pydmoo 0.0.18__py3-none-any.whl → 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pydmoo/algorithms/base/__init__.py +20 -0
- pydmoo/algorithms/base/core/__init__.py +0 -0
- pydmoo/algorithms/base/core/algorithm.py +416 -0
- pydmoo/algorithms/base/core/genetic.py +129 -0
- pydmoo/algorithms/base/dmoo/__init__.py +0 -0
- pydmoo/algorithms/base/dmoo/dmoead.py +131 -0
- pydmoo/algorithms/base/dmoo/dmoeadde.py +131 -0
- pydmoo/algorithms/base/dmoo/dmopso.py +0 -0
- pydmoo/algorithms/base/dmoo/dnsga2.py +137 -0
- pydmoo/algorithms/base/moo/__init__.py +0 -0
- pydmoo/algorithms/base/moo/moead.py +199 -0
- pydmoo/algorithms/base/moo/moeadde.py +105 -0
- pydmoo/algorithms/base/moo/mopso.py +0 -0
- pydmoo/algorithms/base/moo/nsga2.py +122 -0
- pydmoo/algorithms/modern/__init__.py +94 -0
- pydmoo/algorithms/modern/moead_imkt.py +161 -0
- pydmoo/algorithms/modern/moead_imkt_igp.py +56 -0
- pydmoo/algorithms/modern/moead_imkt_lstm.py +109 -0
- pydmoo/algorithms/modern/moead_imkt_n.py +117 -0
- pydmoo/algorithms/modern/moead_imkt_n_igp.py +56 -0
- pydmoo/algorithms/modern/moead_imkt_n_lstm.py +111 -0
- pydmoo/algorithms/modern/moead_ktmm.py +112 -0
- pydmoo/algorithms/modern/moeadde_imkt.py +161 -0
- pydmoo/algorithms/modern/moeadde_imkt_clstm.py +223 -0
- pydmoo/algorithms/modern/moeadde_imkt_igp.py +56 -0
- pydmoo/algorithms/modern/moeadde_imkt_lstm.py +212 -0
- pydmoo/algorithms/modern/moeadde_imkt_n.py +117 -0
- pydmoo/algorithms/modern/moeadde_imkt_n_clstm.py +146 -0
- pydmoo/algorithms/modern/moeadde_imkt_n_igp.py +56 -0
- pydmoo/algorithms/modern/moeadde_imkt_n_lstm.py +114 -0
- pydmoo/algorithms/modern/moeadde_ktmm.py +112 -0
- pydmoo/algorithms/modern/nsga2_imkt.py +162 -0
- pydmoo/algorithms/modern/nsga2_imkt_clstm.py +223 -0
- pydmoo/algorithms/modern/nsga2_imkt_igp.py +56 -0
- pydmoo/algorithms/modern/nsga2_imkt_lstm.py +248 -0
- pydmoo/algorithms/modern/nsga2_imkt_n.py +117 -0
- pydmoo/algorithms/modern/nsga2_imkt_n_clstm.py +146 -0
- pydmoo/algorithms/modern/nsga2_imkt_n_igp.py +57 -0
- pydmoo/algorithms/modern/nsga2_imkt_n_lstm.py +154 -0
- pydmoo/algorithms/modern/nsga2_ktmm.py +112 -0
- pydmoo/algorithms/utils/__init__.py +0 -0
- pydmoo/algorithms/utils/utils.py +166 -0
- pydmoo/core/__init__.py +0 -0
- pydmoo/{response → core}/ar_model.py +4 -4
- pydmoo/{response → core}/bounds.py +35 -2
- pydmoo/core/distance.py +45 -0
- pydmoo/core/inverse.py +55 -0
- pydmoo/core/lstm/__init__.py +0 -0
- pydmoo/core/lstm/base.py +291 -0
- pydmoo/core/lstm/lstm.py +491 -0
- pydmoo/core/manifold.py +93 -0
- pydmoo/core/predictions.py +50 -0
- pydmoo/core/sample_gaussian.py +56 -0
- pydmoo/core/sample_uniform.py +63 -0
- pydmoo/{response/tca_model.py → core/transfer.py} +3 -3
- pydmoo/problems/__init__.py +53 -49
- pydmoo/problems/dyn.py +94 -13
- pydmoo/problems/dynamic/cec2015.py +10 -5
- pydmoo/problems/dynamic/df.py +6 -3
- pydmoo/problems/dynamic/gts.py +69 -34
- pydmoo/problems/real_world/__init__.py +0 -0
- pydmoo/problems/real_world/dsrp.py +168 -0
- pydmoo/problems/real_world/dwbdp.py +189 -0
- {pydmoo-0.0.18.dist-info → pydmoo-0.1.0.dist-info}/METADATA +11 -10
- pydmoo-0.1.0.dist-info/RECORD +70 -0
- {pydmoo-0.0.18.dist-info → pydmoo-0.1.0.dist-info}/WHEEL +1 -1
- pydmoo-0.0.18.dist-info/RECORD +0 -15
