pydmoo 0.0.18__py3-none-any.whl → 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (69) hide show
  1. pydmoo/algorithms/base/__init__.py +20 -0
  2. pydmoo/algorithms/base/core/__init__.py +0 -0
  3. pydmoo/algorithms/base/core/algorithm.py +416 -0
  4. pydmoo/algorithms/base/core/genetic.py +129 -0
  5. pydmoo/algorithms/base/dmoo/__init__.py +0 -0
  6. pydmoo/algorithms/base/dmoo/dmoead.py +131 -0
  7. pydmoo/algorithms/base/dmoo/dmoeadde.py +131 -0
  8. pydmoo/algorithms/base/dmoo/dmopso.py +0 -0
  9. pydmoo/algorithms/base/dmoo/dnsga2.py +137 -0
  10. pydmoo/algorithms/base/moo/__init__.py +0 -0
  11. pydmoo/algorithms/base/moo/moead.py +199 -0
  12. pydmoo/algorithms/base/moo/moeadde.py +105 -0
  13. pydmoo/algorithms/base/moo/mopso.py +0 -0
  14. pydmoo/algorithms/base/moo/nsga2.py +122 -0
  15. pydmoo/algorithms/modern/__init__.py +94 -0
  16. pydmoo/algorithms/modern/moead_imkt.py +161 -0
  17. pydmoo/algorithms/modern/moead_imkt_igp.py +56 -0
  18. pydmoo/algorithms/modern/moead_imkt_lstm.py +109 -0
  19. pydmoo/algorithms/modern/moead_imkt_n.py +117 -0
  20. pydmoo/algorithms/modern/moead_imkt_n_igp.py +56 -0
  21. pydmoo/algorithms/modern/moead_imkt_n_lstm.py +111 -0
  22. pydmoo/algorithms/modern/moead_ktmm.py +112 -0
  23. pydmoo/algorithms/modern/moeadde_imkt.py +161 -0
  24. pydmoo/algorithms/modern/moeadde_imkt_clstm.py +223 -0
  25. pydmoo/algorithms/modern/moeadde_imkt_igp.py +56 -0
  26. pydmoo/algorithms/modern/moeadde_imkt_lstm.py +212 -0
  27. pydmoo/algorithms/modern/moeadde_imkt_n.py +117 -0
  28. pydmoo/algorithms/modern/moeadde_imkt_n_clstm.py +146 -0
  29. pydmoo/algorithms/modern/moeadde_imkt_n_igp.py +56 -0
  30. pydmoo/algorithms/modern/moeadde_imkt_n_lstm.py +114 -0
  31. pydmoo/algorithms/modern/moeadde_ktmm.py +112 -0
  32. pydmoo/algorithms/modern/nsga2_imkt.py +162 -0
  33. pydmoo/algorithms/modern/nsga2_imkt_clstm.py +223 -0
  34. pydmoo/algorithms/modern/nsga2_imkt_igp.py +56 -0
  35. pydmoo/algorithms/modern/nsga2_imkt_lstm.py +248 -0
  36. pydmoo/algorithms/modern/nsga2_imkt_n.py +117 -0
  37. pydmoo/algorithms/modern/nsga2_imkt_n_clstm.py +146 -0
  38. pydmoo/algorithms/modern/nsga2_imkt_n_igp.py +57 -0
  39. pydmoo/algorithms/modern/nsga2_imkt_n_lstm.py +154 -0
  40. pydmoo/algorithms/modern/nsga2_ktmm.py +112 -0
  41. pydmoo/algorithms/utils/__init__.py +0 -0
  42. pydmoo/algorithms/utils/utils.py +166 -0
  43. pydmoo/core/__init__.py +0 -0
  44. pydmoo/{response → core}/ar_model.py +4 -4
  45. pydmoo/{response → core}/bounds.py +35 -2
  46. pydmoo/core/distance.py +45 -0
  47. pydmoo/core/inverse.py +55 -0
  48. pydmoo/core/lstm/__init__.py +0 -0
  49. pydmoo/core/lstm/base.py +291 -0
  50. pydmoo/core/lstm/lstm.py +491 -0
  51. pydmoo/core/manifold.py +93 -0
  52. pydmoo/core/predictions.py +50 -0
  53. pydmoo/core/sample_gaussian.py +56 -0
  54. pydmoo/core/sample_uniform.py +63 -0
  55. pydmoo/{response/tca_model.py → core/transfer.py} +3 -3
  56. pydmoo/problems/__init__.py +53 -49
  57. pydmoo/problems/dyn.py +94 -13
  58. pydmoo/problems/dynamic/cec2015.py +10 -5
  59. pydmoo/problems/dynamic/df.py +6 -3
