pycontrails 0.58.0__cp314-cp314-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pycontrails might be problematic. Click here for more details.

Files changed (122) hide show
  1. pycontrails/__init__.py +70 -0
  2. pycontrails/_version.py +34 -0
  3. pycontrails/core/__init__.py +30 -0
  4. pycontrails/core/aircraft_performance.py +679 -0
  5. pycontrails/core/airports.py +228 -0
  6. pycontrails/core/cache.py +889 -0
  7. pycontrails/core/coordinates.py +174 -0
  8. pycontrails/core/fleet.py +483 -0
  9. pycontrails/core/flight.py +2185 -0
  10. pycontrails/core/flightplan.py +228 -0
  11. pycontrails/core/fuel.py +140 -0
  12. pycontrails/core/interpolation.py +702 -0
  13. pycontrails/core/met.py +2931 -0
  14. pycontrails/core/met_var.py +387 -0
  15. pycontrails/core/models.py +1321 -0
  16. pycontrails/core/polygon.py +549 -0
  17. pycontrails/core/rgi_cython.cp314-win_amd64.pyd +0 -0
  18. pycontrails/core/vector.py +2249 -0
  19. pycontrails/datalib/__init__.py +12 -0
  20. pycontrails/datalib/_met_utils/metsource.py +746 -0
  21. pycontrails/datalib/ecmwf/__init__.py +73 -0
  22. pycontrails/datalib/ecmwf/arco_era5.py +345 -0
  23. pycontrails/datalib/ecmwf/common.py +114 -0
  24. pycontrails/datalib/ecmwf/era5.py +554 -0
  25. pycontrails/datalib/ecmwf/era5_model_level.py +490 -0
  26. pycontrails/datalib/ecmwf/hres.py +804 -0
  27. pycontrails/datalib/ecmwf/hres_model_level.py +466 -0
  28. pycontrails/datalib/ecmwf/ifs.py +287 -0
  29. pycontrails/datalib/ecmwf/model_levels.py +435 -0
  30. pycontrails/datalib/ecmwf/static/model_level_dataframe_v20240418.csv +139 -0
  31. pycontrails/datalib/ecmwf/variables.py +268 -0
  32. pycontrails/datalib/geo_utils.py +261 -0
  33. pycontrails/datalib/gfs/__init__.py +28 -0
  34. pycontrails/datalib/gfs/gfs.py +656 -0
  35. pycontrails/datalib/gfs/variables.py +104 -0
  36. pycontrails/datalib/goes.py +757 -0
  37. pycontrails/datalib/himawari/__init__.py +27 -0
  38. pycontrails/datalib/himawari/header_struct.py +266 -0
  39. pycontrails/datalib/himawari/himawari.py +667 -0
  40. pycontrails/datalib/landsat.py +589 -0
  41. pycontrails/datalib/leo_utils/__init__.py +5 -0
  42. pycontrails/datalib/leo_utils/correction.py +266 -0
  43. pycontrails/datalib/leo_utils/landsat_metadata.py +300 -0
  44. pycontrails/datalib/leo_utils/search.py +250 -0
  45. pycontrails/datalib/leo_utils/sentinel_metadata.py +748 -0
  46. pycontrails/datalib/leo_utils/static/bq_roi_query.sql +6 -0
  47. pycontrails/datalib/leo_utils/vis.py +59 -0
  48. pycontrails/datalib/sentinel.py +650 -0
  49. pycontrails/datalib/spire/__init__.py +5 -0
  50. pycontrails/datalib/spire/exceptions.py +62 -0
  51. pycontrails/datalib/spire/spire.py +604 -0
  52. pycontrails/ext/bada.py +42 -0
  53. pycontrails/ext/cirium.py +14 -0
  54. pycontrails/ext/empirical_grid.py +140 -0
  55. pycontrails/ext/synthetic_flight.py +431 -0
  56. pycontrails/models/__init__.py +1 -0
  57. pycontrails/models/accf.py +425 -0
  58. pycontrails/models/apcemm/__init__.py +8 -0
  59. pycontrails/models/apcemm/apcemm.py +983 -0
  60. pycontrails/models/apcemm/inputs.py +226 -0
  61. pycontrails/models/apcemm/static/apcemm_yaml_template.yaml +183 -0
  62. pycontrails/models/apcemm/utils.py +437 -0
  63. pycontrails/models/cocip/__init__.py +29 -0
  64. pycontrails/models/cocip/cocip.py +2742 -0
  65. pycontrails/models/cocip/cocip_params.py +305 -0
  66. pycontrails/models/cocip/cocip_uncertainty.py +291 -0
  67. pycontrails/models/cocip/contrail_properties.py +1530 -0
  68. pycontrails/models/cocip/output_formats.py +2270 -0
  69. pycontrails/models/cocip/radiative_forcing.py +1260 -0
  70. pycontrails/models/cocip/radiative_heating.py +520 -0
  71. pycontrails/models/cocip/unterstrasser_wake_vortex.py +508 -0
  72. pycontrails/models/cocip/wake_vortex.py +396 -0
  73. pycontrails/models/cocip/wind_shear.py +120 -0
  74. pycontrails/models/cocipgrid/__init__.py +9 -0
  75. pycontrails/models/cocipgrid/cocip_grid.py +2552 -0
  76. pycontrails/models/cocipgrid/cocip_grid_params.py +138 -0
  77. pycontrails/models/dry_advection.py +602 -0
  78. pycontrails/models/emissions/__init__.py +21 -0
  79. pycontrails/models/emissions/black_carbon.py +599 -0
  80. pycontrails/models/emissions/emissions.py +1353 -0
  81. pycontrails/models/emissions/ffm2.py +336 -0
  82. pycontrails/models/emissions/static/default-engine-uids.csv +239 -0
