pydmoo 0.0.18__py3-none-any.whl → 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (69) hide show
  1. pydmoo/algorithms/base/__init__.py +20 -0
  2. pydmoo/algorithms/base/core/__init__.py +0 -0
  3. pydmoo/algorithms/base/core/algorithm.py +416 -0
  4. pydmoo/algorithms/base/core/genetic.py +129 -0
  5. pydmoo/algorithms/base/dmoo/__init__.py +0 -0
  6. pydmoo/algorithms/base/dmoo/dmoead.py +131 -0
  7. pydmoo/algorithms/base/dmoo/dmoeadde.py +131 -0
  8. pydmoo/algorithms/base/dmoo/dmopso.py +0 -0
  9. pydmoo/algorithms/base/dmoo/dnsga2.py +137 -0
  10. pydmoo/algorithms/base/moo/__init__.py +0 -0
  11. pydmoo/algorithms/base/moo/moead.py +199 -0
  12. pydmoo/algorithms/base/moo/moeadde.py +105 -0
  13. pydmoo/algorithms/base/moo/mopso.py +0 -0
  14. pydmoo/algorithms/base/moo/nsga2.py +122 -0
  15. pydmoo/algorithms/modern/__init__.py +94 -0
  16. pydmoo/algorithms/modern/moead_imkt.py +161 -0
  17. pydmoo/algorithms/modern/moead_imkt_igp.py +56 -0
  18. pydmoo/algorithms/modern/moead_imkt_lstm.py +109 -0
  19. pydmoo/algorithms/modern/moead_imkt_n.py +117 -0
  20. pydmoo/algorithms/modern/moead_imkt_n_igp.py +56 -0
  21. pydmoo/algorithms/modern/moead_imkt_n_lstm.py +111 -0
  22. pydmoo/algorithms/modern/moead_ktmm.py +112 -0
  23. pydmoo/algorithms/modern/moeadde_imkt.py +161 -0
  24. pydmoo/algorithms/modern/moeadde_imkt_clstm.py +223 -0
  25. pydmoo/algorithms/modern/moeadde_imkt_igp.py +56 -0
  26. pydmoo/algorithms/modern/moeadde_imkt_lstm.py +212 -0
  27. pydmoo/algorithms/modern/moeadde_imkt_n.py +117 -0
  28. pydmoo/algorithms/modern/moeadde_imkt_n_clstm.py +146 -0
  29. pydmoo/algorithms/modern/moeadde_imkt_n_igp.py +56 -0
  30. pydmoo/algorithms/modern/moeadde_imkt_n_lstm.py +114 -0
  31. pydmoo/algorithms/modern/moeadde_ktmm.py +112 -0
  32. pydmoo/algorithms/modern/nsga2_imkt.py +162 -0
  33. pydmoo/algorithms/modern/nsga2_imkt_clstm.py +223 -0
  34. pydmoo/algorithms/modern/nsga2_imkt_igp.py +56 -0
  35. pydmoo/algorithms/modern/nsga2_imkt_lstm.py +248 -0
  36. pydmoo/algorithms/modern/nsga2_imkt_n.py +117 -0
  37. pydmoo/algorithms/modern/nsga2_imkt_n_clstm.py +146 -0
  38. pydmoo/algorithms/modern/nsga2_imkt_n_igp.py +57 -0
  39. pydmoo/algorithms/modern/nsga2_imkt_n_lstm.py +154 -0
  40. pydmoo/algorithms/modern/nsga2_ktmm.py +112 -0
  41. pydmoo/algorithms/utils/__init__.py +0 -0
  42. pydmoo/algorithms/utils/utils.py +166 -0
  43. pydmoo/core/__init__.py +0 -0
  44. pydmoo/{response → core}/ar_model.py +4 -4
  45. pydmoo/{response → core}/bounds.py +35 -2
  46. pydmoo/core/distance.py +45 -0
  47. pydmoo/core/inverse.py +55 -0
  48. pydmoo/core/lstm/__init__.py +0 -0
  49. pydmoo/core/lstm/base.py +291 -0
  50. pydmoo/core/lstm/lstm.py +491 -0
  51. pydmoo/core/manifold.py +93 -0
  52. pydmoo/core/predictions.py +50 -0
  53. pydmoo/core/sample_gaussian.py +56 -0
  54. pydmoo/core/sample_uniform.py +63 -0
  55. pydmoo/{response/tca_model.py → core/transfer.py} +3 -3