  60. pydmoo/problems/dynamic/gts.py +69 -34
  61. pydmoo/problems/real_world/__init__.py +0 -0
  62. pydmoo/problems/real_world/dsrp.py +168 -0
  63. pydmoo/problems/real_world/dwbdp.py +189 -0
  64. {pydmoo-0.0.18.dist-info → pydmoo-0.1.0.dist-info}/METADATA +11 -10
  65. pydmoo-0.1.0.dist-info/RECORD +70 -0
  66. {pydmoo-0.0.18.dist-info → pydmoo-0.1.0.dist-info}/WHEEL +1 -1
  67. pydmoo-0.0.18.dist-info/RECORD +0 -15
  68. /pydmoo/{response → algorithms}/__init__.py +0 -0
  69. {pydmoo-0.0.18.dist-info → pydmoo-0.1.0.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,56 @@
1
+ from pymoo.core.population import Population
2
+
3
+ from pydmoo.algorithms.modern.moeadde_imkt import MOEADDEIMKT
4
+ from pydmoo.core.bounds import clip_and_randomize
5
+ from pydmoo.core.predictions import igp_based_predictor
6
+ from pydmoo.core.sample_gaussian import univariate_gaussian_sample
7
+
8
+
9
+ class MOEADDEIMKTIGP(MOEADDEIMKT):
10
+ def __init__(self, **kwargs):
11
+ super().__init__(**kwargs)
12
+ self.size_pool = 10
13
+ self.denominator = 0.5
14
+
15
+ self.delta_s = 0.01
16
+ self.sigma_n = 0.01
17
+ self.sigma_n_2 = self.sigma_n ** 2
18
+
19
+ def _response_change(self):
20
+ pop = self.pop
21
+ X = pop.get("X")
22
+
23
+ # recreate the current population without being evaluated
24
+ pop = Population.new(X=X)
25
+
26
+ # sample self.pop_size individuals in decision space
27
+ samples_old = self.sampling_new_pop()
28
+
29
+ # select self.pop_size/2 individuals with better convergence and diversity
30
+ samples = samples_old[:int(len(samples_old)/2)]
31
+
32
+ # knowledge in objective space
33
+ means_stds, mean, std = self._in_decision_or_objective_space_1d(samples, "objective_space")
34
+ mean_new, std_new = self._select_means_stds(means_stds, mean, std)
35
+
36
+ # sample self.pop_size individuals in objective space
37
+ F = univariate_gaussian_sample(mean_new, std_new, self.pop_size, random_state=self.random_state)
38
+
39
+ # TODO
40
+ # inverse mapping
41
+ X = igp_based_predictor(samples.get("X"), samples.get("F"), F, self.sigma_n_2)
42
+
43
+ # bounds
44
+ if self.problem.has_bounds():
45
+ xl, xu = self.problem.bounds()
46
+ X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
47
+
48
+ # merge
49
+ pop = Population.merge(samples_old, Population.new(X=X))
50
+
51
+ return pop
52
+
53
+
54
+ class MOEADDEIMKTIGP0(MOEADDEIMKTIGP):
55
+ def __init__(self, **kwargs):
56
+ super().__init__(**kwargs)
@@ -0,0 +1,212 @@
1
+ import numpy as np
2
+ from pymoo.core.population import Population
3
+
4
+ from pydmoo.algorithms.modern.moeadde_imkt import MOEADDEIMKT
5
+ from pydmoo.algorithms.modern.nsga2_imkt_lstm import prepare_data_means_std
6
+ from pydmoo.core.bounds import clip_and_randomize
7
+ from pydmoo.core.inverse import closed_form_solution
8
+ from pydmoo.core.lstm.lstm import LSTMpredictor
9
+ from pydmoo.core.sample_gaussian import univariate_gaussian_sample
10
+
11
+
12
+ class MOEADDEIMLSTM(MOEADDEIMKT):
13
+ """Inverse Modeling with LSTM (IMLSTM).
14
+
15
+ Inverse Modeling for Dynamic Multiobjective Optimization with LSTM prediction In objective Space.