  83. pycontrails/models/emissions/static/edb-gaseous-v29b-engines.csv +596 -0
  84. pycontrails/models/emissions/static/edb-nvpm-v29b-engines.csv +215 -0
  85. pycontrails/models/extended_k15.py +1327 -0
  86. pycontrails/models/humidity_scaling/__init__.py +37 -0
  87. pycontrails/models/humidity_scaling/humidity_scaling.py +1075 -0
  88. pycontrails/models/humidity_scaling/quantiles/era5-model-level-quantiles.pq +0 -0
  89. pycontrails/models/humidity_scaling/quantiles/era5-pressure-level-quantiles.pq +0 -0
  90. pycontrails/models/issr.py +210 -0
  91. pycontrails/models/pcc.py +326 -0
  92. pycontrails/models/pcr.py +154 -0
  93. pycontrails/models/ps_model/__init__.py +18 -0
  94. pycontrails/models/ps_model/ps_aircraft_params.py +381 -0
  95. pycontrails/models/ps_model/ps_grid.py +701 -0
  96. pycontrails/models/ps_model/ps_model.py +1000 -0
  97. pycontrails/models/ps_model/ps_operational_limits.py +525 -0
  98. pycontrails/models/ps_model/static/ps-aircraft-params-20250328.csv +69 -0
  99. pycontrails/models/ps_model/static/ps-synonym-list-20250328.csv +104 -0
  100. pycontrails/models/sac.py +442 -0
  101. pycontrails/models/tau_cirrus.py +183 -0
  102. pycontrails/physics/__init__.py +1 -0
  103. pycontrails/physics/constants.py +117 -0
  104. pycontrails/physics/geo.py +1138 -0
  105. pycontrails/physics/jet.py +968 -0
  106. pycontrails/physics/static/iata-cargo-load-factors-20250221.csv +74 -0
  107. pycontrails/physics/static/iata-passenger-load-factors-20250221.csv +74 -0
  108. pycontrails/physics/thermo.py +551 -0
  109. pycontrails/physics/units.py +472 -0
  110. pycontrails/py.typed +0 -0
  111. pycontrails/utils/__init__.py +1 -0
  112. pycontrails/utils/dependencies.py +66 -0
  113. pycontrails/utils/iteration.py +13 -0
  114. pycontrails/utils/json.py +187 -0
  115. pycontrails/utils/temp.py +50 -0
  116. pycontrails/utils/types.py +163 -0
  117. pycontrails-0.58.0.dist-info/METADATA +180 -0
  118. pycontrails-0.58.0.dist-info/RECORD +122 -0
  119. pycontrails-0.58.0.dist-info/WHEEL +5 -0
  120. pycontrails-0.58.0.dist-info/licenses/LICENSE +178 -0
  121. pycontrails-0.58.0.dist-info/licenses/NOTICE +43 -0
  122. pycontrails-0.58.0.dist-info/top_level.txt +3 -0
@@ -0,0 +1,1530 @@
1
+ """Contrail Property Calculations."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import logging
6
+ from typing import Any, overload
7
+
8
+ import numpy as np
9
+ import numpy.typing as npt
10
+
11
+ from pycontrails.models.cocip import radiative_heating
12
+ from pycontrails.physics import constants, thermo, units
13
+
14
+ logger = logging.getLogger(__name__)
15
+
16
+ ####################
17
+ # Initial Contrail Properties
18
+ ####################
19
+
20
+
21
+ def initial_iwc(
22
+ air_temperature: npt.NDArray[np.floating],
23
+ specific_humidity: npt.NDArray[np.floating],
24
+ air_pressure: npt.NDArray[np.floating],
25
+ fuel_dist: npt.NDArray[np.floating],
26
+ width: npt.NDArray[np.floating],
27
+ depth: npt.NDArray[np.floating],
28
+ ei_h2o: float,
29
+ ) -> npt.NDArray[np.floating]:
30
+ r"""
31
+ Estimate the initial contrail ice water content (iwc) before the wake vortex phase.
32
+
33
+ Note that the ice water content is replaced by zero if it is negative (dry air),
34
+ and this will end the contrail life-cycle in subsequent steps.
35
+
36
+ Parameters
37
+ ----------
38
+ air_temperature : npt.NDArray[np.floating]
39
+ ambient temperature for each waypoint, [:math:`K`]
40
+ specific_humidity : npt.NDArray[np.floating]
41
+ ambient specific humidity for each waypoint, [:math:`kg_{H_{2}O}/kg_{air}`]
42
+ air_pressure : npt.NDArray[np.floating]
43
+ initial pressure altitude at each waypoint, before the wake vortex phase, [:math:`Pa`]
44
+ fuel_dist : npt.NDArray[np.floating]
45
+ fuel consumption of the flight segment per distance traveled, [:math:`kg m^{-1}`]
46
+ width : npt.NDArray[np.floating]
47
+ initial contrail width, [:math:`m`]
48
+ depth : npt.NDArray[np.floating]
49
+ initial contrail depth, [:math:`m`]
50
+ ei_h2o : float
51
+ water vapor emissions index of fuel, [:math:`kg_{H_{2}O} \ kg_{fuel}^{-1}`]
52
+
53
+ Returns
54
+ -------
55
+ npt.NDArray[np.floating]
56
+ Initial contrail ice water content (iwc) at the original waypoint
57
+ before the wake vortex phase, [:math:`kg_{H_{2}O}/kg_{air}`].
58
+ Returns zero if iwc is is negative (dry air).