  56. pydmoo/problems/__init__.py +53 -49
  57. pydmoo/problems/dyn.py +94 -13
  58. pydmoo/problems/dynamic/cec2015.py +10 -5
  59. pydmoo/problems/dynamic/df.py +6 -3
  60. pydmoo/problems/dynamic/gts.py +69 -34
  61. pydmoo/problems/real_world/__init__.py +0 -0
  62. pydmoo/problems/real_world/dsrp.py +168 -0
  63. pydmoo/problems/real_world/dwbdp.py +189 -0
  64. {pydmoo-0.0.18.dist-info → pydmoo-0.1.0.dist-info}/METADATA +11 -10
  65. pydmoo-0.1.0.dist-info/RECORD +70 -0
  66. {pydmoo-0.0.18.dist-info → pydmoo-0.1.0.dist-info}/WHEEL +1 -1
  67. pydmoo-0.0.18.dist-info/RECORD +0 -15
  68. /pydmoo/{response → algorithms}/__init__.py +0 -0
  69. {pydmoo-0.0.18.dist-info → pydmoo-0.1.0.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,112 @@
1
+ import numpy as np
2
+ from pymoo.core.population import Population
3
+ from pymoo.operators.survival.rank_and_crowding import RankAndCrowding
4
+
5
+ from pydmoo.algorithms.base.dmoo.dmoeadde import DMOEADDE
6
+ from pydmoo.core.sample_gaussian import univariate_gaussian_sample
7
+
8
+
9
+ class MOEADDEKTMM(DMOEADDE):
10
+ """Knowledge Transfer with Mixture Model.
11
+
12
+ Zou, J., Hou, Z., Jiang, S., Yang, S., Ruan, G., Xia, Y., and Liu, Y. (2025).
13
+ Knowledge transfer with mixture model in dynamic multi-objective optimization.
14
+ IEEE Transactions on Evolutionary Computation, in press.
15
+ https://doi.org/10.1109/TEVC.2025.3566481
16
+ """
17
+
18
+ def __init__(self, **kwargs):
19
+
20
+ super().__init__(**kwargs)
21
+
22
+ self.size_pool = 14 # the size of knowledge pool
23
+ self.denominator = 0.5
24
+
25
+ def _response_change(self):
26
+ pop = self.pop
27
+ X = pop.get("X")
28
+
29
+ # recreate the current population without being evaluated
30
+ pop = Population.new(X=X)
31
+
32
+ # sample self.pop_size solutions in decision space
33
+ samples_old = self.sampling_new_pop()
34
+
35
+ # select self.pop_size/2 individuals with better convergence and diversity
36
+ samples = samples_old[:int(len(samples_old)/2)]
37
+
38
+ # knowledge in decision space
39
+ means_stds_ps, mean, std = self._in_decision_or_objective_space_1d(samples, "decision_space")
40
+ mean_new, std_new = self._select_means_stds(means_stds_ps, mean, std)
41
+
42
+ # sample self.pop_size solutions in decision space
43
+ X = univariate_gaussian_sample(mean_new, std_new, self.pop_size, random_state=self.random_state)
44
+
45
+ # bounds
46
+ if self.problem.has_bounds():
47
+ xl, xu = self.problem.bounds()
48
+ X = np.clip(X, xl, xu) # not provided in the original reference literature
49
+
50
+ # merge
51
+ pop = Population.merge(samples_old, Population.new(X=X))
52
+
53
+ return pop
54
+
55
+ def _in_decision_or_objective_space_1d(self, samples, decision_or_objective="decision_space"):
56
+ # decision space or objective space
57
+ flag = "X" if decision_or_objective == "decision_space" else "F"
58
+
59
+ means_stds = self.data.get("means_stds", [])