16
+ """
17
+
18
+ def __init__(self, **kwargs):
19
+ super().__init__(**kwargs)
20
+ self.size_pool = 10
21
+ self.denominator = 0.5
22
+
23
+ self._n_timesteps = 10
24
+ self._sequence_length = 5 # Use 5 historical time steps to predict next step
25
+ self._incremental_learning = False
26
+
27
+ def _setup(self, problem, **kwargs):
28
+ super()._setup(problem, **kwargs)
29
+
30
+ # Must be here
31
+ self._lstm = LSTMpredictor(
32
+ self._sequence_length,
33
+ hidden_dim=64,
34
+ num_layers=1,
35
+ epochs=50,
36
+ batch_size=32,
37
+ lr=0.001,
38
+ device="cpu", # for fair comparison
39
+ patience=5,
40
+ seed=self.seed,
41
+ model_type="lstm",
42
+ incremental_learning=self._incremental_learning,
43
+ )
44
+
45
+ def _response_change(self):
46
+ pop = self.pop
47
+ X = pop.get("X")
48
+
49
+ # recreate the current population without being evaluated
50
+ pop = Population.new(X=X)
51
+
52
+ # sample self.pop_size individuals in decision space
53
+ samples_old = self.sampling_new_pop()
54
+
55
+ # select self.pop_size/2 individuals with better convergence and diversity
56
+ samples = samples_old[:int(len(samples_old)/2)]
57
+
58
+ # knowledge in objective space
59
+ means_stds, mean, std = self._in_decision_or_objective_space_1d(samples, "objective_space")
60
+
61
+ # Check if sufficient historical data is available for LSTM prediction
62
+ if len(means_stds) > self._n_timesteps:
63
+ # Update pool
64
+ self.data["means_stds"] = means_stds[self._n_timesteps:]
65
+
66
+ # Prepare time series data from historical means and standard deviations
67
+ time_series_data = prepare_data_means_std(self._n_timesteps, means_stds)
68
+
69
+ # Initialize predictor and generate prediction for next time step
70
+ next_prediction = self._lstm.convert_train_predict(time_series_data)
71
+
72
+ # Convert prediction tensor to numpy array for further processing
73
+ next_prediction = next_prediction.numpy()
74
+
75
+ # Split prediction into mean and standard deviation components
76
+ # First n_obj elements represent mean values, remaining elements represent standard deviations
77
+ mean_new, std_new = next_prediction[:self.problem.n_obj], next_prediction[self.problem.n_obj:]
78
+ std_new = np.abs(std_new)
79
+
80
+ else:
81
+ mean_new, std_new = self._select_means_stds(means_stds, mean, std)
82
+
83
+ # sample self.pop_size individuals in objective space
84
+ F = univariate_gaussian_sample(mean_new, std_new, self.pop_size, random_state=self.random_state)
85
+
86
+ # TODO
87
+ # inverse mapping
88
+ # X = FB
89
+ B = closed_form_solution(samples.get("X"), samples.get("F"))
90
+
91
+ # X = FB
92
+ X = np.dot(F, B)
93
+
94
+ # bounds
95
+ if self.problem.has_bounds():
96
+ xl, xu = self.problem.bounds()
97
+ X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
98
+
99
+ # merge
100
+ pop = Population.merge(samples_old, Population.new(X=X))
101
+
102
+ return pop
103
+
104
+
105
+ class MOEADDEIMiLSTM(MOEADDEIMLSTM):
106
+ def __init__(self, **kwargs) -> None:
107
+ super().__init__(**kwargs)
108
+ self.size_pool = 10
109
+ self.denominator = 0.5
110
+ self._n_timesteps = 10
111
+ self._sequence_length = 5
112
+ self._incremental_learning = True
113
+
114
+
115
+ class MOEADDEIMiLSTM1003(MOEADDEIMLSTM):
116
+ def __init__(self, **kwargs) -> None:
117
+ super().__init__(**kwargs)
118
+ self.size_pool = 10
119
+ self.denominator = 0.5