59
+ """
60
+ q_sat = thermo.q_sat_ice(air_temperature, air_pressure)
61
+ q_exhaust_ = q_exhaust(air_temperature, air_pressure, fuel_dist, width, depth, ei_h2o)
62
+ return np.maximum(q_exhaust_ + specific_humidity - q_sat, 0.0)
63
+
64
+
65
+ def q_exhaust(
66
+ air_temperature: npt.NDArray[np.floating],
67
+ air_pressure: npt.NDArray[np.floating],
68
+ fuel_dist: npt.NDArray[np.floating],
69
+ width: npt.NDArray[np.floating],
70
+ depth: npt.NDArray[np.floating],
71
+ ei_h2o: float,
72
+ ) -> npt.NDArray[np.floating]:
73
+ r"""
74
+ Calculate the specific humidity released by water vapor from aircraft emissions.
75
+
76
+ Parameters
77
+ ----------
78
+ air_temperature : npt.NDArray[np.floating]
79
+ ambient temperature for each waypoint, [:math:`K`]
80
+ air_pressure : npt.NDArray[np.floating]
81
+ initial pressure altitude at each waypoint, before the wake vortex phase, [:math:`Pa`]
82
+ fuel_dist : npt.NDArray[np.floating]
83
+ fuel consumption of the flight segment per distance travelled, [:math:`kg m^{-1}`]
84
+ width : npt.NDArray[np.floating]
85
+ initial contrail width, [:math:`m`]
86
+ depth : npt.NDArray[np.floating]
87
+ initial contrail depth, [:math:`m`]
88
+ ei_h2o : float
89
+ water vapor emissions index of fuel, [:math:`kg_{H_{2}O} \ kg_{fuel}^{-1}`]
90
+
91
+ Returns
92
+ -------
93
+ npt.NDArray[np.floating]
94
+ Humidity released by water vapour from aircraft emissions, [:math:`kg_{H_{2}O}/kg_{air}`]
95
+ """
96
+ rho_air = thermo.rho_d(air_temperature, air_pressure)
97
+ return (ei_h2o * fuel_dist) / ((np.pi / 4.0) * width * depth * rho_air)
98
+
99
+
100
+ def iwc_adiabatic_heating(
101
+ air_temperature: npt.NDArray[np.floating],
102
+ air_pressure: npt.NDArray[np.floating],
103
+ air_pressure_1: npt.NDArray[np.floating],
104
+ ) -> npt.NDArray[np.floating]:
105
+ """
106
+ Calculate the change in ice water content due to adiabatic heating from the wake vortex phase.
107
+
108
+ Parameters
109
+ ----------
110
+ air_temperature : npt.NDArray[np.floating]
111
+ ambient temperature for each waypoint, [:math:`K`]
112
+ air_pressure : npt.NDArray[np.floating]
113
+ initial pressure altitude at each waypoint, before the wake vortex phase, [:math:`Pa`]
114
+ air_pressure_1 : npt.NDArray[np.floating]
115
+ pressure altitude at each waypoint, after the wake vortex phase, [:math:`Pa`]
116
+
117
+ Returns
118
+ -------
119
+ npt.NDArray[np.floating]
120
+ Change in ice water content due to adiabatic heating from the wake
121
+ vortex phase, [:math:`kg_{H_{2}O}/kg_{air}`]
122
+ """
123
+ p_ice = thermo.e_sat_ice(air_temperature)
124
+ air_temperature_1 = temperature_adiabatic_heating(air_temperature, air_pressure, air_pressure_1)
125
+ p_ice_1 = thermo.e_sat_ice(air_temperature_1)
126
+
127
+ out = (constants.R_d / constants.R_v) * ((p_ice_1 / air_pressure_1) - (p_ice / air_pressure))
128
+ out.clip(min=0.0, out=out)
129
+ return out
130
+
131
+
132
+ def temperature_adiabatic_heating(
133
+ air_temperature: npt.NDArray[np.floating],
134
+ air_pressure: npt.NDArray[np.floating],
135
+ air_pressure_1: npt.NDArray[np.floating],
136
+ ) -> npt.NDArray[np.floating]:
137
+ """Calculate the ambient air temperature for each waypoint after the wake vortex phase.
138
+
139
+ This calculation accounts for adiabatic heating.
140
+
141
+ Parameters
142
+ ----------
143
+ air_temperature : npt.NDArray[np.floating]
144
+ ambient temperature for each waypoint, [:math:`K`]
145
+ air_pressure : npt.NDArray[np.floating]
146
+ initial pressure altitude at each waypoint, before the wake vortex phase, [:math:`Pa`]
147
+ air_pressure_1 : npt.NDArray[np.floating]
148
+ pressure altitude at each waypoint, after the wake vortex phase, [:math:`Pa`]
149
+
150
+ Returns
151
+ -------
152
+ npt.NDArray[np.floating]
153
+ ambient air temperature after the wake vortex phase, [:math:`K`]
154
+
155
+ Notes
156
+ -----
157
+ Level 1, see Figure 1 of :cite:`schumannContrailCirrusPrediction2012`
158
+
159
+ References
160
+ ----------
161
+ - :cite:`schumannContrailCirrusPrediction2012`
162
+ """
163
+ exponent = (constants.gamma - 1.0) / constants.gamma
164
+ return air_temperature * (air_pressure_1 / air_pressure) ** exponent
165
+
166
+
167
+ def iwc_post_wake_vortex(
168
+ iwc: npt.NDArray[np.floating], iwc_ad: npt.NDArray[np.floating]
169
+ ) -> npt.NDArray[np.floating]:
170
+ """
171
+ Calculate the ice water content after the wake vortex phase (``iwc_1``).
172
+
173
+ ``iwc_1`` is calculated by subtracting the initial iwc before the wake vortex phase (``iwc``)
174
+ by the change in iwc from adiabatic heating experienced during the wake vortex phase.
175
+
176
+ Note that the iwc is replaced by zero if it is negative (dry air),
177
+ and this will end the contrail lifecycle in subsequent steps.