- /pydmoo/{response → algorithms}/__init__.py +0 -0
- {pydmoo-0.0.18.dist-info → pydmoo-0.1.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,56 @@
|
|
|
1
|
+
from pymoo.core.population import Population
|
|
2
|
+
|
|
3
|
+
from pydmoo.algorithms.modern.moead_imkt_n import MOEADIMKTN
|
|
4
|
+
from pydmoo.core.bounds import clip_and_randomize
|
|
5
|
+
from pydmoo.core.predictions import igp_based_predictor
|
|
6
|
+
from pydmoo.core.sample_gaussian import multivariate_gaussian_sample
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class MOEADIMKTNIGP(MOEADIMKTN):
|
|
10
|
+
def __init__(self, **kwargs):
|
|
11
|
+
super().__init__(**kwargs)
|
|
12
|
+
self.size_pool = 10
|
|
13
|
+
self.denominator = 0.5
|
|
14
|
+
|
|
15
|
+
self.delta_s = 0.01
|
|
16
|
+
self.sigma_n = 0.01
|
|
17
|
+
self.sigma_n_2 = self.sigma_n ** 2
|
|
18
|
+
|
|
19
|
+
def _response_change(self):
|
|
20
|
+
pop = self.pop
|
|
21
|
+
X = pop.get("X")
|
|
22
|
+
|
|
23
|
+
# recreate the current population without being evaluated
|
|
24
|
+
pop = Population.new(X=X)
|
|
25
|
+
|
|
26
|
+
# sample self.pop_size individuals in decision space
|
|
27
|
+
samples_old = self.sampling_new_pop()
|
|
28
|
+
|
|
29
|
+
# select self.pop_size/2 individuals with better convergence and diversity
|
|
30
|
+
samples = samples_old[:int(len(samples_old)/2)]
|
|
31
|
+
|
|
32
|
+
# knowledge in objective space
|
|
33
|
+
means_stds, mean, cov = self._in_decision_or_objective_space_nd(samples, "objective_space")
|
|
34
|
+
mean_new, cov_new = self._select_means_covs(means_stds, mean, cov)
|
|
35
|
+
|
|
36
|
+
# sample self.pop_size individuals in objective space
|
|
37
|
+
F = multivariate_gaussian_sample(mean_new, cov_new, self.pop_size, random_state=self.random_state)
|
|
38
|
+
|
|
39
|
+
# TODO
|
|
40
|
+
# inverse mapping
|
|
41
|
+
X = igp_based_predictor(samples.get("X"), samples.get("F"), F, self.sigma_n_2)
|
|
42
|
+
|
|
43
|
+
# bounds
|
|
44
|
+
if self.problem.has_bounds():
|
|
45
|
+
xl, xu = self.problem.bounds()
|
|
46
|
+
X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
|
|
47
|
+
|
|
48
|
+
# merge
|
|
49
|
+
pop = Population.merge(samples_old, Population.new(X=X))
|
|
50
|
+
|
|
51
|
+
return pop
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class MOEADIMKTNIGP0(MOEADIMKTNIGP):
|
|
55
|
+
def __init__(self, **kwargs):
|
|
56
|
+
super().__init__(**kwargs)
|
|
@@ -0,0 +1,111 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from pymoo.core.population import Population
|
|
3
|
+
|
|
4
|
+
from pydmoo.algorithms.modern.moead_imkt_n import MOEADIMKTN
|
|
5
|
+
from pydmoo.algorithms.modern.nsga2_imkt_n_lstm import prepare_data_mean_cov
|
|
6
|
+
from pydmoo.algorithms.utils.utils import make_semidefinite, reconstruct_covariance_from_triu
|
|
7
|
+
from pydmoo.core.bounds import clip_and_randomize
|
|
8
|
+
from pydmoo.core.inverse import closed_form_solution
|
|
9
|
+
from pydmoo.core.lstm.lstm import LSTMpredictor
|
|
10
|
+
from pydmoo.core.sample_gaussian import multivariate_gaussian_sample
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class MOEADIMNLSTM(MOEADIMKTN):
|
|
14
|
+
"""Inverse Modeling with LSTM (IMNLSTM).
|
|
15
|
+
|
|
16
|
+
Inverse Modeling for Dynamic Multiobjective Optimization with Knowledge Transfer In objective Space.