120
+ self._n_timesteps = 10
121
+ self._sequence_length = 3
122
+ self._incremental_learning = True
123
+
124
+
125
+ class MOEADDEIMiLSTM1005(MOEADDEIMLSTM):
126
+ def __init__(self, **kwargs) -> None:
127
+ super().__init__(**kwargs)
128
+ self.size_pool = 10
129
+ self.denominator = 0.5
130
+ self._n_timesteps = 10
131
+ self._sequence_length = 5
132
+ self._incremental_learning = True
133
+
134
+
135
+ class MOEADDEIMiLSTM1007(MOEADDEIMLSTM):
136
+ def __init__(self, **kwargs) -> None:
137
+ super().__init__(**kwargs)
138
+ self.size_pool = 10
139
+ self.denominator = 0.5
140
+ self._n_timesteps = 10
141
+ self._sequence_length = 7
142
+ self._incremental_learning = True
143
+
144
+
145
+ class MOEADDEIMiLSTM1009(MOEADDEIMLSTM):
146
+ def __init__(self, **kwargs) -> None:
147
+ super().__init__(**kwargs)
148
+ self.size_pool = 10
149
+ self.denominator = 0.5
150
+ self._n_timesteps = 10
151
+ self._sequence_length = 9
152
+ self._incremental_learning = True
153
+
154
+
155
+ class MOEADDEIMiLSTM1503(MOEADDEIMLSTM):
156
+ def __init__(self, **kwargs) -> None:
157
+ super().__init__(**kwargs)
158
+ self.size_pool = 15
159
+ self.denominator = 0.5
160
+ self._n_timesteps = 15
161
+ self._sequence_length = 3
162
+ self._incremental_learning = True
163
+
164
+
165
+ class MOEADDEIMiLSTM1505(MOEADDEIMLSTM):
166
+ def __init__(self, **kwargs) -> None:
167
+ super().__init__(**kwargs)
168
+ self.size_pool = 15
169
+ self.denominator = 0.5
170
+ self._n_timesteps = 15
171
+ self._sequence_length = 5
172
+ self._incremental_learning = True
173
+
174
+
175
+ class MOEADDEIMiLSTM1507(MOEADDEIMLSTM):
176
+ def __init__(self, **kwargs) -> None:
177
+ super().__init__(**kwargs)
178
+ self.size_pool = 15
179
+ self.denominator = 0.5
180
+ self._n_timesteps = 15
181
+ self._sequence_length = 7
182
+ self._incremental_learning = True
183
+
184
+
185
+ class MOEADDEIMiLSTM1509(MOEADDEIMLSTM):
186
+ def __init__(self, **kwargs) -> None:
187
+ super().__init__(**kwargs)
188
+ self.size_pool = 15
189
+ self.denominator = 0.5
190
+ self._n_timesteps = 15
191
+ self._sequence_length = 9
192
+ self._incremental_learning = True
193
+
194
+
195
+ class MOEADDEIMiLSTM1511(MOEADDEIMLSTM):
196
+ def __init__(self, **kwargs) -> None:
197
+ super().__init__(**kwargs)
198
+ self.size_pool = 15
199
+ self.denominator = 0.5
200
+ self._n_timesteps = 15
201
+ self._sequence_length = 11
202
+ self._incremental_learning = True
203
+
204
+
205
+ class MOEADDEIMiLSTM1513(MOEADDEIMLSTM):
206
+ def __init__(self, **kwargs) -> None:
207
+ super().__init__(**kwargs)
208
+ self.size_pool = 15
209
+ self.denominator = 0.5
210
+ self._n_timesteps = 15
211
+ self._sequence_length = 13
212
+ self._incremental_learning = True
@@ -0,0 +1,117 @@
1
+ import numpy as np
2
+ from pymoo.core.population import Population
3
+
4
+ from pydmoo.algorithms.modern.moeadde_imkt import MOEADDEIMKT
5
+ from pydmoo.core.bounds import clip_and_randomize
6
+ from pydmoo.core.distance import norm_mean_frobenius_distance
7
+ from pydmoo.core.inverse import closed_form_solution
8
+ from pydmoo.core.sample_gaussian import multivariate_gaussian_sample
9
+
10
+
11
+ class MOEADDEIMKTN(MOEADDEIMKT):
12
+ """Inverse Modeling with Knowledge Transfer.
13
+
14
+ Inverse Modeling for Dynamic Multiobjective Optimization with Knowledge Transfer In objective Space.