178
+
179
+ Parameters
180
+ ----------
181
+ iwc : npt.NDArray[np.floating]
182
+ initial ice water content at each waypoint before the wake vortex
183
+ phase, [:math:`kg_{H_{2}O}/kg_{air}`]
184
+ iwc_ad : npt.NDArray[np.floating]
185
+ change in iwc from adiabatic heating during the wake vortex
186
+ phase, [:math:`kg_{H_{2}O}/kg_{air}`]
187
+
188
+ Returns
189
+ -------
190
+ npt.NDArray[np.floating]
191
+ ice water content after the wake vortex phase, ``iwc_1``, [:math:`kg_{H_{2}O}/kg_{air}`]
192
+
193
+ Notes
194
+ -----
195
+ Level 1, see Figure 1 of :cite:`schumannContrailCirrusPrediction2012`
196
+
197
+ References
198
+ ----------
199
+ - :cite:`schumannContrailCirrusPrediction2012`
200
+ """
201
+ return np.maximum(iwc - iwc_ad, 0.0)
202
+
203
+
204
+ def initial_ice_particle_number(
205
+ aei: npt.NDArray[np.floating],
206
+ fuel_dist: npt.NDArray[np.floating],
207
+ min_aei: float | None,
208
+ ) -> npt.NDArray[np.floating]:
209
+ """Calculate the initial number of ice particles per distance after the wake vortex phase.
210
+
211
+ The initial number of ice particle per distance is calculated from the activated apparent
212
+ emissions index ``aei`` and fuel burn per distance ``fuel_dist``.
213
+ Note that a lower bound for ``aei`` is set at ``1e13`` :math:`kg^{-1}` to account
214
+ for the activation of ambient aerosol particles and organic volatile particles.
215
+
216
+ .. versionchanged:: 0.55
217
+
218
+ The signature of this function has changed. The parameter ``aei`` is now
219
+ expected to be the previous ``npvm_ei_n`` multiplied by the activation
220
+ fraction ``f_activation``.
221
+
222
+ Parameters
223
+ ----------
224
+ aei : npt.NDArray[np.floating]
225
+ Apparent contrail emissions index, [:math:`kg^{-1}`]
226
+ fuel_dist : npt.NDArray[np.floating]
227
+ Fuel consumption of the flight segment per distance traveled, [:math:`kg m^{-1}`]
228
+ min_aei : float | None
229
+ Lower bound for ``aei`` to account for ambient aerosol particles for
230
+ newer engines [:math:`kg^{-1}`]. If None, no clipping is applied.
231
+
232
+ Returns
233
+ -------
234
+ npt.NDArray[np.floating]
235
+ The initial number of ice particles per distance before the wake vortex
236
+ phase, [:math:`# m^{-1}`]
237
+ """
238
+ if min_aei is not None:
239
+ aei = np.clip(aei, min=min_aei) # type: ignore[call-overload]
240
+ return fuel_dist * aei
241
+
242
+
243
+ def ice_particle_activation_rate(
244
+ air_temperature: npt.NDArray[np.floating], T_crit_sac: npt.NDArray[np.floating]
245
+ ) -> npt.NDArray[np.floating]:
246
+ """
247
+ Calculate the activation rate of black carbon particles to contrail ice crystals.
248
+
249
+ The activation rate is calculated as a function of the difference between
250
+ the ambient temperature and the Schmidt-Appleman threshold temperature ``T_crit_sac``.
251
+
252
+ Parameters
253
+ ----------
254
+ air_temperature : npt.NDArray[np.floating]
255
+ ambient temperature at each waypoint before wake_wortex, [:math:`K`]
256
+ T_crit_sac : npt.NDArray[np.floating]
257
+ estimated Schmidt-Appleman temperature threshold for contrail formation, [:math:`K`]
258
+
259
+ Returns
260
+ -------
261
+ npt.NDArray[np.floating]
262
+ Proportion of black carbon particles that activates to contrail ice parties.
263
+
264
+ Notes
265
+ -----
266
+ The equation is not published but based on the raw data
267
+ from :cite:`brauerAirborneMeasurementsContrail2021`.
268
+
269
+ References
270
+ ----------
271
+ - :cite:`brauerAirborneMeasurementsContrail2021`
272
+ """
273
+ d_temp = air_temperature - T_crit_sac
274
+ d_temp.clip(None, 0.0, out=d_temp)
275
+
276
+ # NOTE: It seems somewhat unnecessary to do this additional "rounding down"
277
+ # of d_temp for values below -5. As d_temp near -5, the activation rate approaches
278
+ # 1. This additional rounding injects a small jump discontinuity into the activation rate that
279
+ # likely does not match reality. I suggest removing the line below. This will change
280
+ # model outputs roughly at 0.001 - 0.1%.
281
+ d_temp[d_temp < -5.0] = -np.inf
282
+ return -0.661 * np.exp(d_temp) + 1.0
283
+
284
+
285
+ def ice_particle_survival_fraction(
286
+ iwc: npt.NDArray[np.floating], iwc_1: npt.NDArray[np.floating]
287
+ ) -> npt.NDArray[np.floating]:
288
+ """
289
+ Estimate the fraction of contrail ice particle number that survive the wake vortex phase.
290
+
291
+ CoCiP assumes that this fraction is proportional to the change in ice water content
292
+ (``iwc_1 - iwc``) before and after the wake vortex phase.
293
+
294
+ Parameters
295
+ ----------
296
+ iwc : npt.NDArray[np.floating]
297
+ initial ice water content at each waypoint before the wake vortex
298
+ phase, [:math:`kg_{H_{2}O}/kg_{air}`]
299
+ iwc_1 : npt.NDArray[np.floating]
300
+ ice water content after the wake vortex phase, [:math:`kg_{H_{2}O}/kg_{air}`]
301
+
302
+ Returns
303
+ -------
304
+ npt.NDArray[np.floating]
305
+ Fraction of contrail ice particle number that survive the wake vortex phase.
