeid.txt +84 -84
  284. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/OvkansZee_Lauwersoog.txt +70 -70
  285. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2011.txt +88 -88
  286. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017.txt +88 -88
  287. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017_metOnzheid.txt +92 -92
  288. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017.txt +85 -85
  289. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017_metOnzheid.txt +85 -85
  290. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017.txt +79 -79
  291. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017_metOnzHeid.txt +79 -79
  292. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017.txt +79 -79
  293. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017_metOnzHeid.txt +79 -79
  294. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023.txt +74 -74
  295. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023_metOnzHeid.txt +73 -73
  296. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZee_OS11.txt +70 -70
  297. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZeewaterstand_OS.txt +71 -71
  298. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017.txt +74 -74
  299. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
  300. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017.txt +74 -74
  301. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017_metOnzHeid.txt +74 -74
  302. pydra_core/data/statistics/Zeewaterstand/Vlissingen/OvkansZee_Vlissingen.txt +70 -70
  303. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017.txt +74 -74
  304. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
  305. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017.txt +74 -74
  306. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017_metOnzHeid.txt +74 -74
  307. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/OvkansZee_Vlissingen_virtueel.txt +70 -70
  308. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017.txt +87 -87
  309. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017_metOnzHeid.txt +87 -87
  310. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017.txt +86 -86
  311. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017_metOnzHeid.txt +86 -86
  312. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/OvkansZee_West-Terschelling.txt +70 -70
  313. pydra_core/hrdatabase/hrdatabase.py +177 -177
  314. pydra_core/io/database_hr.py +598 -598
  315. pydra_core/io/database_settings.py +183 -183
  316. pydra_core/io/file_hydranl.py +92 -92
  317. pydra_core/location/location.py +115 -115
  318. pydra_core/location/model/base_model.py +270 -270
  319. pydra_core/location/model/loading/loading.py +368 -368
  320. pydra_core/location/model/loading/loading_factory.py +89 -89
  321. pydra_core/location/model/loading/loading_model/loading_model.py +324 -324
  322. pydra_core/location/model/loading/other_systems/loading_wave_overtopping.py +122 -122
  323. pydra_core/location/model/loading/water_systems/loading_coast.py +54 -54
  324. pydra_core/location/model/loading/water_systems/loading_eastern_scheldt.py +169 -169
  325. pydra_core/location/model/loading/water_systems/loading_ijssel_vechtdelta.py +55 -55
  326. pydra_core/location/model/loading/water_systems/loading_lake.py +55 -55
  327. pydra_core/location/model/loading/water_systems/loading_lower_rivier.py +68 -68
  328. pydra_core/location/model/loading/water_systems/loading_upper_river.py +55 -55
  329. pydra_core/location/model/statistics/other_systems/statistics_wave_overtopping.py +72 -72
  330. pydra_core/location/model/statistics/statistics.py +171 -171
  331. pydra_core/location/model/statistics/statistics_factory.py +89 -89
  332. pydra_core/location/model/statistics/stochastics/barrier/barrier.py +43 -43
  333. pydra_core/location/model/statistics/stochastics/barrier/barrier_easternscheldt.py +147 -147
  334. pydra_core/location/model/statistics/stochastics/barrier/barrier_europoort.py +209 -209
  335. pydra_core/location/model/statistics/stochastics/barrier/barrier_ramspol.py +41 -41
  336. pydra_core/location/model/statistics/stochastics/barrier/no_barrier.py +21 -21
  337. pydra_core/location/model/statistics/stochastics/discharge.py +108 -108
  338. pydra_core/location/model/statistics/stochastics/discrete_probability.py +55 -55
  339. pydra_core/location/model/statistics/stochastics/lake_level.py +158 -158