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
def __init__(self, **kwargs):
|
|
20
|
+
super().__init__(**kwargs)
|
|
21
|
+
self.size_pool = 10
|
|
22
|
+
self.denominator = 0.5
|
|
23
|
+
|
|
24
|
+
self._n_timesteps = 10
|
|
25
|
+
self._sequence_length = 5 # Use 5 historical time steps to predict next step
|
|
26
|
+
self._incremental_learning = False
|
|
27
|
+
|
|
28
|
+
def _setup(self, problem, **kwargs):
|
|
29
|
+
super()._setup(problem, **kwargs)
|
|
30
|
+
|
|
31
|
+
# Must be here
|
|
32
|
+
self._lstm = LSTMpredictor(
|
|
33
|
+
self._sequence_length,
|
|
34
|
+
hidden_dim=64,
|
|
35
|
+
num_layers=1,
|
|
36
|
+
epochs=50,
|
|
37
|
+
batch_size=32,
|
|
38
|
+
lr=0.001,
|
|
39
|
+
device="cpu", # for fair comparison
|
|
40
|
+
patience=5,
|
|
41
|
+
seed=self.seed,
|
|
42
|
+
model_type="lstm",
|
|
43
|
+
incremental_learning=self._incremental_learning,
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
def _response_change(self):
|
|
47
|
+
pop = self.pop
|
|
48
|
+
X = pop.get("X")
|
|
49
|
+
|
|
50
|
+
# recreate the current population without being evaluated
|
|
51
|
+
pop = Population.new(X=X)
|
|
52
|
+
|
|
53
|
+
# sample self.pop_size individuals in decision space
|
|
54
|
+
samples_old = self.sampling_new_pop()
|
|
55
|
+
|
|
56
|
+
# select self.pop_size/2 individuals with better convergence and diversity
|
|
57
|
+
samples = samples_old[:int(len(samples_old)/2)]
|
|
58
|
+
|
|
59
|
+
# knowledge in objective space
|
|
60
|
+
means_covs, mean, cov = self._in_decision_or_objective_space_nd(samples, "objective_space")
|
|
61
|
+
|
|
62
|
+
# Check if sufficient historical data is available for LSTM prediction
|
|
63
|
+
if len(means_covs) > self._n_timesteps:
|
|
64
|
+
# Update pool
|
|
65
|
+
self.data["means_covs"] = means_covs[self._n_timesteps:]
|
|
66
|
+
|
|
67
|
+
# Prepare time series data from historical means and covariance matrices
|
|
68
|
+
time_series_data = prepare_data_mean_cov(self._n_timesteps, means_covs)
|
|
69
|
+
|
|
70
|
+
# Initialize predictor and generate prediction for next time step
|
|
71
|
+
next_prediction = self._lstm.convert_train_predict(time_series_data)
|
|
72
|
+
|
|
73
|
+
# Convert prediction tensor to numpy array for further processing
|
|
74
|
+
next_prediction = next_prediction.numpy()
|
|
75
|
+
|
|
76
|
+
# Split prediction into mean and covariance components
|
|
77
|
+
# First n_obj elements represent the mean vector, Remaining elements represent the flattened covariance matrix values
|
|
78
|
+
mean_new, cov_new_ = next_prediction[:self.problem.n_obj], next_prediction[self.problem.n_obj:]
|
|
79
|
+
cov_new = reconstruct_covariance_from_triu(cov_new_, len(mean_new))
|
|
80
|
+
cov_new = make_semidefinite(cov_new)
|
|
81
|
+
|
|
82
|
+
else:
|
|
83
|
+
mean_new, cov_new = self._select_means_covs(means_covs, mean, cov)
|
|
84
|
+
|
|
85
|
+
# sample self.pop_size individuals in objective space
|
|
86
|
+
F = multivariate_gaussian_sample(mean_new, cov_new, self.pop_size, random_state=self.random_state)
|
|
87
|
+
|
|
88
|
+
# TODO
|
|
89
|
+
# inverse mapping
|
|
90
|
+
# X = FB
|
|
91
|
+
B = closed_form_solution(samples.get("X"), samples.get("F"))
|
|
92
|
+
|
|
93
|
+
# X = FB
|
|
94
|
+
X = np.dot(F, B)
|
|
95
|
+
|
|
96
|
+
# bounds
|
|
97
|
+
if self.problem.has_bounds():
|
|
98
|
+
xl, xu = self.problem.bounds()
|
|
99
|
+
X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
|
|
100
|
+
|
|
101
|
+
# merge
|
|
102
|
+
pop = Population.merge(samples_old, Population.new(X=X))
|
|
103
|
+
|
|
104
|
+
return pop
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
class MOEADIMNiLSTM(MOEADIMNLSTM):
|
|
108
|
+
def __init__(self, **kwargs) -> None:
|
|
109
|
+
super().__init__(**kwargs)
|
|
110
|
+
|
|
111
|
+
self._incremental_learning = True
|
|
@@ -0,0 +1,112 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from pymoo.core.population import Population
|
|
3
|
+
from pymoo.operators.survival.rank_and_crowding import RankAndCrowding
|
|
4
|
+
|
|
5
|
+
from pydmoo.algorithms.base.dmoo.dmoead import DMOEAD
|
|
6
|
+
from pydmoo.core.sample_gaussian import univariate_gaussian_sample
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class MOEADKTMM(DMOEAD):
|
|
10
|
+
"""Knowledge Transfer with Mixture Model.
|
|
11
|
+
|
|
12
|
+
Zou, J., Hou, Z., Jiang, S., Yang, S., Ruan, G., Xia, Y., and Liu, Y. (2025).
|
|
13
|
+
Knowledge transfer with mixture model in dynamic multi-objective optimization.
|
|
14
|
+
IEEE Transactions on Evolutionary Computation, in press.