306
+ """
307
+ f_surv = np.empty_like(iwc)
308
+ is_positive = (iwc > 0.0) & (iwc_1 > 0.0)
309
+
310
+ ratio = iwc_1[is_positive] / iwc[is_positive]
311
+ ratio.clip(None, 1.0, out=ratio)
312
+
313
+ f_surv[is_positive] = ratio
314
+ f_surv[~is_positive] = 0.5
315
+
316
+ return f_surv
317
+
318
+
319
+ def initial_persistent(
320
+ iwc_1: npt.NDArray[np.floating], rhi_1: npt.NDArray[np.floating]
321
+ ) -> npt.NDArray[np.floating]:
322
+ """
323
+ Determine if waypoints have persistent contrails.
324
+
325
+ Conditions for persistent initial_contrails:
326
+
327
+ 1. ice water content at level 1: ``1e-12 < iwc < 1e10``
328
+ 2. rhi at level 1: ``0 < rhi < 1e10``
329
+
330
+ .. versionchanged:: 0.25.1
331
+ Returned array now has floating dtype. This is consistent with other filtering
332
+ steps in the CoCiP model (ie, ``sac``).
333
+
334
+ Parameters
335
+ ----------
336
+ iwc_1 : npt.NDArray[np.floating]
337
+ ice water content after the wake vortex phase, [:math:`kg_{H_{2}O}/kg_{air}`]
338
+ rhi_1 : npt.NDArray[np.floating]
339
+ relative humidity with respect to ice after the wake vortex phase
340
+
341
+ Returns
342
+ -------
343
+ npt.NDArray[np.floating]
344
+ Mask of waypoints with persistent contrails. Waypoints with persistent contrails
345
+ will have value 1.
346
+
347
+ Notes
348
+ -----
349
+ The RHi at level 1 does not need to be above 100% if the iwc > 0 kg/kg. If iwc > 0
350
+ and RHi < 100%, the contrail lifetime will not end immediately as the ice particles
351
+ will gradually evaporate with the rate depending on the background RHi.
352
+ """
353
+ out = (iwc_1 > 1e-12) & (iwc_1 < 1e10) & (rhi_1 > 0.0) & (rhi_1 < 1e10)
354
+ dtype = np.result_type(iwc_1, rhi_1)
355
+ return out.astype(dtype)
356
+
357
+
358
+ def contrail_persistent(
359
+ latitude: npt.NDArray[np.floating],
360
+ altitude: npt.NDArray[np.floating],
361
+ segment_length: npt.NDArray[np.floating],
362
+ age: npt.NDArray[np.timedelta64],
363
+ tau_contrail: npt.NDArray[np.floating],
364
+ n_ice_per_m3: npt.NDArray[np.floating],
365
+ params: dict[str, Any],
366
+ ) -> npt.NDArray[np.bool_]:
367
+ r"""
368
+ Determine surviving contrail segments after time integration step.
369
+
370
+ A contrail waypoint reaches its end of life if any of the following conditions hold:
371
+
372
+ 1. Contrail age exceeds ``max_age``
373
+ 2. Contrail optical depth lies outside of interval ``[min_tau, max_tau]``
374
+ 3. Ice number density lies outside of interval ``[min_n_ice_per_m3, max_n_ice_per_m3]``
375
+ 4. Altitude lies outside of the interval ``[min_altitude_m, max_altitude_m]``
376
+ 5. Segment length exceeds ``max_seg_length_m``
377
+ 6. Latitude values are within 1 degree of the north or south pole
378
+
379
+ This function warns if all values in the ``tau_contrail`` array are nan.
380
+
381
+ .. versionchanged:: 0.25.10
382
+
383
+ Extreme values of ``latitude`` (ie, close to the north or south pole) now
384
+ create an end of life condition. This check helps address issues related to
385
+ divergence in the polar regions. (With large enough integration time delta,
386
+ it is still possible for post-advection latitude values to lie outside of
387
+ [-90, 90], but this is no longer possible with typical parameters and wind
388
+ speeds.)
389
+
390
+ Parameters
391
+ ----------
392
+ latitude : npt.NDArray[np.floating]
393
+ Contrail latitude, [:math:`\deg`]
394
+ altitude : npt.NDArray[np.floating]
395
+ Contrail altitude, [:math:`m`]
396
+ segment_length : npt.NDArray[np.floating]
397
+ Contrail segment length, [:math:`m`]
398
+ age : npt.NDArray[np.timedelta64]
399
+ Contrail age
400
+ tau_contrail : npt.NDArray[np.floating]
401
+ Contrail optical depth
402
+ n_ice_per_m3 : npt.NDArray[np.floating]
403
+ Contrail ice particle number per volume of air, [:math:`# m^{-3}`]
404
+ params : dict[str, Any]
405
+ Dictionary of :class:`CocipParams` parameters determining the
406
+ conditions for end of contrail life.
407
+
408
+ Returns
409
+ -------
410
+ npt.NDArray[np.bool_]
411
+ Boolean array indicating surviving contrails. Persisting contrails
412
+ will be marked as True.
413
+ """
414
+ status_1 = _within_range(age, max=params["max_age"])
415
+ status_2 = _within_range(tau_contrail, max=params["max_tau"], min=params["min_tau"])
416
+ status_3 = _within_range(
417
+ n_ice_per_m3, max=params["max_n_ice_per_m3"], min=params["min_n_ice_per_m3"]
418
+ )
419
+ status_4 = _within_range(altitude, max=params["max_altitude_m"], min=params["min_altitude_m"])
420
+ status_5 = _within_range(segment_length, max=params["max_seg_length_m"])
421
+ status_6 = _within_range(latitude, max=89.0, min=-89.0)
422
+
423
+ logger.debug(
424
+ "Survival stats. age: %s, tau: %s, ice: %s, altitude: %s, segment: %s, latitude: %s",
425
+ np.sum(status_1),
426
+ np.sum(status_2),
427
+ np.sum(status_3),
428
+ np.sum(status_4),
429
+ np.sum(status_5),
430
+ np.sum(status_6),
431
+ )
432
+ return status_1 & status_2 & status_3 & status_4 & status_5 & status_6
433
+
434
+
435
+ @overload
436
+ def _within_range(
437
+ val: npt.NDArray[np.floating],
438
+ max: float | None = None,
439
+ min: float | None = None,
440
+ ) -> npt.NDArray[np.bool_]: ...