  340. pydra_core/location/model/statistics/stochastics/model_uncertainty.py +358 -358
  341. pydra_core/location/model/statistics/stochastics/sea_level/sea_level.py +53 -53
  342. pydra_core/location/model/statistics/stochastics/sea_level/sea_level_lower_river.py +93 -93
  343. pydra_core/location/model/statistics/stochastics/sea_level/sea_level_point.py +65 -65
  344. pydra_core/location/model/statistics/stochastics/sea_level/sea_level_triangular.py +158 -158
  345. pydra_core/location/model/statistics/stochastics/sigma_function.py +24 -24
  346. pydra_core/location/model/statistics/stochastics/wave_shape.py +624 -624
  347. pydra_core/location/model/statistics/stochastics/wind_speed.py +196 -196
  348. pydra_core/location/model/statistics/water_systems/statistics_coast.py +153 -153
  349. pydra_core/location/model/statistics/water_systems/statistics_eastern_scheldt.py +177 -177
  350. pydra_core/location/model/statistics/water_systems/statistics_ijssel_vechtdelta.py +229 -229
  351. pydra_core/location/model/statistics/water_systems/statistics_lake.py +86 -86
  352. pydra_core/location/model/statistics/water_systems/statistics_lower_river.py +321 -321
  353. pydra_core/location/model/statistics/water_systems/statistics_upper_river.py +86 -86
  354. pydra_core/location/model/water_system.py +249 -249
  355. pydra_core/location/model/wave_overtopping.py +25 -25
  356. pydra_core/location/profile/foreland.py +246 -246
  357. pydra_core/location/profile/lib/README.MD +10 -10
  358. pydra_core/location/profile/profile.py +971 -971
  359. pydra_core/location/profile/profile_loading.py +473 -473
  360. pydra_core/location/settings/settings.py +387 -387
  361. {pydra_core-0.0.1.dist-info → pydra_core-0.0.2.dist-info}/METADATA +18 -3
  362. pydra_core-0.0.2.dist-info/RECORD +389 -0
  363. pydra_core-0.0.1.dist-info/RECORD +0 -389
  364. {pydra_core-0.0.1.dist-info → pydra_core-0.0.2.dist-info}/WHEEL +0 -0
@@ -1,153 +1,153 @@
1
- import numpy as np
2
-
3
- from scipy.stats import norm
4
-
5
- from ..statistics import Statistics
6
- from ..stochastics.discrete_probability import DiscreteProbability
7
- from ..stochastics.model_uncertainty import ModelUncertainty
8
- from ..stochastics.sea_level.sea_level_point import SeaLevelPoint
9
- from ..stochastics.sea_level.sea_level_triangular import SeaLevelTriangular
10
- from ..stochastics.sigma_function import SigmaFunction
11
- from ..stochastics.wind_speed import WindSpeed
12
- from ....settings.settings import Settings
13
- from .....common.interpolate import Interpolate
14
- from .....common.probability import ProbabilityFunctions
15
-
16
-
17
- class StatisticsCoast(Statistics):
18
- """
19
- Statistics class for the Coast
20
- Water systems: Coast (North, Central, South), Waddensea (West, East) and Western scheldt
21
- """
22
-
23
- def __init__(self, settings: Settings):
24
- """
25
- Init the Statistics class
26
-
27
- Parameters
28
- ----------
29
- settings : Settings
30
- The Settings object
31
- """
32
- # Inherit initialisation method from parent
33
- super().__init__(settings)
34
-
35
- # Sea level (Most parts require triangular interpolation, some one point (Den Helder))
36
- if settings.sea_level_probability is not None:
37
- self.sea_level = SeaLevelPoint(settings)
38
- else:
39
- self.sea_level = SeaLevelTriangular(settings)
40
-
41
- # Sigmafunctie
42
- self.sigma_function = SigmaFunction(settings)
43
-
44
- # Wind
45
- self.wind_direction = DiscreteProbability(settings.wind_direction_probability)
46
- self.wind_speed = WindSpeed(settings)
47
- self.wind_speed.correct_with_sigma_function(
48
- self.sigma_function, self.wind_direction
49
- )
50
-
51
- # Calculate the probability P(m, u, r)
52
- self.__calculate_combined_probabilities()
53
-
54
- # Model uncertainty
55
- self.model_uncertainties = ModelUncertainty(settings)
56
-
57
- # Discrete, slow, fast stochatics
58
- # TODO: Replace with framework
59
- self.stochastics_discrete = {
60
- "r": self.wind_direction.get_discretisation(),
61
- "k": [1],
62
- }
63
- self.stochastics_fast = {
64
- "u": self.wind_speed.get_discretisation(),
65
- "m": self.sea_level.get_discretisation(),
66
- }
67
- self.stochastics_slow = {}
68
-
69
- def calculate_probability(
70
- self, wind_direction: float, closing_situation: int = 1, given: list = []
71
- ):
72
- """
73
- Calculate the probability of occurence for the discretisation given the wind direction.