|
|
15
|
+
https://doi.org/10.1109/TEVC.2025.3566481
|
|
16
|
+
"""
|
|
17
|
+
|
|
18
|
+
def __init__(self, **kwargs):
|
|
19
|
+
|
|
20
|
+
super().__init__(**kwargs)
|
|
21
|
+
|
|
22
|
+
self.size_pool = 14 # the size of knowledge pool
|
|
23
|
+
self.denominator = 0.5
|
|
24
|
+
|
|
25
|
+
def _response_change(self):
|
|
26
|
+
pop = self.pop
|
|
27
|
+
X = pop.get("X")
|
|
28
|
+
|
|
29
|
+
# recreate the current population without being evaluated
|
|
30
|
+
pop = Population.new(X=X)
|
|
31
|
+
|
|
32
|
+
# sample self.pop_size solutions in decision space
|
|
33
|
+
samples_old = self.sampling_new_pop()
|
|
34
|
+
|
|
35
|
+
# select self.pop_size/2 individuals with better convergence and diversity
|
|
36
|
+
samples = samples_old[:int(len(samples_old)/2)]
|
|
37
|
+
|
|
38
|
+
# knowledge in decision space
|
|
39
|
+
means_stds_ps, mean, std = self._in_decision_or_objective_space_1d(samples, "decision_space")
|
|
40
|
+
mean_new, std_new = self._select_means_stds(means_stds_ps, mean, std)
|
|
41
|
+
|
|
42
|
+
# sample self.pop_size solutions in decision space
|
|
43
|
+
X = univariate_gaussian_sample(mean_new, std_new, self.pop_size, random_state=self.random_state)
|
|
44
|
+
|
|
45
|
+
# bounds
|
|
46
|
+
if self.problem.has_bounds():
|
|
47
|
+
xl, xu = self.problem.bounds()
|
|
48
|
+
X = np.clip(X, xl, xu) # not provided in the original reference literature
|
|
49
|
+
|
|
50
|
+
# merge
|
|
51
|
+
pop = Population.merge(samples_old, Population.new(X=X))
|
|
52
|
+
|
|
53
|
+
return pop
|
|
54
|
+
|
|
55
|
+
def _in_decision_or_objective_space_1d(self, samples, decision_or_objective="decision_space"):
|
|
56
|
+
# decision space or objective space
|
|
57
|
+
flag = "X" if decision_or_objective == "decision_space" else "F"
|
|
58
|
+
|
|
59
|
+
means_stds = self.data.get("means_stds", [])
|
|
60
|
+
|
|
61
|
+
flag_value = self.opt.get(flag)
|
|
62
|
+
if len(flag_value) <= 1:
|
|
63
|
+
flag_value = self.pop.get(flag)
|
|
64
|
+
flag_value = flag_value[:2]
|
|
65
|
+
|
|
66
|
+
means_stds.append((np.mean(flag_value, axis=0), np.std(flag_value, axis=0), self.n_iter - 1)) # 1-based
|
|
67
|
+
self.data["means_stds"] = means_stds
|
|
68
|
+
|
|
69
|
+
flag_value = samples.get(flag)
|
|
70
|
+
mean, std = np.mean(flag_value, axis=0), np.std(flag_value, axis=0)
|
|
71
|
+
return means_stds, mean, std
|
|
72
|
+
|
|
73
|
+
def sampling_new_pop(self):
|
|
74
|
+
samples = self.initialization.sampling(self.problem, self.pop_size)
|
|
75
|
+
samples = self.evaluator.eval(self.problem, samples)
|
|
76
|
+
|
|
77
|
+
# do a survival to recreate rank and crowding of all individuals
|
|
78
|
+
samples = RankAndCrowding().do(self.problem, samples, n_survive=len(samples))
|
|
79
|
+
return samples
|
|
80
|
+
|
|
81
|
+
def _select_means_stds(self, means_stds, mean_new, std_new):
|
|
82
|
+
# Unpack means and stds
|
|
83
|
+
means = np.array([m[0] for m in means_stds])
|
|
84
|
+
stds = np.array([m[1] for m in means_stds])
|
|
85
|
+
|
|
86
|
+
# Calculate distances
|
|
87
|
+
mean_diffs = means - mean_new
|
|
88
|
+
std_diffs = stds - std_new
|
|
89
|
+
|
|
90
|
+
distances = np.sqrt(np.sum(mean_diffs**2, axis=1) + np.sum(std_diffs**2, axis=1))
|
|
91
|
+
|
|
92
|
+
# Get top K closest
|
|
93
|
+
top_k_idx = np.argsort(distances)[:self.size_pool]
|
|
94
|
+
top_k_dist = distances[top_k_idx]
|
|
95
|
+
top_k_means = means[top_k_idx]
|
|
96
|
+
top_k_stds = stds[top_k_idx]
|
|
97
|
+
|
|
98
|
+
# Update pool
|
|
99
|
+
self._update_means_stds_pool(means_stds, top_k_idx)
|
|
100
|
+
|
|
101
|
+
# Calculate weights
|
|
102
|
+
weights = 1 / (top_k_dist + 1e-8) # Add small epsilon to avoid division by zero
|
|
103
|
+
weights = weights / (np.sum(weights) + self.denominator)
|
|
104
|
+
|
|
105
|
+
# Weighted combination
|
|
106
|
+