441
+
442
+
443
+ @overload
444
+ def _within_range(
445
+ val: npt.NDArray[np.timedelta64],
446
+ max: np.timedelta64 | None = None,
447
+ min: np.timedelta64 | None = None,
448
+ ) -> npt.NDArray[np.bool_]: ...
449
+
450
+
451
+ def _within_range(
452
+ val: np.ndarray,
453
+ max: float | np.timedelta64 | None = None,
454
+ min: float | np.timedelta64 | None = None,
455
+ ) -> npt.NDArray[np.bool_]:
456
+ """
457
+ Check if the input values (val) are each within the specified range.
458
+
459
+ If both ``max`` and ``min`` are None, a literal constant True is returned.
460
+
461
+ Parameters
462
+ ----------
463
+ val : np.ndarray
464
+ value of selected contrail property
465
+ max : float | np.timedelta64 | None, optional
466
+ Upper bound. If None, no upper bound is imposed. None by default.
467
+ min : float | np.timedelta64 | None, optional
468
+ Lower bound. If None, no lower bound is imposed. None by default.
469
+
470
+ Returns
471
+ -------
472
+ npt.NDArray[np.bool_]
473
+ Mask of waypoints. Waypoints with values within the specified range will be marked as true.
474
+ """
475
+ cond: npt.NDArray[np.bool_] = True # type: ignore[assignment]
476
+ if min is not None:
477
+ cond &= val >= min
478
+ if max is not None:
479
+ cond &= val <= max
480
+ return cond
481
+
482
+
483
+ ####################
484
+ # Contrail Properties
485
+ ####################
486
+
487
+
488
+ def contrail_edges(
489
+ lon: npt.NDArray[np.floating],
490
+ lat: npt.NDArray[np.floating],
491
+ sin_a: npt.NDArray[np.floating],
492
+ cos_a: npt.NDArray[np.floating],
493
+ width: npt.NDArray[np.floating],
494
+ ) -> tuple[
495
+ npt.NDArray[np.floating],
496
+ npt.NDArray[np.floating],
497
+ npt.NDArray[np.floating],
498
+ npt.NDArray[np.floating],
499
+ ]:
500
+ """
501
+ Calculate the longitude and latitude of the contrail edges to account for contrail spreading.
502
+
503
+ (lon_edge_l, lat_edge_l) x---------------------
504
+
505
+ (Contrail midpoint: lon, lat) X===================== ->
506
+
507
+ (lon_edge_r, lat_edge_r) x---------------------
508
+
509
+
510
+ Parameters
511
+ ----------
512
+ lon : npt.NDArray[np.floating]
513
+ longitude of contrail waypoint, degrees
514
+ lat : npt.NDArray[np.floating]
515
+ latitude of contrail waypoint, degrees
516
+ sin_a : npt.NDArray[np.floating]
517
+ sin(a), where a is the angle between the plume and the longitudinal axis
518
+ cos_a : npt.NDArray[np.floating]
519
+ cos(a), where a is the angle between the plume and the longitudinal axis
520
+ width : npt.NDArray[np.floating]
521
+ contrail width at each waypoint, [:math:`m`]
522
+
523
+ Returns
524
+ -------
525
+ tuple[npt.NDArray[np.floating], npt.NDArray[np.floating], npt.NDArray[np.floating], npt.NDArray[np.floating]]
526
+ (lon_edge_l, lat_edge_l, lon_edge_r, lat_edge_r), longitudes and latitudes
527
+ at the left and right edges of the contrail, degrees
528
+ """ # noqa: E501
529
+ dlon = units.m_to_longitude_distance(width * sin_a * 0.5, lat)
530
+ dlat = units.m_to_latitude_distance(width * cos_a * 0.5)
531
+
532
+ lon_edge_l = lon - dlon
533
+ lat_edge_l = lat + dlat
534
+ lon_edge_r = lon + dlon
535
+ lat_edge_r = lat - dlat
536
+
537
+ return lon_edge_l, lat_edge_l, lon_edge_r, lat_edge_r
538
+
539
+
540
+ def contrail_vertices(
541
+ lon: npt.NDArray[np.floating],
542
+ lat: npt.NDArray[np.floating],
543
+ sin_a: npt.NDArray[np.floating],
544
+ cos_a: npt.NDArray[np.floating],
545
+ width: npt.NDArray[np.floating],
546
+ segment_length: npt.NDArray[np.floating],
547
+ ) -> tuple[
548
+ npt.NDArray[np.floating],
549
+ npt.NDArray[np.floating],
550
+ npt.NDArray[np.floating],
551
+ npt.NDArray[np.floating],
552
+ npt.NDArray[np.floating],
553
+ npt.NDArray[np.floating],
554
+ npt.NDArray[np.floating],
555
+ npt.NDArray[np.floating],
556
+ ]:
557
+ """
558
+ Calculate the longitude and latitude of the contrail vertices.
559
+
560
+ This is equivalent to running :meth:`contrail_edges` at each contrail waypoint
561
+ and associating the next continuous waypoint with the previous.
562
+ This method is helpful when you want to treat each contrail waypoint independently.