74
-
75
- Parameters
76
- ----------
77
- wind_direction : float
78
- Wind direction
79
- closing_situation : int
80
- Closing situation, (irrelevant for Coast)
81
- given : list
82
- Given stochasts
83
- """
84
- # Probability of wind direction
85
- ir = self.wind_direction.get_discretisation().tolist().index(wind_direction)
86
- kanswr = 1.0 if "r" in given else self.wind_direction.get_probability()[ir]
87
-
88
- # Probability of a sea level and wind speed given a wind direction
89
- kans_um_r = self.p_mur[:, :, ir]
90
-
91
- # If given, calculate the conditional probabilities
92
- if "u" in given:
93
- kans_um_r[:] = ProbabilityFunctions.conditional_probability(
94
- kans_um_r, axis=0
95
- )
96
- if "m" in given:
97
- kans_um_r[:] = ProbabilityFunctions.conditional_probability(
98
- kans_um_r, axis=1
99
- )
100
-
101
- # Combine all probabilities
102
- probability = kans_um_r[:, :] * kanswr
103
-
104
- # Return probability
105
- return probability
106
-
107
- def __calculate_combined_probabilities(self):
108
- # Statistics
109
- m = self.sea_level
110
- s = self.sigma_function
111
- r = self.wind_direction
112
- u = self.wind_speed
113
-
114
- # Initialize an empty matrix
115
- self.p_mur = np.zeros((len(u), len(m), len(r)))
116
-
117
- # Per wind direction
118
- for ir in range(len(r)):
119
- # Calculate the probability density of the sea level given the wind direction
120
- pd_m = ProbabilityFunctions.probability_density(
121
- m.get_discretisation(), m.get_exceedance_probability()[:, ir]
122
- )
123
-
124
- # If there is correlation (sigma > 0)
125
- if s.correlation[ir]:
126
- # Calculate sigma
127
- sigma = Interpolate.inextrp1d(
128
- x=m.get_discretisation(), xp=s.sigma_sea_level, fp=s.sigma[:, ir]
129
- )
130
- if np.min(sigma) < 0.0:
131
- raise ValueError()
132
-
133
- # Exceedance probability of the wind speed given the sea water level epm_r[Nwind, Nswl]
134
- snorm = (u.k_u[:, ir][:, None] - m.epm_exp[:, ir][None, :]) / sigma[
135
- None, :
136
- ]
137
- epm_r = 1 - norm.cdf(snorm)
138
-
139
- # Per sea level
140
- for im in range(len(m)):
141
- pd_u = ProbabilityFunctions.probability_density(
142
- u.get_discretisation(), epm_r[:, im]
143
- )
144
- self.p_mur[:, im, ir] = pd_u.probability * pd_m.probability[im]
145
-
146
- # If there is no correlation (sigma <= 0)
147
- else:
148
- pd_u = ProbabilityFunctions.probability_density(
149
- u.get_discretisation(), u.get_exceedance_probability()[:, ir]
150
- )
151
- self.p_mur[:, :, ir] = (
152
- pd_u.probability[:, None] * pd_m.probability[None, :]
153
- )
1
+ import numpy as np
2
+
3
+ from scipy.stats import norm
4
+
5
+ from ..statistics import Statistics
6
+ from ..stochastics.discrete_probability import DiscreteProbability
7
+ from ..stochastics.model_uncertainty import ModelUncertainty
8
+ from ..stochastics.sea_level.sea_level_point import SeaLevelPoint
9
+ from ..stochastics.sea_level.sea_level_triangular import SeaLevelTriangular
10
+ from ..stochastics.sigma_function import SigmaFunction
11
+ from ..stochastics.wind_speed import WindSpeed
12
+ from ....settings.settings import Settings
13
+ from .....common.interpolate import Interpolate
14
+ from .....common.probability import ProbabilityFunctions
15
+
16