mean_new = (1 - np.sum(weights)) * mean_new + np.sum(weights[:, None] * top_k_means, axis=0)
|
|
107
|
+
std_new = (1 - np.sum(weights)) * std_new + np.sum(weights[:, None] * top_k_stds, axis=0)
|
|
108
|
+
return mean_new, std_new
|
|
109
|
+
|
|
110
|
+
def _update_means_stds_pool(self, means_stds, top_k_idx) -> None:
|
|
111
|
+
self.data["means_stds"] = [means_stds[i] for i in top_k_idx]
|
|
112
|
+
return None
|
|
@@ -0,0 +1,161 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from pymoo.core.population import Population
|
|
3
|
+
from pymoo.operators.survival.rank_and_crowding import RankAndCrowding
|
|
4
|
+
|
|
5
|
+
from pydmoo.algorithms.modern.moeadde_ktmm import MOEADDEKTMM
|
|
6
|
+
from pydmoo.core.bounds import clip_and_randomize
|
|
7
|
+
from pydmoo.core.inverse import closed_form_solution
|
|
8
|
+
from pydmoo.core.sample_gaussian import univariate_gaussian_sample
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class MOEADDEIMKT(MOEADDEKTMM):
|
|
12
|
+
"""Inverse Modeling with Knowledge Transfer.
|
|
13
|
+
|
|
14
|
+
Inverse Modeling for Dynamic Multiobjective Optimization with Knowledge Transfer In objective Space.
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
def __init__(self, **kwargs):
|
|
18
|
+
super().__init__(**kwargs)
|
|
19
|
+
self.size_pool = 10
|
|
20
|
+
self.denominator = 0.5
|
|
21
|
+
|
|
22
|
+
def _response_change(self):
|
|
23
|
+
pop = self.pop
|
|
24
|
+
X = pop.get("X")
|
|
25
|
+
|
|
26
|
+
# recreate the current population without being evaluated
|
|
27
|
+
pop = Population.new(X=X)
|
|
28
|
+
|
|
29
|
+
# sample self.pop_size individuals in decision space
|
|
30
|
+
samples_old = self.sampling_new_pop()
|
|
31
|
+
|
|
32
|
+
# select self.pop_size/2 individuals with better convergence and diversity
|
|
33
|
+
samples = samples_old[:int(len(samples_old)/2)]
|
|
34
|
+
|
|
35
|
+
# knowledge in objective space
|
|
36
|
+
means_stds, mean, std = self._in_decision_or_objective_space_1d(samples, "objective_space")
|
|
37
|
+
mean_new, std_new = self._select_means_stds(means_stds, mean, std)
|
|
38
|
+
|
|
39
|
+
# sample self.pop_size individuals in objective space
|
|
40
|
+
F = univariate_gaussian_sample(mean_new, std_new, self.pop_size, random_state=self.random_state)
|
|
41
|
+
|
|
42
|
+
# TODO
|
|
43
|
+
# inverse mapping
|
|
44
|
+
# X = FB
|
|
45
|
+
B = closed_form_solution(samples.get("X"), samples.get("F"))
|
|
46
|
+
|
|
47
|
+
# X = FB
|
|
48
|
+
X = np.dot(F, B)
|
|
49
|
+
|
|
50
|
+
# bounds
|
|
51
|
+
if self.problem.has_bounds():
|
|
52
|
+
xl, xu = self.problem.bounds()
|
|
53
|
+
X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
|
|
54
|
+
|
|
55
|
+
# merge
|
|
56
|
+
pop = Population.merge(samples_old, Population.new(X=X))
|
|
57
|
+
|
|
58
|
+
return pop
|
|
59
|
+
|
|
60
|
+
def sampling_new_pop(self):
|
|
61
|
+
X = self.pop.get("X")
|
|
62
|
+
|
|
63
|
+
if not self.problem.has_constraints():
|
|
64
|
+
|
|
65
|
+
last_X = self.data.get("last_X", [])
|
|
66
|
+
if len(last_X) == 0:
|
|
67
|
+
last_X = X
|
|
68
|
+
self.data["last_X"] = X
|
|
69
|
+
|
|
70
|
+
d = np.mean(X - last_X, axis=0)
|
|
71
|
+
|
|
72
|
+
radius = max(np.linalg.norm(d) / self.problem.n_obj, 0.1)
|
|
73
|
+
|
|
74
|
+
X = X + d + self.random_state.uniform(low=-radius, high=radius, size=X.shape)
|
|
75
|
+
|
|
76
|
+
# bounds
|
|
77
|
+
if self.problem.has_bounds():
|
|
78
|
+
xl, xu = self.problem.bounds()
|
|
79
|
+
X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
|
|
80
|
+
|
|
81
|
+
samples = Population.new(X=X)
|
|
82
|
+
samples = self.evaluator.eval(self.problem, samples)
|
|
83
|
+
|
|
84
|
+
# do a survival to recreate rank and crowding of all individuals
|
|
85
|
+
samples = RankAndCrowding().do(self.problem, samples, n_survive=len(samples))
|
|
86
|
+
return samples