563
+
564
+ (lon_1, lat_1) x--------------------x (lon_4, lat_4)
565
+
566
+ (Contrail waypoint: lon, lat) X==================== ->
567
+
568
+ (lon_2, lat_2) x--------------------x (lon_3, lat_3)
569
+
570
+
571
+ Parameters
572
+ ----------
573
+ lon : npt.NDArray[np.floating]
574
+ longitude of contrail waypoint, degrees
575
+ lat : npt.NDArray[np.floating]
576
+ latitude of contrail waypoint, degrees
577
+ sin_a : npt.NDArray[np.floating]
578
+ sin(a), where a is the angle between the plume and the longitudinal axis
579
+ cos_a : npt.NDArray[np.floating]
580
+ cos(a), where a is the angle between the plume and the longitudinal axis
581
+ width : npt.NDArray[np.floating]
582
+ contrail width at each waypoint, [:math:`m`]
583
+ segment_length : npt.NDArray[np.floating]
584
+ contrail length at each waypoint, [:math:`m`]
585
+
586
+ Returns
587
+ -------
588
+ tuple
589
+ (lon_1, lat_1, lon_2, lat_2, lon_3, lat_3, lon_4, lat_4) degrees
590
+ """
591
+ dlon_width = units.m_to_longitude_distance(width * sin_a * 0.5, lat)
592
+ dlat_width = units.m_to_latitude_distance(width * cos_a * 0.5)
593
+
594
+ # using "lat" as mean here is a little inaccurate, but its a close approx
595
+ dlon_length = units.m_to_longitude_distance(segment_length * cos_a, lat)
596
+ dlat_length = units.m_to_latitude_distance(segment_length * sin_a)
597
+
598
+ lon_1 = lon - dlon_width
599
+ lon_2 = lon + dlon_width
600
+ lon_3 = lon + dlon_width + dlon_length
601
+ lon_4 = lon - dlon_width + dlon_length
602
+
603
+ lat_1 = lat + dlat_width
604
+ lat_2 = lat - dlat_width
605
+ lat_3 = lat - dlat_width + dlat_length
606
+ lat_4 = lat + dlat_width + dlat_length
607
+
608
+ return lon_1, lat_1, lon_2, lat_2, lon_3, lat_3, lon_4, lat_4
609
+
610
+
611
+ def plume_effective_cross_sectional_area(
612
+ width: npt.NDArray[np.floating],
613
+ depth: npt.NDArray[np.floating],
614
+ sigma_yz: npt.NDArray[np.floating] | float,
615
+ ) -> npt.NDArray[np.floating]:
616
+ """
617
+ Calculate the effective cross-sectional area of the contrail plume (``area_eff``).
618
+
619
+ ``sigma_yy``, ``sigma_zz`` and ``sigma_yz`` are the parameters governing the
620
+ contrail plume's temporal evolution.
621
+
622
+ Parameters
623
+ ----------
624
+ width : npt.NDArray[np.floating]
625
+ contrail width at each waypoint, [:math:`m`]
626
+ depth : npt.NDArray[np.floating]
627
+ contrail depth at each waypoint, [:math:`m`]
628
+ sigma_yz : npt.NDArray[np.floating] | float
629
+ temporal evolution of the contrail plume parameters
630
+
631
+ Returns
632
+ -------
633
+ npt.NDArray[np.floating]
634
+ effective cross-sectional area of the contrail plume, [:math:`m^{2}`]
635
+ """
636
+ sigma_yy = 0.125 * (width**2)
637
+ sigma_zz = 0.125 * (depth**2)
638
+ return new_effective_area_from_sigma(sigma_yy, sigma_zz, sigma_yz)
639
+
640
+
641
+ def plume_effective_depth(
642
+ width: npt.NDArray[np.floating], area_eff: npt.NDArray[np.floating]
643
+ ) -> npt.NDArray[np.floating]:
644
+ """
645
+ Calculate the effective depth of the contrail plume (``depth_eff``).
646
+
647
+ ``depth_eff`` is calculated from the effective cross-sectional area (``area_eff``)
648
+ and the contrail width.
649
+
650
+ Parameters
651
+ ----------
652
+ width : npt.NDArray[np.floating]
653
+ contrail width at each waypoint, [:math:`m`]
654
+ area_eff : npt.NDArray[np.floating]
655
+ effective cross-sectional area of the contrail plume, [:math:`m^{2}`]
656
+
657
+ Returns
658
+ -------
659
+ npt.NDArray[np.floating]
660
+ effective depth of the contrail plume, [:math:`m`]
661
+ """
662
+ return area_eff / width
663
+
664
+
665
+ def plume_mass_per_distance(
666
+ area_eff: npt.NDArray[np.floating], rho_air: npt.NDArray[np.floating]
667
+ ) -> npt.NDArray[np.floating]:
668
+ """
669
+ Calculate the contrail plume mass per unit length.
670
+
671
+ Parameters
672
+ ----------
673
+ area_eff : npt.NDArray[np.floating]
674
+ effective cross-sectional area of the contrail plume, [:math:`m^{2}`]
675
+ rho_air : npt.NDArray[np.floating]
676
+ density of air for each waypoint, [:math:`kg m^{-3}`]
677
+
678
+ Returns
679
+ -------
680
+ npt.NDArray[np.floating]
681
+ contrail plume mass per unit length, [:math:`kg m^{-1}`]
682
+ """
683
+ return area_eff * rho_air
684
+
685
+
686
+ def ice_particle_number_per_volume_of_plume(
687
+ n_ice_per_m: npt.NDArray[np.floating], area_eff: npt.NDArray[np.floating]
688
+ ) -> npt.NDArray[np.floating]:
689
+ """
690
+ Calculate the number of contrail ice particles per volume of plume (``n_ice_per_vol``).