15
+ """
16
+
17
+ def __init__(self, **kwargs):
18
+ super().__init__(**kwargs)
19
+ self.size_pool = 10
20
+ self.denominator = 0.5
21
+
22
+ def _response_change(self):
23
+ pop = self.pop
24
+ X = pop.get("X")
25
+
26
+ # recreate the current population without being evaluated
27
+ pop = Population.new(X=X)
28
+
29
+ # sample self.pop_size individuals in decision space
30
+ samples_old = self.sampling_new_pop()
31
+
32
+ # select self.pop_size/2 individuals with better convergence and diversity
33
+ samples = samples_old[:int(len(samples_old)/2)]
34
+
35
+ # knowledge in objective space
36
+ means_stds, mean, cov = self._in_decision_or_objective_space_nd(samples, "objective_space")
37
+ mean_new, cov_new = self._select_means_covs(means_stds, mean, cov)
38
+
39
+ # sample self.pop_size individuals in objective space
40
+ F = multivariate_gaussian_sample(mean_new, cov_new, self.pop_size, random_state=self.random_state)
41
+
42
+ # TODO
43
+ # inverse mapping
44
+ # X = FB
45
+ B = closed_form_solution(samples.get("X"), samples.get("F"))
46
+
47
+ # X = FB
48
+ X = np.dot(F, B)
49
+
50
+ # bounds
51
+ if self.problem.has_bounds():
52
+ xl, xu = self.problem.bounds()
53
+ X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
54
+
55
+ # merge
56
+ pop = Population.merge(samples_old, Population.new(X=X))
57
+
58
+ return pop
59
+
60
+ def _in_decision_or_objective_space_nd(self, samples, decision_or_objective="decision_space"):
61
+ # decision space or objective space
62
+ flag = "X" if decision_or_objective == "decision_space" else "F"
63
+
64
+ means_covs = self.data.get("means_covs", [])
65
+
66
+ flag_value = self.opt.get(flag)
67
+ if len(flag_value) <= 1:
68
+ flag_value = self.pop.get(flag)
69
+ flag_value = flag_value[:2]
70
+
71
+ m, c = np.mean(flag_value, axis=0), np.cov(flag_value.T)
72
+ means_covs.append((m, 0.5 * (c.T + c), self.n_iter - 1)) # 1-based
73
+ self.data["means_covs"] = means_covs
74
+
75
+ flag_value = samples.get(flag)
76
+ mean, cov = np.mean(flag_value, axis=0), np.cov(flag_value.T)
77
+ return means_covs, mean, 0.5 * (cov.T + cov)
78
+
79
+ def _select_means_covs(self, means_covs, mean_new, cov_new):
80
+ # Unpack means and stds
81
+ means = np.array([m[0] for m in means_covs])
82
+ covs = np.array([m[1] for m in means_covs])
83
+
84
+ # Calculate distances
85
+ distances = np.array([
86
+ norm_mean_frobenius_distance(mean, cov, mean_new, cov_new) for mean, cov in zip(means, covs)
87
+ ])
88
+
89
+ # Get top K closest
90
+ top_k_idx = np.argsort(distances)[:self.size_pool]
91
+ top_k_dist = distances[top_k_idx]
92
+ top_k_means = means[top_k_idx]
93
+ top_k_covs = covs[top_k_idx]
94
+
95
+ # Update pool
96
+ self._update_means_covs_pool(means_covs, top_k_idx)
97
+
98
+ # Calculate weights
99
+ weights = 1 / (top_k_dist + 1e-8) # Add small epsilon to avoid division by zero
100
+ weights = weights / (np.sum(weights) + self.denominator)
101
+
102
+ # Weighted combination
103
+ mean_new = (1 - np.sum(weights)) * mean_new + np.sum(weights[:, None] * top_k_means, axis=0)
104
+ cov_new = (1 - np.sum(weights)) * cov_new + np.sum(weights[:, None, None] * top_k_covs, axis=0)
105
+
106
+ # Symmetric matrix
107
+ cov_new = 0.5 * (cov_new.T + cov_new)
108
+ return mean_new, cov_new
109
+
110
+ def _update_means_covs_pool(self, means_covs, top_k_idx) -> None:
111
+ self.data["means_covs"] = [means_covs[i] for i in top_k_idx]
112
+ return None
113
+
114
+
115
+ class MOEADDEIMKTN0(MOEADDEIMKTN):
116
+ def __init__(self, **kwargs):
117
+ super().__init__(**kwargs)
@@ -0,0 +1,146 @@
1
+ import numpy as np
2
+ from pymoo.core.population import Population
3
+ from pymoo.operators.survival.rank_and_crowding import RankAndCrowding
4
+
5
+ from pydmoo.algorithms.modern.moeadde_imkt_n import MOEADDEIMKTN