+
17
+ class StatisticsCoast(Statistics):
18
+ """
19
+ Statistics class for the Coast
20
+ Water systems: Coast (North, Central, South), Waddensea (West, East) and Western scheldt
21
+ """
22
+
23
+ def __init__(self, settings: Settings):
24
+ """
25
+ Init the Statistics class
26
+
27
+ Parameters
28
+ ----------
29
+ settings : Settings
30
+ The Settings object
31
+ """
32
+ # Inherit initialisation method from parent
33
+ super().__init__(settings)
34
+
35
+ # Sea level (Most parts require triangular interpolation, some one point (Den Helder))
36
+ if settings.sea_level_probability is not None:
37
+ self.sea_level = SeaLevelPoint(settings)
38
+ else:
39
+ self.sea_level = SeaLevelTriangular(settings)
40
+
41
+ # Sigmafunctie
42
+ self.sigma_function = SigmaFunction(settings)
43
+
44
+ # Wind
45
+ self.wind_direction = DiscreteProbability(settings.wind_direction_probability)
46
+ self.wind_speed = WindSpeed(settings)
47
+ self.wind_speed.correct_with_sigma_function(
48
+ self.sigma_function, self.wind_direction
49
+ )
50
+
51
+ # Calculate the probability P(m, u, r)
52
+ self.__calculate_combined_probabilities()
53
+
54
+ # Model uncertainty
55
+ self.model_uncertainties = ModelUncertainty(settings)
56
+
57
+ # Discrete, slow, fast stochatics
58
+ # TODO: Replace with framework
59
+ self.stochastics_discrete = {
60
+ "r": self.wind_direction.get_discretisation(),
61
+ "k": [1],
62
+ }
63
+ self.stochastics_fast = {
64
+ "u": self.wind_speed.get_discretisation(),
65
+ "m": self.sea_level.get_discretisation(),
66
+ }
67
+ self.stochastics_slow = {}
68
+
69
+ def calculate_probability(
70
+ self, wind_direction: float, closing_situation: int = 1, given: list = []
71
+ ):
72
+ """
73
+ Calculate the probability of occurence for the discretisation given the wind direction.
74
+
75
+ Parameters
76
+ ----------
77
+ wind_direction : float
78
+ Wind direction
79
+ closing_situation : int
80
+ Closing situation, (irrelevant for Coast)
81
+ given : list
82
+ Given stochasts
83
+ """
84
+ # Probability of wind direction
85
+ ir = self.wind_direction.get_discretisation().tolist().index(wind_direction)
86
+ kanswr = 1.0 if "r" in given else self.wind_direction.get_probability()[ir]
87
+
88
+ # Probability of a sea level and wind speed given a wind direction
89
+ kans_um_r = self.p_mur[:, :, ir]
90
+
91
+ # If given, calculate the conditional probabilities
92
+ if "u" in given:
93
+ kans_um_r[:] = ProbabilityFunctions.conditional_probability(
94
+ kans_um_r, axis=0
95
+ )
96
+ if "m" in given:
97
+ kans_um_r[:] = ProbabilityFunctions.conditional_probability(
98
+ kans_um_r, axis=1
99
+ )
100
+
101
+ # Combine all probabilities
102
+ probability = kans_um_r[:, :] * kanswr
103
+
104
+ # Return probability
105
+ return probability
106
+
107
+ def __calculate_combined_probabilities(self):
108
+ # Statistics
109
+ m = self.sea_level
110
+ s = self.sigma_function
111
+ r = self.wind_direction
112
+ u = self.wind_speed
113
+
114
+ # Initialize an empty matrix
115
+ self.p_mur = np.zeros((len(u), len(m), len(r)))
116
+
117
+ # Per wind direction
118
+ for ir in range(len(r)):
119
+ # Calculate the probability density of the sea level given the wind direction
120
+ pd_m = ProbabilityFunctions.probability_density(