60
+
61
+ flag_value = self.opt.get(flag)
62
+ if len(flag_value) <= 1:
63
+ flag_value = self.pop.get(flag)
64
+ flag_value = flag_value[:2]
65
+
66
+ means_stds.append((np.mean(flag_value, axis=0), np.std(flag_value, axis=0), self.n_iter - 1)) # 1-based
67
+ self.data["means_stds"] = means_stds
68
+
69
+ flag_value = samples.get(flag)
70
+ mean, std = np.mean(flag_value, axis=0), np.std(flag_value, axis=0)
71
+ return means_stds, mean, std
72
+
73
+ def sampling_new_pop(self):
74
+ samples = self.initialization.sampling(self.problem, self.pop_size)
75
+ samples = self.evaluator.eval(self.problem, samples)
76
+
77
+ # do a survival to recreate rank and crowding of all individuals
78
+ samples = RankAndCrowding().do(self.problem, samples, n_survive=len(samples))
79
+ return samples
80
+
81
+ def _select_means_stds(self, means_stds, mean_new, std_new):
82
+ # Unpack means and stds
83
+ means = np.array([m[0] for m in means_stds])
84
+ stds = np.array([m[1] for m in means_stds])
85
+
86
+ # Calculate distances
87
+ mean_diffs = means - mean_new
88
+ std_diffs = stds - std_new
89
+
90
+ distances = np.sqrt(np.sum(mean_diffs**2, axis=1) + np.sum(std_diffs**2, axis=1))
91
+
92
+ # Get top K closest
93
+ top_k_idx = np.argsort(distances)[:self.size_pool]
94
+ top_k_dist = distances[top_k_idx]
95
+ top_k_means = means[top_k_idx]
96
+ top_k_stds = stds[top_k_idx]
97
+
98
+ # Update pool
99
+ self._update_means_stds_pool(means_stds, top_k_idx)
100
+
101
+ # Calculate weights
102
+ weights = 1 / (top_k_dist + 1e-8) # Add small epsilon to avoid division by zero
103
+ weights = weights / (np.sum(weights) + self.denominator)
104
+
105
+ # Weighted combination
106
+ mean_new = (1 - np.sum(weights)) * mean_new + np.sum(weights[:, None] * top_k_means, axis=0)
107
+ std_new = (1 - np.sum(weights)) * std_new + np.sum(weights[:, None] * top_k_stds, axis=0)
108
+ return mean_new, std_new
109
+
110
+ def _update_means_stds_pool(self, means_stds, top_k_idx) -> None:
111
+ self.data["means_stds"] = [means_stds[i] for i in top_k_idx]
112
+ return None
@@ -0,0 +1,162 @@
1
+ import numpy as np
2
+ from pymoo.core.population import Population
3
+ from pymoo.operators.survival.rank_and_crowding import RankAndCrowding
4
+
5
+ from pydmoo.algorithms.modern.nsga2_ktmm import NSGA2KTMM
6
+ from pydmoo.core.bounds import clip_and_randomize
7
+ from pydmoo.core.inverse import closed_form_solution
8
+ from pydmoo.core.sample_gaussian import univariate_gaussian_sample
9
+
10
+
11
+ class NSGA2IMKT(NSGA2KTMM):
12
+ """Inverse Modeling with Knowledge Transfer.
13
+
14
+ Inverse Modeling for Dynamic Multiobjective Optimization with Knowledge Transfer In objective Space.
15
+ """
16
+
17
+ def __init__(self, **kwargs):
18
+ super().__init__(**kwargs)
19
+ self.size_pool = 10
20
+ self.denominator = 0.5
21
+
22
+ def _response_change(self):
23
+ """Inverse Modeling with Knowledge Transfer."""