6
+ from pydmoo.algorithms.modern.nsga2_imkt_n_lstm import prepare_data_mean_cov
7
+ from pydmoo.algorithms.utils.utils import make_semidefinite, reconstruct_covariance_from_triu
8
+ from pydmoo.core.bounds import clip_and_randomize
9
+ from pydmoo.core.inverse import closed_form_solution
10
+ from pydmoo.core.lstm.lstm import LSTMpredictor
11
+ from pydmoo.core.sample_gaussian import multivariate_gaussian_sample
12
+
13
+
14
+ class MOEADDEIMNcLSTM(MOEADDEIMKTN):
15
+ def __init__(self, **kwargs):
16
+ super().__init__(**kwargs)
17
+
18
+ self._n_timesteps = 10
19
+ self._sequence_length = 5 # Use 5 historical time steps to predict next step
20
+ self._incremental_learning = False
21
+
22
+ def _setup(self, problem, **kwargs):
23
+ super()._setup(problem, **kwargs)
24
+
25
+ # Must be here
26
+ self._lstm = LSTMpredictor(
27
+ self._sequence_length,
28
+ hidden_dim=64,
29
+ num_layers=1,
30
+ epochs=50,
31
+ batch_size=32,
32
+ lr=0.001,
33
+ device="cpu", # for fair comparison
34
+ patience=5,
35
+ seed=self.seed,
36
+ model_type="lstm",
37
+ incremental_learning=self._incremental_learning,
38
+ )
39
+
40
+ def _response_change(self):
41
+ pop = self.pop
42
+ X = pop.get("X")
43
+
44
+ # recreate the current population without being evaluated
45
+ pop = Population.new(X=X)
46
+
47
+ # sample self.pop_size individuals in decision space
48
+ samples_old = self.sampling_new_pop()
49
+
50
+ # select self.pop_size/2 individuals with better convergence and diversity
51
+ samples = samples_old[:int(len(samples_old)/2)]
52
+
53
+ # knowledge in objective space
54
+ means_covs, mean, cov = self._in_decision_or_objective_space_nd(samples, "objective_space")
55
+
56
+ # Check if sufficient historical data is available for LSTM prediction
57
+ if len(means_covs) > self._n_timesteps:
58
+ # Update pool
59
+ self.data["means_covs"] = means_covs[self._n_timesteps:]
60
+
61
+ # Prepare time series data from historical means and covariance matrices
62
+ time_series_data = prepare_data_mean_cov(self._n_timesteps, means_covs)
63
+
64
+ # Initialize predictor and generate prediction for next time step
65
+ next_prediction = self._lstm.convert_train_predict(time_series_data)
66
+
67
+ # Convert prediction tensor to numpy array for further processing
68
+ next_prediction = next_prediction.numpy()
69
+
70
+ # Split prediction into mean and covariance components
71
+ # First n_obj elements represent the mean vector, Remaining elements represent the flattened covariance matrix values
72
+ mean_new, cov_new_ = next_prediction[:self.problem.n_obj], next_prediction[self.problem.n_obj:]
73
+ cov_new = reconstruct_covariance_from_triu(cov_new_, len(mean_new))
74
+ cov_new = make_semidefinite(cov_new)
75
+
76
+ else:
77
+ mean_new, cov_new = self._select_means_covs(means_covs, mean, cov)
78
+
79
+ # sample self.pop_size individuals in objective space
80
+ F = multivariate_gaussian_sample(mean_new, cov_new, self.pop_size, random_state=self.random_state)
81
+
82
+ # TODO
83
+ # inverse mapping
84
+ # X = FB
85
+ B = closed_form_solution(samples.get("X"), samples.get("F"))
86
+
87
+ # X = FB
88
+ X = np.dot(F, B)
89
+
90
+ # bounds
91
+ if self.problem.has_bounds():
92
+ xl, xu = self.problem.bounds()
93
+ X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
94
+
95
+ # merge
96
+ pop = Population.merge(samples_old, Population.new(X=X))
97
+
98
+ return pop
99
+
100
+ def sampling_new_pop(self):
101
+ ps = self.opt.get("X")
102
+ X = self.pop.get("X")
103
+
104
+ if not self.problem.has_constraints():
105
+
106
+ last_ps = self.data.get("last_ps", [])
107
+ if len(last_ps) == 0:
108
+ last_ps = ps
109
+ self.data["last_ps"] = ps
110
+
111
+ d = np.mean(ps, axis=0) - np.mean(last_ps, axis=0)
112
+
113
+ radius = max(np.linalg.norm(d) / self.problem.n_obj, 0.1)