121
+ m.get_discretisation(), m.get_exceedance_probability()[:, ir]
122
+ )
123
+
124
+ # If there is correlation (sigma > 0)
125
+ if s.correlation[ir]:
126
+ # Calculate sigma
127
+ sigma = Interpolate.inextrp1d(
128
+ x=m.get_discretisation(), xp=s.sigma_sea_level, fp=s.sigma[:, ir]
129
+ )
130
+ if np.min(sigma) < 0.0:
131
+ raise ValueError()
132
+
133
+ # Exceedance probability of the wind speed given the sea water level epm_r[Nwind, Nswl]
134
+ snorm = (u.k_u[:, ir][:, None] - m.epm_exp[:, ir][None, :]) / sigma[
135
+ None, :
136
+ ]
137
+ epm_r = 1 - norm.cdf(snorm)
138
+
139
+ # Per sea level
140
+ for im in range(len(m)):
141
+ pd_u = ProbabilityFunctions.probability_density(
142
+ u.get_discretisation(), epm_r[:, im]
143
+ )
144
+ self.p_mur[:, im, ir] = pd_u.probability * pd_m.probability[im]
145
+
146
+ # If there is no correlation (sigma <= 0)
147
+ else:
148
+ pd_u = ProbabilityFunctions.probability_density(
149
+ u.get_discretisation(), u.get_exceedance_probability()[:, ir]
150
+ )
151
+ self.p_mur[:, :, ir] = (
152
+ pd_u.probability[:, None] * pd_m.probability[None, :]
153
+ )
@@ -1,177 +1,177 @@
1
- import numpy as np
2
-
3
- from scipy.stats import norm
4
-
5
- from ..statistics import Statistics
6
- from ..stochastics.barrier.barrier_easternscheldt import BarrierEasternScheldt
7
- from ..stochastics.discrete_probability import DiscreteProbability
8
- from ..stochastics.model_uncertainty import ModelUncertainty
9
- from ..stochastics.sea_level.sea_level_point import SeaLevelPoint
10
- from ..stochastics.sigma_function import SigmaFunction
11
- from ..stochastics.wind_speed import WindSpeed
12
- from ....settings.settings import Settings
13
- from .....common.interpolate import Interpolate
14
- from .....common.probability import ProbabilityFunctions
15
-
16
-
17
- class StatisticsEasternScheldt(Statistics):
18
- """
19
- Statistics class for the Eastern Scheldt
20
- Water systems: Eastern Scheldt
21
- """
22
-
23
- def __init__(self, settings: Settings):
24
- """
25
- Init the Statistics class for the Eastern Scheldt
26
-
27
- Parameters
28
- ----------
29
- settings : Settings
30
- The Settings object
31
- """
32
- # Inherit initialisation method from parent
33
- super().__init__(settings)
34
-
35
- # Sea level
36
- self.sea_level = SeaLevelPoint(settings)
37
-
38
- # Storm surge duration
39
- self.storm_surge_duration = DiscreteProbability(
40
- settings.storm_surge_duration_probability
41
- )
42
-
43
- # Fase differences (between surge and tide)
44
- self.phase_surge_tide = DiscreteProbability(
45
- settings.phase_surge_tide_probability
46
- )
47
-
48
- # Sigma function
49
- self.sigma_function = SigmaFunction(settings)
50
-
51
- # Wind
52
- self.wind_direction = DiscreteProbability(settings.wind_direction_probability)
53
- self.wind_speed = WindSpeed(settings)
54
- self.wind_speed.correct_with_sigma_function(
55
- self.sigma_function, self.wind_direction
56
- )
57
-
58
- # Calculate P(u, m, r)
59
- self.__calculate_combined_probabilities()
60
-
61
- # Eastern Scheldt Barrier
62
- self.barrier = BarrierEasternScheldt(
63
- settings, self.wind_direction, self.wind_speed, self.sea_level
64
- )
65
-
66
- # Model uncertainty
67