24
+ pop = self.pop
25
+ X = pop.get("X")
26
+
27
+ # recreate the current population without being evaluated
28
+ pop = Population.new(X=X)
29
+
30
+ # sample self.pop_size individuals in decision space
31
+ samples_old = self.sampling_new_pop()
32
+
33
+ # select self.pop_size/2 individuals with better convergence and diversity
34
+ samples = samples_old[:int(len(samples_old)/2)]
35
+
36
+ # knowledge in objective space
37
+ means_stds, mean, std = self._in_decision_or_objective_space_1d(samples, "objective_space")
38
+ mean_new, std_new = self._select_means_stds(means_stds, mean, std)
39
+
40
+ # sample self.pop_size individuals in objective space
41
+ F = univariate_gaussian_sample(mean_new, std_new, self.pop_size, random_state=self.random_state)
42
+
43
+ # TODO
44
+ # inverse mapping
45
+ # X = FB
46
+ B = closed_form_solution(samples.get("X"), samples.get("F"))
47
+
48
+ # X = FB
49
+ X = np.dot(F, B)
50
+
51
+ # bounds
52
+ if self.problem.has_bounds():
53
+ xl, xu = self.problem.bounds()
54
+ X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
55
+
56
+ # merge
57
+ pop = Population.merge(samples_old, Population.new(X=X))
58
+
59
+ return pop
60
+
61
+ def sampling_new_pop(self):
62
+ X = self.pop.get("X")
63
+
64
+ if not self.problem.has_constraints():
65
+
66
+ last_X = self.data.get("last_X", [])
67
+ if len(last_X) == 0:
68
+ last_X = X
69
+ self.data["last_X"] = X
70
+
71
+ d = np.mean(X - last_X, axis=0)
72
+
73
+ radius = max(np.linalg.norm(d) / self.problem.n_obj, 0.1)
74
+
75
+ X = X + d + self.random_state.uniform(low=-radius, high=radius, size=X.shape)
76
+
77
+ # bounds
78
+ if self.problem.has_bounds():
79
+ xl, xu = self.problem.bounds()
80
+ X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
81
+
82
+ samples = Population.new(X=X)
83
+ samples = self.evaluator.eval(self.problem, samples)
84
+
85
+ # do a survival to recreate rank and crowding of all individuals
86
+ samples = RankAndCrowding().do(self.problem, samples, n_survive=len(samples))
87
+ return samples
88
+
89
+
90
+ class NSGA2IMKT0(NSGA2IMKT):
91
+ def __init__(self, **kwargs):
92
+ super().__init__(**kwargs)
93
+
94
+
95
+ class NSGA2IMKT1(NSGA2IMKT):
96
+ def __init__(self, **kwargs):
97
+ super().__init__(**kwargs)
98
+ self.size_pool = 2
99
+ self.denominator = 0.5
100
+
101
+
102
+ class NSGA2IMKT2(NSGA2IMKT):
103
+ def __init__(self, **kwargs):
104
+ super().__init__(**kwargs)
105
+ self.size_pool = 4
106
+ self.denominator = 0.5
107
+
108
+
109
+ class NSGA2IMKT3(NSGA2IMKT):
110
+ def __init__(self, **kwargs):
111
+ super().__init__(**kwargs)
112
+ self.size_pool = 6
113
+ self.denominator = 0.5
114
+
115
+
116
+ class NSGA2IMKT4(NSGA2IMKT):
117
+ def __init__(self, **kwargs):
118
+ super().__init__(**kwargs)
119
+ self.size_pool = 8
120
+ self.denominator = 0.5
121
+
122
+
123
+ class NSGA2IMKT5(NSGA2IMKT):
124
+ def __init__(self, **kwargs):
125
+ super().__init__(**kwargs)
126
+ self.size_pool = 10
127
+ self.denominator = 0.5
128
+
129
+
130
+ class NSGA2IMKT6(NSGA2IMKT):
131
+ def __init__(self, **kwargs):
132
+ super().__init__(**kwargs)
133
+ self.size_pool = 12
134
+ self.denominator = 0.5
135
+
136
+
137
+ class NSGA2IMKT7(NSGA2IMKT):
138
+ def __init__(self, **kwargs):
139
+ super().__init__(**kwargs)