114
+
115
+ X = X + d + self.random_state.uniform(low=-radius, high=radius, size=X.shape)
116
+
117
+ # bounds
118
+ if self.problem.has_bounds():
119
+ xl, xu = self.problem.bounds()
120
+ X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
121
+
122
+ samples = Population.new(X=X)
123
+ samples = self.evaluator.eval(self.problem, samples)
124
+
125
+ # do a survival to recreate rank and crowding of all individuals
126
+ samples = RankAndCrowding().do(self.problem, samples, n_survive=len(samples))
127
+ return samples
128
+
129
+ def _select_means_covs(self, means_covs, mean_new, cov_new):
130
+ # Unpack means and stds
131
+ means = np.array([m[0] for m in means_covs])
132
+ covs = np.array([m[1] for m in means_covs])
133
+
134
+ # Weighted combination
135
+ mean_new = 0.5 * mean_new + 0.5 * means[-1]
136
+ cov_new = 0.5 * cov_new + 0.5 * covs[-1]
137
+
138
+ return mean_new, cov_new
139
+
140
+
141
+ class MOEADDEIMNicLSTM(MOEADDEIMNcLSTM):
142
+ def __init__(self, **kwargs) -> None:
143
+ super().__init__(**kwargs)
144
+ self._n_timesteps = 10
145
+ self._sequence_length = 5 # Use 5 historical time steps to predict next step
146
+ self._incremental_learning = True
@@ -0,0 +1,56 @@
1
+ from pymoo.core.population import Population
2
+
3
+ from pydmoo.algorithms.modern.moeadde_imkt_n import MOEADDEIMKTN
4
+ from pydmoo.core.bounds import clip_and_randomize
5
+ from pydmoo.core.predictions import igp_based_predictor
6
+ from pydmoo.core.sample_gaussian import multivariate_gaussian_sample
7
+
8
+
9
+ class MOEADDEIMKTNIGP(MOEADDEIMKTN):
10
+ def __init__(self, **kwargs):
11
+ super().__init__(**kwargs)
12
+ self.size_pool = 10
13
+ self.denominator = 0.5
14
+
15
+ self.delta_s = 0.01
16
+ self.sigma_n = 0.01
17
+ self.sigma_n_2 = self.sigma_n ** 2
18
+
19
+ def _response_change(self):
20
+ pop = self.pop
21
+ X = pop.get("X")
22
+
23
+ # recreate the current population without being evaluated
24
+ pop = Population.new(X=X)
25
+
26
+ # sample self.pop_size individuals in decision space
27
+ samples_old = self.sampling_new_pop()
28
+
29
+ # select self.pop_size/2 individuals with better convergence and diversity
30
+ samples = samples_old[:int(len(samples_old)/2)]
31
+
32
+ # knowledge in objective space
33
+ means_stds, mean, cov = self._in_decision_or_objective_space_nd(samples, "objective_space")
34
+ mean_new, cov_new = self._select_means_covs(means_stds, mean, cov)
35
+
36
+ # sample self.pop_size individuals in objective space
37
+ F = multivariate_gaussian_sample(mean_new, cov_new, self.pop_size, random_state=self.random_state)
38
+
39
+ # TODO
40
+ # inverse mapping
41
+ X = igp_based_predictor(samples.get("X"), samples.get("F"), F, self.sigma_n_2)
42
+
43
+ # bounds
44
+ if self.problem.has_bounds():
45
+ xl, xu = self.problem.bounds()
46
+ X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
47
+
48
+ # merge
49
+ pop = Population.merge(samples_old, Population.new(X=X))
50
+
51
+ return pop
52
+
53
+
54
+ class MOEADDEIMKTNIGP0(MOEADDEIMKTNIGP):
55
+ def __init__(self, **kwargs):
56
+ super().__init__(**kwargs)
@@ -0,0 +1,114 @@
1
+ import numpy as np
2
+ from pymoo.core.population import Population
3
+
4
+ from pydmoo.algorithms.modern.moeadde_imkt_n import MOEADDEIMKTN
5
+ from pydmoo.algorithms.modern.nsga2_imkt_n_lstm import prepare_data_mean_cov
6
+ from pydmoo.algorithms.utils.utils import make_semidefinite, reconstruct_covariance_from_triu
7
+ from pydmoo.core.bounds import clip_and_randomize
8
+ from pydmoo.core.inverse import closed_form_solution
9
+ from pydmoo.core.lstm.lstm import LSTMpredictor
10
+ from pydmoo.core.sample_gaussian import multivariate_gaussian_sample
11
+
12
+
13
+ class MOEADDEIMNLSTM(MOEADDEIMKTN):
14
+ """Inverse Modeling with LSTM (IMNLSTM).