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
class MOEADDEIMKT0(MOEADDEIMKT):
|
|
90
|
+
def __init__(self, **kwargs):
|
|
91
|
+
super().__init__(**kwargs)
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
class MOEADDEIMKT1(MOEADDEIMKT):
|
|
95
|
+
def __init__(self, **kwargs):
|
|
96
|
+
super().__init__(**kwargs)
|
|
97
|
+
self.size_pool = 2
|
|
98
|
+
self.denominator = 0.5
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
class MOEADDEIMKT2(MOEADDEIMKT):
|
|
102
|
+
def __init__(self, **kwargs):
|
|
103
|
+
super().__init__(**kwargs)
|
|
104
|
+
self.size_pool = 4
|
|
105
|
+
self.denominator = 0.5
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
class MOEADDEIMKT3(MOEADDEIMKT):
|
|
109
|
+
def __init__(self, **kwargs):
|
|
110
|
+
super().__init__(**kwargs)
|
|
111
|
+
self.size_pool = 6
|
|
112
|
+
self.denominator = 0.5
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
class MOEADDEIMKT4(MOEADDEIMKT):
|
|
116
|
+
def __init__(self, **kwargs):
|
|
117
|
+
super().__init__(**kwargs)
|
|
118
|
+
self.size_pool = 8
|
|
119
|
+
self.denominator = 0.5
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
class MOEADDEIMKT5(MOEADDEIMKT):
|
|
123
|
+
def __init__(self, **kwargs):
|
|
124
|
+
super().__init__(**kwargs)
|
|
125
|
+
self.size_pool = 10
|
|
126
|
+
self.denominator = 0.5
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
class MOEADDEIMKT6(MOEADDEIMKT):
|
|
130
|
+
def __init__(self, **kwargs):
|
|
131
|
+
super().__init__(**kwargs)
|
|
132
|
+
self.size_pool = 12
|
|
133
|
+
self.denominator = 0.5
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
class MOEADDEIMKT7(MOEADDEIMKT):
|
|
137
|
+
def __init__(self, **kwargs):
|
|
138
|
+
super().__init__(**kwargs)
|
|
139
|
+
self.size_pool = 14
|
|
140
|
+
self.denominator = 0.5
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
class MOEADDEIMKT8(MOEADDEIMKT):
|
|
144
|
+
def __init__(self, **kwargs):
|
|
145
|
+
super().__init__(**kwargs)
|
|
146
|
+
self.size_pool = 16
|
|
147
|
+
self.denominator = 0.5
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
class MOEADDEIMKT9(MOEADDEIMKT):
|
|
151
|
+
def __init__(self, **kwargs):
|
|
152
|
+
super().__init__(**kwargs)
|
|
153
|
+
self.size_pool = 18
|
|
154
|
+
self.denominator = 0.5
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
class MOEADDEIMKT10(MOEADDEIMKT):
|
|
158
|
+
def __init__(self, **kwargs):
|
|
159
|
+
super().__init__(**kwargs)
|
|
160
|
+
self.size_pool = 20
|
|
161
|
+
self.denominator = 0.5
|
|
@@ -0,0 +1,223 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from pymoo.core.population import Population
|
|
3
|
+
from pymoo.operators.survival.rank_and_crowding import RankAndCrowding
|
|
4
|
+
|
|
5
|
+
from pydmoo.algorithms.modern.moeadde_imkt import MOEADDEIMKT
|
|
6
|
+
from pydmoo.algorithms.modern.nsga2_imkt_lstm import prepare_data_means_std
|
|
7
|
+
from pydmoo.core.bounds import clip_and_randomize
|
|
8
|
+
from pydmoo.core.inverse import closed_form_solution
|
|
9
|
+
from pydmoo.core.lstm.lstm import LSTMpredictor
|
|
10
|
+
from pydmoo.core.sample_gaussian import univariate_gaussian_sample
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class MOEADDEIMcLSTM(MOEADDEIMKT):
|
|
14
|
+
def __init__(self, **kwargs):
|
|
15
|
+
super().__init__(**kwargs)
|
|
16
|
+
|
|
17
|
+
self._n_timesteps = 10
|
|
18
|
+
self._sequence_length = 5 # Use 5 historical time steps to predict next step
|
|
19
|
+
self._incremental_learning = False
|
|
20
|
+
|
|
21
|
+
def _setup(self, problem, **kwargs):
|
|
22
|
+
super()._setup(problem, **kwargs)
|
|
23
|
+
|
|
24
|
+
# Must be here
|
|
25
|
+
self._lstm = LSTMpredictor(
|
|
26
|
+
self._sequence_length,
|
|
27
|
+
hidden_dim=64,
|
|
28
|
+
num_layers=1,
|
|
29
|
+
epochs=50,
|
|
30
|
+
batch_size=32,
|
|
31
|
+
lr=0.001,
|