- self.model_uncertainties = ModelUncertainty(settings)
68
-
69
- # Discrete, slow, fast stochatics
70
- self.stochastics_discrete = {
71
- "r": self.wind_direction.get_discretisation(),
72
- "k": [1, 2, 3, 4, 5, 6, 7, 8],
73
- }
74
- self.stochastics_fast = {
75
- "u": self.wind_speed.get_discretisation(),
76
- "m": self.sea_level.get_discretisation(),
77
- "d": self.storm_surge_duration.get_discretisation(),
78
- "p": self.phase_surge_tide.get_discretisation(),
79
- }
80
- self.stochastics_slow = {}
81
-
82
- def calculate_probability(
83
- self, wind_direction: float, closing_situation: int = 1, given: list = []
84
- ):
85
- """
86
- Calculate the probability of occurence for the discretisation given the wind direction.
87
-
88
- Parameters
89
- ----------
90
- wind_direction : float
91
- Wind direction
92
- closing_situation : int
93
- Closing situation, (irrelevant for Coast)
94
- given : list
95
- Given stochasts
96
- """
97
- # Probability of wind direction
98
- ir = self.wind_direction.get_discretisation().tolist().index(wind_direction)
99
- pwr = 1.0 if "r" in given else self.wind_direction.get_probability()[ir]
100
-
101
- # Probability of closing given a wind direction
102
- p_k = (
103
- 1.0
104
- if "k" in given
105
- else self.barrier.calculate_closing_probability(
106
- wind_direction, closing_situation
107
- )
108
- )
109
-
110
- # Probability of a sea level and wind speed given a wind direction
111
- p_um_r = self.p_mur[:, :, ir]
112
-
113
- # If given, calculate the conditional probabilities
114
- if "u" in given:
115
- p_um_r[:] = ProbabilityFunctions.conditional_probability(p_um_r, axis=0)
116
- if "m" in given:
117
- p_um_r[:] = ProbabilityFunctions.conditional_probability(p_um_r, axis=1)
118
-
119
- # Combine all probabilities
120
- probability = (
121
- p_um_r[:, :, None, None]
122
- * self.storm_surge_duration.get_probability()[None, None, :, None]
123
- * self.phase_surge_tide.get_probability()[None, None, None, :]
124
- * p_k
125
- * pwr
126
- )
127
-
128
- # Return probability
129
- return probability
130
-
131
- def __calculate_combined_probabilities(self):
132
- # Statistics
133
- m = self.sea_level
134
- s = self.sigma_function
135
- r = self.wind_direction
136
- u = self.wind_speed
137
-
138
- # Initialize an empty matrix
139
- self.p_mur = np.zeros((len(u), len(m), len(r)))
140
-
141
- # Per wind direction
142
- for ir in range(len(r)):
143
- # Calculate the probability density of the sea level given the wind direction
144
- pd_m = ProbabilityFunctions.probability_density(
145
- m.get_discretisation(), m.get_exceedance_probability()[:, ir]
146
- )
147
-
148
- # If there is correlation (sigma > 0)
149
- if s.correlation[ir]:
150
- # Calculate sigma
151
- sigma = Interpolate.inextrp1d(
152
- x=m.get_discretisation(), xp=s.sigma_sea_level, fp=s.sigma[:, ir]
153
- )
154
- if np.min(sigma) < 0.0:
155
- raise ValueError()
156
-
157
- # Exceedance probability of the wind speed given the sea water level epm_r[Nwind, Nswl]
158
- snorm = (
159
- self.wind_speed.k_u[:, ir][:, None] - m.epm_exp[:, ir][None, :]
160
- ) / sigma[None, :]
161
- ovkansen = 1 - norm.cdf(snorm)
162
-
163
- # Per sea level
164
- for im in range(len(m)):
165
- pd_u = ProbabilityFunctions.probability_density(