15
+
16
+ Inverse Modeling for Dynamic Multiobjective Optimization with Knowledge Transfer In objective Space.
17
+ """
18
+
19
+ def __init__(self, **kwargs):
20
+ super().__init__(**kwargs)
21
+ self.size_pool = 10
22
+ self.denominator = 0.5
23
+
24
+ self._n_timesteps = 10
25
+ self._sequence_length = 5 # Use 5 historical time steps to predict next step
26
+ self._incremental_learning = False
27
+
28
+ def _setup(self, problem, **kwargs):
29
+ super()._setup(problem, **kwargs)
30
+
31
+ # Must be here
32
+ self._lstm = LSTMpredictor(
33
+ self._sequence_length,
34
+ hidden_dim=64,
35
+ num_layers=1,
36
+ epochs=50,
37
+ batch_size=32,
38
+ lr=0.001,
39
+ device="cpu", # for fair comparison
40
+ patience=5,
41
+ seed=self.seed,
42
+ model_type="lstm",
43
+ incremental_learning=self._incremental_learning,
44
+ )
45
+
46
+ def _response_change(self):
47
+ pop = self.pop
48
+ X = pop.get("X")
49
+
50
+ # recreate the current population without being evaluated
51
+ pop = Population.new(X=X)
52
+
53
+ # sample self.pop_size individuals in decision space
54
+ samples_old = self.sampling_new_pop()
55
+
56
+ # select self.pop_size/2 individuals with better convergence and diversity
57
+ samples = samples_old[:int(len(samples_old)/2)]
58
+
59
+ # knowledge in objective space
60
+ means_covs, mean, cov = self._in_decision_or_objective_space_nd(samples, "objective_space")
61
+
62
+ # Check if sufficient historical data is available for LSTM prediction
63
+ if len(means_covs) > self._n_timesteps:
64
+ # Update pool
65
+ self.data["means_covs"] = means_covs[self._n_timesteps:]
66
+
67
+ # Prepare time series data from historical means and covariance matrices
68
+ time_series_data = prepare_data_mean_cov(self._n_timesteps, means_covs)
69
+
70
+ # Initialize predictor and generate prediction for next time step
71
+ next_prediction = self._lstm.convert_train_predict(time_series_data)
72
+
73
+ # Convert prediction tensor to numpy array for further processing
74
+ next_prediction = next_prediction.numpy()
75
+
76
+ # Split prediction into mean and covariance components
77
+ # First n_obj elements represent the mean vector, Remaining elements represent the flattened covariance matrix values
78
+ mean_new, cov_new_ = next_prediction[:self.problem.n_obj], next_prediction[self.problem.n_obj:]
79
+ cov_new = reconstruct_covariance_from_triu(cov_new_, len(mean_new))
80
+ cov_new = make_semidefinite(cov_new)
81
+
82
+ else:
83
+ mean_new, cov_new = self._select_means_covs(means_covs, mean, cov)
84
+
85
+ # sample self.pop_size individuals in objective space
86
+ F = multivariate_gaussian_sample(mean_new, cov_new, self.pop_size, random_state=self.random_state)
87
+
88
+ # TODO
89
+ # inverse mapping
90
+ # X = FB
91
+ B = closed_form_solution(samples.get("X"), samples.get("F"))
92
+
93
+ # X = FB
94
+ X = np.dot(F, B)
95
+
96
+ # bounds
97
+ if self.problem.has_bounds():
98
+ xl, xu = self.problem.bounds()
99
+ X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
100
+
101
+ # merge
102
+ pop = Population.merge(samples_old, Population.new(X=X))
103
+
104
+ return pop
105
+
106
+
107
+ class MOEADDEIMNiLSTM(MOEADDEIMNLSTM):
108
+ def __init__(self, **kwargs) -> None:
109
+ super().__init__(**kwargs)
110
+ self.size_pool = 10
111
+ self.denominator = 0.5
112
+ self._n_timesteps = 10
113
+ self._sequence_length = 5 # Use 5 historical time steps to predict next step
114
+ self._incremental_learning = True