|
32
|
+
device="cpu", # for fair comparison
|
|
33
|
+
patience=5,
|
|
34
|
+
seed=self.seed,
|
|
35
|
+
model_type="lstm",
|
|
36
|
+
incremental_learning=self._incremental_learning,
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
def _response_change(self):
|
|
40
|
+
pop = self.pop
|
|
41
|
+
X = pop.get("X")
|
|
42
|
+
|
|
43
|
+
# recreate the current population without being evaluated
|
|
44
|
+
pop = Population.new(X=X)
|
|
45
|
+
|
|
46
|
+
# sample self.pop_size individuals in decision space
|
|
47
|
+
samples_old = self.sampling_new_pop()
|
|
48
|
+
|
|
49
|
+
# select self.pop_size/2 individuals with better convergence and diversity
|
|
50
|
+
samples = samples_old[:int(len(samples_old)/2)]
|
|
51
|
+
|
|
52
|
+
# knowledge in objective space
|
|
53
|
+
means_stds, mean, std = self._in_decision_or_objective_space_1d(samples, "objective_space")
|
|
54
|
+
|
|
55
|
+
# Check if sufficient historical data is available for LSTM prediction
|
|
56
|
+
if len(means_stds) > self._n_timesteps:
|
|
57
|
+
# Update pool
|
|
58
|
+
self.data["means_stds"] = means_stds[self._n_timesteps:]
|
|
59
|
+
|
|
60
|
+
# Prepare time series data from historical means and standard deviations
|
|
61
|
+
time_series_data = prepare_data_means_std(self._n_timesteps, means_stds)
|
|
62
|
+
|
|
63
|
+
# Initialize predictor and generate prediction for next time step
|
|
64
|
+
next_prediction = self._lstm.convert_train_predict(time_series_data)
|
|
65
|
+
|
|
66
|
+
# Convert prediction tensor to numpy array for further processing
|
|
67
|
+
next_prediction = next_prediction.numpy()
|
|
68
|
+
|
|
69
|
+
# Split prediction into mean and standard deviation components
|
|
70
|
+
# First n_obj elements represent mean values, remaining elements represent standard deviations
|
|
71
|
+
mean_new, std_new = next_prediction[:self.problem.n_obj], next_prediction[self.problem.n_obj:]
|
|
72
|
+
std_new = np.abs(std_new)
|
|
73
|
+
|
|
74
|
+
else:
|
|
75
|
+
mean_new, std_new = self._select_means_stds(means_stds, mean, std)
|
|
76
|
+
|
|
77
|
+
# sample self.pop_size individuals in objective space
|
|
78
|
+
F = univariate_gaussian_sample(mean_new, std_new, self.pop_size, random_state=self.random_state)
|
|
79
|
+
|
|
80
|
+
# TODO
|
|
81
|
+
# inverse mapping
|
|
82
|
+
# X = FB
|
|
83
|
+
B = closed_form_solution(samples.get("X"), samples.get("F"))
|
|
84
|
+
|
|
85
|
+
# X = FB
|
|
86
|
+
X = np.dot(F, B)
|
|
87
|
+
|
|
88
|
+
# bounds
|
|
89
|
+
if self.problem.has_bounds():
|
|
90
|
+
xl, xu = self.problem.bounds()
|
|
91
|
+
X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
|
|
92
|
+
|
|
93
|
+
# merge
|
|
94
|
+
pop = Population.merge(samples_old, Population.new(X=X))
|
|
95
|
+
|
|
96
|
+
return pop
|
|
97
|
+
|
|
98
|
+
def sampling_new_pop(self):
|
|
99
|
+
ps = self.opt.get("X")
|
|
100
|
+
X = self.pop.get("X")
|
|
101
|
+
|
|
102
|
+
if not self.problem.has_constraints():
|
|
103
|
+
|
|
104
|
+
last_ps = self.data.get("last_ps", [])
|
|
105
|
+
if len(last_ps) == 0:
|
|
106
|
+
last_ps = ps
|
|
107
|
+
self.data["last_ps"] = ps
|
|
108
|
+
|
|
109
|
+
d = np.mean(ps, axis=0) - np.mean(last_ps, axis=0)
|
|
110
|
+
|
|
111
|
+
radius = max(np.linalg.norm(d) / self.problem.n_obj, 0.1)
|
|
112
|
+
|
|
113
|
+
X = X + d + self.random_state.uniform(low=-radius, high=radius, size=X.shape)
|
|
114
|
+
|
|
115
|
+
# bounds
|
|
116
|
+
if self.problem.has_bounds():
|
|
117
|
+
xl, xu = self.problem.bounds()
|
|
118
|
+
X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
|
|
119
|
+
|
|
120
|
+
samples = Population.new(X=X)
|
|
121
|
+
samples = self.evaluator.eval(self.problem, samples)
|
|
122
|
+
|
|
123
|
+
# do a survival to recreate rank and crowding of all individuals
|
|
124
|
+
samples = RankAndCrowding().do(self.problem, samples, n_survive=len(samples))