166
- u.get_discretisation(), ovkansen[:, im]
167
- )
168
- self.p_mur[:, im, ir] = pd_u.probability * pd_m.probability[im]
169
-
170
- # If there is no correlation (sigma <= 0)
171
- else:
172
- pd_u = ProbabilityFunctions.probability_density(
173
- u.get_discretisation(), u.get_exceedance_probability()[:, ir]
174
- )
175
- self.p_mur[:, :, ir] = (
176
- pd_m.probability[None, :] * pd_u.probability[:, None]
177
- )
1
+ import numpy as np
2
+
3
+ from scipy.stats import norm
4
+
5
+ from ..statistics import Statistics
6
+ from ..stochastics.barrier.barrier_easternscheldt import BarrierEasternScheldt
7
+ from ..stochastics.discrete_probability import DiscreteProbability
8
+ from ..stochastics.model_uncertainty import ModelUncertainty
9
+ from ..stochastics.sea_level.sea_level_point import SeaLevelPoint
10
+ from ..stochastics.sigma_function import SigmaFunction
11
+ from ..stochastics.wind_speed import WindSpeed
12
+ from ....settings.settings import Settings
13
+ from .....common.interpolate import Interpolate
14
+ from .....common.probability import ProbabilityFunctions
15
+
16
+
17
+ class StatisticsEasternScheldt(Statistics):
18
+ """
19
+ Statistics class for the Eastern Scheldt
20
+ Water systems: Eastern Scheldt
21
+ """
22
+
23
+ def __init__(self, settings: Settings):
24
+ """
25
+ Init the Statistics class for the Eastern Scheldt
26
+
27
+ Parameters
28
+ ----------
29
+ settings : Settings
30
+ The Settings object
31
+ """
32
+ # Inherit initialisation method from parent
33
+ super().__init__(settings)
34
+
35
+ # Sea level
36
+ self.sea_level = SeaLevelPoint(settings)
37
+
38
+ # Storm surge duration
39
+ self.storm_surge_duration = DiscreteProbability(
40
+ settings.storm_surge_duration_probability
41
+ )
42
+
43
+ # Fase differences (between surge and tide)
44
+ self.phase_surge_tide = DiscreteProbability(
45
+ settings.phase_surge_tide_probability
46
+ )
47
+
48
+ # Sigma function
49
+ self.sigma_function = SigmaFunction(settings)
50
+
51
+ # Wind
52
+ self.wind_direction = DiscreteProbability(settings.wind_direction_probability)
53
+ self.wind_speed = WindSpeed(settings)
54
+ self.wind_speed.correct_with_sigma_function(
55
+ self.sigma_function, self.wind_direction
56
+ )
57
+
58
+ # Calculate P(u, m, r)
59
+ self.__calculate_combined_probabilities()
60
+
61
+ # Eastern Scheldt Barrier
62
+ self.barrier = BarrierEasternScheldt(
63
+ settings, self.wind_direction, self.wind_speed, self.sea_level
64
+ )
65
+
66
+ # Model uncertainty
67
+ self.model_uncertainties = ModelUncertainty(settings)
68
+
69
+ # Discrete, slow, fast stochatics
70
+ self.stochastics_discrete = {
71
+ "r": self.wind_direction.get_discretisation(),
72
+ "k": [1, 2, 3, 4, 5, 6, 7, 8],
73
+ }
74
+ self.stochastics_fast = {
75
+ "u": self.wind_speed.get_discretisation(),
76
+ "m": self.sea_level.get_discretisation(),
77
+ "d": self.storm_surge_duration.get_discretisation(),
78
+ "p": self.phase_surge_tide.get_discretisation(),
79
+ }
80
+ self.stochastics_slow = {}
81
+
82
+ def calculate_probability(
83
+ self, wind_direction: float, closing_situation: int = 1, given: list = []
84
+ ):
85
+ """
86
+ Calculate the probability of occurence for the discretisation given the wind direction.