140
+ self.size_pool = 14
141
+ self.denominator = 0.5
142
+
143
+
144
+ class NSGA2IMKT8(NSGA2IMKT):
145
+ def __init__(self, **kwargs):
146
+ super().__init__(**kwargs)
147
+ self.size_pool = 16
148
+ self.denominator = 0.5
149
+
150
+
151
+ class NSGA2IMKT9(NSGA2IMKT):
152
+ def __init__(self, **kwargs):
153
+ super().__init__(**kwargs)
154
+ self.size_pool = 18
155
+ self.denominator = 0.5
156
+
157
+
158
+ class NSGA2IMKT10(NSGA2IMKT):
159
+ def __init__(self, **kwargs):
160
+ super().__init__(**kwargs)
161
+ self.size_pool = 20
162
+ self.denominator = 0.5
@@ -0,0 +1,223 @@
1
+ import numpy as np
2
+ from pymoo.core.population import Population
3
+ from pymoo.operators.survival.rank_and_crowding import RankAndCrowding
4
+
5
+ from pydmoo.algorithms.modern.nsga2_imkt import NSGA2IMKT
6
+ from pydmoo.algorithms.modern.nsga2_imkt_lstm import prepare_data_means_std
7
+ from pydmoo.core.bounds import clip_and_randomize
8
+ from pydmoo.core.inverse import closed_form_solution
9
+ from pydmoo.core.lstm.lstm import LSTMpredictor
10
+ from pydmoo.core.sample_gaussian import univariate_gaussian_sample
11
+
12
+
13
+ class NSGA2IMcLSTM(NSGA2IMKT):
14
+ def __init__(self, **kwargs):
15
+ super().__init__(**kwargs)
16
+
17
+ self._n_timesteps = 10
18
+ self._sequence_length = 5 # Use 5 historical time steps to predict next step
19
+ self._incremental_learning = False
20
+
21
+ def _setup(self, problem, **kwargs):
22
+ super()._setup(problem, **kwargs)
23
+
24
+ # Must be here
25
+ self._lstm = LSTMpredictor(
26
+ self._sequence_length,
27
+ hidden_dim=64,
28
+ num_layers=1,
29
+ epochs=50,
30
+ batch_size=32,
31
+ lr=0.001,
32
+ device="cpu", # for fair comparison
33
+ patience=5,
34
+ seed=self.seed,
35
+ model_type="lstm",
36
+ incremental_learning=self._incremental_learning,
37
+ )
38
+
39
+ def _response_change(self):
40
+ pop = self.pop
41
+ X = pop.get("X")
42
+
43
+ # recreate the current population without being evaluated
44
+ pop = Population.new(X=X)
45
+
46
+ # sample self.pop_size individuals in decision space
47
+ samples_old = self.sampling_new_pop()
48
+
49
+ # select self.pop_size/2 individuals with better convergence and diversity
50
+ samples = samples_old[:int(len(samples_old)/2)]
51
+
52
+ # knowledge in objective space
53
+ means_stds, mean, std = self._in_decision_or_objective_space_1d(samples, "objective_space")
54
+
55
+ # Check if sufficient historical data is available for LSTM prediction
56
+ if len(means_stds) > self._n_timesteps:
57
+ # Update pool
58
+ self.data["means_stds"] = means_stds[self._n_timesteps:]
59
+
60
+ # Prepare time series data from historical means and standard deviations
61
+ time_series_data = prepare_data_means_std(self._n_timesteps, means_stds)
62
+
63
+ # Initialize predictor and generate prediction for next time step
64
+ next_prediction = self._lstm.convert_train_predict(time_series_data)
65
+
66
+ # Convert prediction tensor to numpy array for further processing
67
+ next_prediction = next_prediction.numpy()
68
+
69
+ # Split prediction into mean and standard deviation components
70
+ # First n_obj elements represent mean values, remaining elements represent standard deviations
71
+ mean_new, std_new = next_prediction[:self.problem.n_obj], next_prediction[self.problem.n_obj:]