|
|
125
|
+
return samples
|
|
126
|
+
|
|
127
|
+
def _select_means_stds(self, means_stds, mean_new, std_new):
|
|
128
|
+
# Unpack means and stds
|
|
129
|
+
means = np.array([m[0] for m in means_stds])
|
|
130
|
+
stds = np.array([m[1] for m in means_stds])
|
|
131
|
+
|
|
132
|
+
# Weighted combination
|
|
133
|
+
mean_new = 0.5 * mean_new + 0.5 * means[-1]
|
|
134
|
+
std_new = 0.5 * std_new + 0.5 * stds[-1]
|
|
135
|
+
return mean_new, std_new
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
class MOEADDEIMicLSTM(MOEADDEIMcLSTM):
|
|
139
|
+
def __init__(self, **kwargs) -> None:
|
|
140
|
+
super().__init__(**kwargs)
|
|
141
|
+
self._n_timesteps = 10
|
|
142
|
+
self._sequence_length = 5
|
|
143
|
+
self._incremental_learning = True
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
class MOEADDEIMicLSTM1003(MOEADDEIMcLSTM):
|
|
147
|
+
def __init__(self, **kwargs) -> None:
|
|
148
|
+
super().__init__(**kwargs)
|
|
149
|
+
self._n_timesteps = 10
|
|
150
|
+
self._sequence_length = 3
|
|
151
|
+
self._incremental_learning = True
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
class MOEADDEIMicLSTM1005(MOEADDEIMcLSTM):
|
|
155
|
+
def __init__(self, **kwargs) -> None:
|
|
156
|
+
super().__init__(**kwargs)
|
|
157
|
+
self._n_timesteps = 10
|
|
158
|
+
self._sequence_length = 5
|
|
159
|
+
self._incremental_learning = True
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
class MOEADDEIMicLSTM1007(MOEADDEIMcLSTM):
|
|
163
|
+
def __init__(self, **kwargs) -> None:
|
|
164
|
+
super().__init__(**kwargs)
|
|
165
|
+
self._n_timesteps = 10
|
|
166
|
+
self._sequence_length = 7
|
|
167
|
+
self._incremental_learning = True
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
class MOEADDEIMicLSTM1009(MOEADDEIMcLSTM):
|
|
171
|
+
def __init__(self, **kwargs) -> None:
|
|
172
|
+
super().__init__(**kwargs)
|
|
173
|
+
self._n_timesteps = 10
|
|
174
|
+
self._sequence_length = 9
|
|
175
|
+
self._incremental_learning = True
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
class MOEADDEIMicLSTM1503(MOEADDEIMcLSTM):
|
|
179
|
+
def __init__(self, **kwargs) -> None:
|
|
180
|
+
super().__init__(**kwargs)
|
|
181
|
+
self._n_timesteps = 15
|
|
182
|
+
self._sequence_length = 3
|
|
183
|
+
self._incremental_learning = True
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
class MOEADDEIMicLSTM1505(MOEADDEIMcLSTM):
|
|
187
|
+
def __init__(self, **kwargs) -> None:
|
|
188
|
+
super().__init__(**kwargs)
|
|
189
|
+
self._n_timesteps = 15
|
|
190
|
+
self._sequence_length = 5
|
|
191
|
+
self._incremental_learning = True
|
|
192
|
+
|
|
193
|
+
|
|
194
|
+
class MOEADDEIMicLSTM1507(MOEADDEIMcLSTM):
|
|
195
|
+
def __init__(self, **kwargs) -> None:
|
|
196
|
+
super().__init__(**kwargs)
|
|
197
|
+
self._n_timesteps = 15
|
|
198
|
+
self._sequence_length = 7
|
|
199
|
+
self._incremental_learning = True
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
class MOEADDEIMicLSTM1509(MOEADDEIMcLSTM):
|
|
203
|
+
def __init__(self, **kwargs) -> None:
|
|
204
|
+
super().__init__(**kwargs)
|
|
205
|
+
self._n_timesteps = 15
|
|
206
|
+
self._sequence_length = 9
|
|
207
|
+
self._incremental_learning = True
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
class MOEADDEIMicLSTM1511(MOEADDEIMcLSTM):
|
|
211
|
+
def __init__(self, **kwargs) -> None:
|
|
212
|
+
super().__init__(**kwargs)
|
|
213
|
+
self._n_timesteps = 15
|
|
214
|
+
self._sequence_length = 11
|
|
215
|
+
self._incremental_learning = True
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
class MOEADDEIMicLSTM1513(MOEADDEIMcLSTM):
|
|
219
|
+
def __init__(self, **kwargs) -> None:
|
|
220
|
+
super().__init__(**kwargs)
|
|
221
|
+
self._n_timesteps = 15
|
|
222
|
+
self._sequence_length = 13
|
|
223
|
+
self._incremental_learning = True
|