87
+
88
+ Parameters
89
+ ----------
90
+ wind_direction : float
91
+ Wind direction
92
+ closing_situation : int
93
+ Closing situation, (irrelevant for Coast)
94
+ given : list
95
+ Given stochasts
96
+ """
97
+ # Probability of wind direction
98
+ ir = self.wind_direction.get_discretisation().tolist().index(wind_direction)
99
+ pwr = 1.0 if "r" in given else self.wind_direction.get_probability()[ir]
100
+
101
+ # Probability of closing given a wind direction
102
+ p_k = (
103
+ 1.0
104
+ if "k" in given
105
+ else self.barrier.calculate_closing_probability(
106
+ wind_direction, closing_situation
107
+ )
108
+ )
109
+
110
+ # Probability of a sea level and wind speed given a wind direction
111
+ p_um_r = self.p_mur[:, :, ir]
112
+
113
+ # If given, calculate the conditional probabilities
114
+ if "u" in given:
115
+ p_um_r[:] = ProbabilityFunctions.conditional_probability(p_um_r, axis=0)
116
+ if "m" in given:
117
+ p_um_r[:] = ProbabilityFunctions.conditional_probability(p_um_r, axis=1)
118
+
119
+ # Combine all probabilities
120
+ probability = (
121
+ p_um_r[:, :, None, None]
122
+ * self.storm_surge_duration.get_probability()[None, None, :, None]
123
+ * self.phase_surge_tide.get_probability()[None, None, None, :]
124
+ * p_k
125
+ * pwr
126
+ )
127
+
128
+ # Return probability
129
+ return probability
130
+
131
+ def __calculate_combined_probabilities(self):
132
+ # Statistics
133
+ m = self.sea_level
134
+ s = self.sigma_function
135
+ r = self.wind_direction
136
+ u = self.wind_speed
137
+
138
+ # Initialize an empty matrix
139
+ self.p_mur = np.zeros((len(u), len(m), len(r)))
140
+
141
+ # Per wind direction
142
+ for ir in range(len(r)):
143
+ # Calculate the probability density of the sea level given the wind direction
144
+ pd_m = ProbabilityFunctions.probability_density(
145
+ m.get_discretisation(), m.get_exceedance_probability()[:, ir]
146
+ )
147
+
148
+ # If there is correlation (sigma > 0)
149
+ if s.correlation[ir]:
150
+ # Calculate sigma
151
+ sigma = Interpolate.inextrp1d(
152
+ x=m.get_discretisation(), xp=s.sigma_sea_level, fp=s.sigma[:, ir]
153
+ )
154
+ if np.min(sigma) < 0.0:
155
+ raise ValueError()
156
+
157
+ # Exceedance probability of the wind speed given the sea water level epm_r[Nwind, Nswl]
158
+ snorm = (
159
+ self.wind_speed.k_u[:, ir][:, None] - m.epm_exp[:, ir][None, :]
160
+ ) / sigma[None, :]
161
+ ovkansen = 1 - norm.cdf(snorm)
162
+
163
+ # Per sea level
164
+ for im in range(len(m)):
165
+ pd_u = ProbabilityFunctions.probability_density(
166
+ u.get_discretisation(), ovkansen[:, im]
167
+ )
168
+ self.p_mur[:, im, ir] = pd_u.probability * pd_m.probability[im]
169
+
170
+ # If there is no correlation (sigma <= 0)
171
+ else:
172
+ pd_u = ProbabilityFunctions.probability_density(
173
+ u.get_discretisation(), u.get_exceedance_probability()[:, ir]
174
+ )
175
+ self.p_mur[:, :, ir] = (
176
+ pd_m.probability[None, :] * pd_u.probability[:, None]
177
+ )