72
+ std_new = np.abs(std_new)
73
+
74
+ else:
75
+ mean_new, std_new = self._select_means_stds(means_stds, mean, std)
76
+
77
+ # sample self.pop_size individuals in objective space
78
+ F = univariate_gaussian_sample(mean_new, std_new, self.pop_size, random_state=self.random_state)
79
+
80
+ # TODO
81
+ # inverse mapping
82
+ # X = FB
83
+ B = closed_form_solution(samples.get("X"), samples.get("F"))
84
+
85
+ # X = FB
86
+ X = np.dot(F, B)
87
+
88
+ # bounds
89
+ if self.problem.has_bounds():
90
+ xl, xu = self.problem.bounds()
91
+ X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
92
+
93
+ # merge
94
+ pop = Population.merge(samples_old, Population.new(X=X))
95
+
96
+ return pop
97
+
98
+ def sampling_new_pop(self):
99
+ ps = self.opt.get("X")
100
+ X = self.pop.get("X")
101
+
102
+ if not self.problem.has_constraints():
103
+
104
+ last_ps = self.data.get("last_ps", [])
105
+ if len(last_ps) == 0:
106
+ last_ps = ps
107
+ self.data["last_ps"] = ps
108
+
109
+ d = np.mean(ps, axis=0) - np.mean(last_ps, axis=0)
110
+
111
+ radius = max(np.linalg.norm(d) / self.problem.n_obj, 0.1)
112
+
113
+ X = X + d + self.random_state.uniform(low=-radius, high=radius, size=X.shape)
114
+
115
+ # bounds
116
+ if self.problem.has_bounds():
117
+ xl, xu = self.problem.bounds()
118
+ X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
119
+
120
+ samples = Population.new(X=X)
121
+ samples = self.evaluator.eval(self.problem, samples)
122
+
123
+ # do a survival to recreate rank and crowding of all individuals
124
+ samples = RankAndCrowding().do(self.problem, samples, n_survive=len(samples))
125
+ return samples
126
+
127
+ def _select_means_stds(self, means_stds, mean_new, std_new):
128
+ # Unpack means and stds
129
+ means = np.array([m[0] for m in means_stds])
130
+ stds = np.array([m[1] for m in means_stds])
131
+
132
+ # Weighted combination
133
+ mean_new = 0.5 * mean_new + 0.5 * means[-1]
134
+ std_new = 0.5 * std_new + 0.5 * stds[-1]
135
+ return mean_new, std_new
136
+
137
+
138
+ class NSGA2IMicLSTM(NSGA2IMcLSTM):
139
+ def __init__(self, **kwargs) -> None:
140
+ super().__init__(**kwargs)
141
+ self._n_timesteps = 10
142
+ self._sequence_length = 5 # Use 5 historical time steps to predict next step
143
+ self._incremental_learning = True
144
+
145
+
146
+ class NSGA2IMicLSTM1003(NSGA2IMcLSTM):
147
+ def __init__(self, **kwargs) -> None:
148
+ super().__init__(**kwargs)
149
+ self._n_timesteps = 10
150
+ self._sequence_length = 3
151
+ self._incremental_learning = True
152
+
153
+
154
+ class NSGA2IMicLSTM1005(NSGA2IMcLSTM):
155
+ def __init__(self, **kwargs) -> None:
156
+ super().__init__(**kwargs)
157
+ self._n_timesteps = 10
158
+ self._sequence_length = 5
159
+ self._incremental_learning = True
160
+
161
+
162
+ class NSGA2IMicLSTM1007(NSGA2IMcLSTM):
163
+ def __init__(self, **kwargs) -> None:
164
+ super().__init__(**kwargs)
165
+ self._n_timesteps = 10
166
+ self._sequence_length = 7
167
+ self._incremental_learning = True
168
+
169
+
170
+ class NSGA2IMicLSTM1009(NSGA2IMcLSTM):
171
+ def __init__(self, **kwargs) -> None:
172
+ super().__init__(**kwargs)
173
+ self._n_timesteps = 10
174
+ self._sequence_length = 9
175
+ self._incremental_learning = True
176
+
177
+
178
+ class NSGA2IMicLSTM1503(NSGA2IMcLSTM):
179
+ def __init__(self, **kwargs) -> None:
180
+ super().__init__(**kwargs)
181
+ self._n_timesteps = 15
182
+ self._sequence_length = 3
183
+ self._incremental_learning = True
184
+
185
+
186
+ class NSGA2IMicLSTM1505(NSGA2IMcLSTM):
187
+ def __init__(self, **kwargs) -> None:
188
+ super().__init__(**kwargs)
189
+ self._n_timesteps = 15
190
+ self._sequence_length = 5
191
+ self._incremental_learning = True
192
+
193
+
194
+ class NSGA2IMicLSTM1507(NSGA2IMcLSTM):
195
+ def __init__(self, **kwargs) -> None:
196
+ super().__init__(**kwargs)
197
+ self._n_timesteps = 15
198
+ self._sequence_length = 7
199
+ self._incremental_learning = True
200
+
201
+
202
+ class NSGA2IMicLSTM1509(NSGA2IMcLSTM):
203
+ def __init__(self, **kwargs) -> None:
204
+ super().__init__(**kwargs)
205
+ self._n_timesteps = 15
206
+ self._sequence_length = 9
207
+ self._incremental_learning = True
208
+
209
+
210
+ class NSGA2IMicLSTM1511(NSGA2IMcLSTM):
211
+ def __init__(self, **kwargs) -> None:
212
+ super().__init__(**kwargs)
213
+ self._n_timesteps = 15
214
+ self._sequence_length = 11
215
+ self._incremental_learning = True
216
+
217
+
218
+ class NSGA2IMicLSTM1513(NSGA2IMcLSTM):
219
+ def __init__(self, **kwargs) -> None:
220
+ super().__init__(**kwargs)
221
+ self._n_timesteps = 15
222
+ self._sequence_length = 13
223
+ self._incremental_learning = True
@@ -0,0 +1,56 @@
1
+ from pymoo.core.population import Population
2
+
3
+ from pydmoo.algorithms.modern.nsga2_imkt import NSGA2IMKT
4
+ from pydmoo.core.bounds import clip_and_randomize
5
+ from pydmoo.core.predictions import igp_based_predictor
6
+ from pydmoo.core.sample_gaussian import univariate_gaussian_sample
7
+
8
+
9
+ class NSGA2IMKTIGP(NSGA2IMKT):
10
+ def __init__(self, **kwargs):
11
+ super().__init__(**kwargs)
12
+ self.size_pool = 10
13
+ self.denominator = 0.5
14
+
15
+ self.delta_s = 0.01
16
+ self.sigma_n = 0.01
17
+ self.sigma_n_2 = self.sigma_n ** 2
18
+
19
+ def _response_change(self):
20
+ pop = self.pop
21
+ X = pop.get("X")
22
+
23
+ # recreate the current population without being evaluated
24
+ pop = Population.new(X=X)
25
+
26
+ # sample self.pop_size individuals in decision space
27
+ samples_old = self.sampling_new_pop()
28
+
29
+ # select self.pop_size/2 individuals with better convergence and diversity
30
+ samples = samples_old[:int(len(samples_old)/2)]
31
+
32
+ # knowledge in objective space
33
+ means_stds, mean, std = self._in_decision_or_objective_space_1d(samples, "objective_space")
34
+ mean_new, std_new = self._select_means_stds(means_stds, mean, std)
35
+
36
+ # sample self.pop_size individuals in objective space
37
+ F = univariate_gaussian_sample(mean_new, std_new, self.pop_size, random_state=self.random_state)
38
+
39
+ # TODO
40
+ # inverse mapping
41
+ X = igp_based_predictor(samples.get("X"), samples.get("F"), F, self.sigma_n_2)
42
+
43
+ # bounds
44
+ if self.problem.has_bounds():
45
+ xl, xu = self.problem.bounds()
46
+ X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
47
+
48
+ # merge
49
+ pop = Population.merge(samples_old, Population.new(X=X))
50
+
51
+ return pop
52
+
53
+
54
+ class NSGA2IMKTIGP0(NSGA2IMKTIGP):
55
+ def __init__(self, **kwargs):
56
+ super().__init__(**kwargs)