691
+
692
+ Parameters
693
+ ----------
694
+ n_ice_per_m : npt.NDArray[np.floating]
695
+ number of ice particles per distance at time t, [:math:`m^{-1}`]
696
+ area_eff : npt.NDArray[np.floating]
697
+ effective cross-sectional area of the contrail plume, [:math:`m^{2}`]
698
+
699
+ Returns
700
+ -------
701
+ npt.NDArray[np.floating]
702
+ number of ice particles per volume of contrail plume at time t, [:math:`# m^{-3}`]
703
+ """
704
+ return n_ice_per_m / area_eff
705
+
706
+
707
+ def ice_particle_number_per_mass_of_air(
708
+ n_ice_per_vol: npt.NDArray[np.floating], rho_air: npt.NDArray[np.floating]
709
+ ) -> npt.NDArray[np.floating]:
710
+ """
711
+ Calculate the number of contrail ice particles per mass of air.
712
+
713
+ Parameters
714
+ ----------
715
+ n_ice_per_vol : npt.NDArray[np.floating]
716
+ number of ice particles per volume of contrail plume at time t, [:math:`# m^{-3}`]
717
+ rho_air : npt.NDArray[np.floating]
718
+ density of air for each waypoint, [:math:`kg m^{-3}`]
719
+
720
+ Returns
721
+ -------
722
+ npt.NDArray[np.floating]
723
+ number of ice particles per mass of air at time t, [:math:`# kg^{-1}`]
724
+ """
725
+ return n_ice_per_vol / rho_air
726
+
727
+
728
+ def ice_particle_volume_mean_radius(
729
+ iwc: npt.NDArray[np.floating], n_ice_per_kg_air: npt.NDArray[np.floating]
730
+ ) -> npt.NDArray[np.floating]:
731
+ """
732
+ Calculate the ice particle volume mean radius.
733
+
734
+ Parameters
735
+ ----------
736
+ iwc : npt.NDArray[np.floating]
737
+ contrail ice water content, i.e., contrail ice mass per
738
+ kg of air, [:math:`kg_{H_{2}O}/kg_{air}`]
739
+
740
+ n_ice_per_kg_air : npt.NDArray[np.floating]
741
+ number of ice particles per mass of air, [:math:`# kg^{-1}`]
742
+
743
+ Returns
744
+ -------
745
+ npt.NDArray[np.floating]
746
+ ice particle volume mean radius, [:math:`m`]
747
+
748
+ Notes
749
+ -----
750
+ ``r_ice_vol`` is the mean radius of a sphere that has the same volume as the
751
+ contrail ice particle.
752
+
753
+ ``r_ice_vol`` calculated by dividing the total volume of contrail
754
+ ice particle per kg of air (``total_ice_volume``, :math:`m**3/kg-air`) with the
755
+ number of contrail ice particles per kg of air (``n_ice_per_kg_air``, :math:`#/kg-air`).
756
+ """
757
+ total_ice_volume = iwc / constants.rho_ice
758
+ r_ice_vol = ((3 / (4.0 * np.pi)) * (total_ice_volume / n_ice_per_kg_air)) ** (1 / 3)
759
+ zero_negative_values = iwc <= 0.0
760
+ r_ice_vol[zero_negative_values] = iwc[zero_negative_values]
761
+ r_ice_vol.clip(min=1e-10, out=r_ice_vol)
762
+ return r_ice_vol
763
+
764
+
765
+ def ice_particle_terminal_fall_speed(
766
+ air_pressure: npt.NDArray[np.floating],
767
+ air_temperature: npt.NDArray[np.floating],
768
+ r_ice_vol: npt.NDArray[np.floating],
769
+ ) -> npt.NDArray[np.floating]:
770
+ """
771
+ Calculate the terminal fall speed of contrail ice particles.
772
+
773
+ ``v_t`` is calculated based on a parametric model
774
+ from :cite:`spichtingerModellingCirrusClouds2009`, using inputs of pressure
775
+ level, ambient temperature and the ice particle volume mean radius. See
776
+ Table 2 for the model parameters.
777
+
778
+ Parameters
779
+ ----------
780
+ air_pressure : npt.NDArray[np.floating]
781
+ Pressure altitude at each waypoint, [:math:`Pa`]
782
+ air_temperature : npt.NDArray[np.floating]
783
+ Ambient temperature for each waypoint, [:math:`K`]
784
+ r_ice_vol : npt.NDArray[np.floating]
785
+ Ice particle volume mean radius, [:math:`m`]
786
+
787
+ Returns
788
+ -------
789
+ npt.NDArray[np.floating]
790
+ Terminal fall speed of contrail ice particles, [:math:`m s^{-1}`]
791
+
792
+ References
793
+ ----------
794
+ - :cite:`spichtingerModellingCirrusClouds2009`
795
+ """
796
+ ipm = ice_particle_mass(r_ice_vol)
797
+
798
+ alpha = np.full_like(r_ice_vol, np.nan)
799
+
800
+ # For ice particle mass >= 4.264e-8 kg
801
+ particle_mass = ipm >= 4.264e-8
802
+ alpha[particle_mass] = 8.80 * ipm[particle_mass] ** 0.096
803
+
804
+ # For ice particle mass in [2.166e-9 kg, 4.264e-8 kg)
805
+ particle_mass = (ipm < 4.264e-8) & (ipm >= 2.166e-9)
806
+ alpha[particle_mass] = 329.8 * ipm[particle_mass] ** 0.31
807
+
808
+ # For ice particle mass in [2.146e-13 kg, 2.166e-9 kg)
809
+ particle_mass = (ipm < 2.166e-9) & (ipm >= 2.146e-13)
810
+ alpha[particle_mass] = 63292.4 * ipm[particle_mass] ** 0.57
811
+
812
+ # For ice particle mass < 2.146e-13 kg
813
+ particle_mass = ipm < 2.146e-13
814
+ alpha[particle_mass] = 735.4 * ipm[particle_mass] ** 0.42
815
+
816
+ return alpha * (30000.0 / air_pressure) ** 0.178 * (233.0 / air_temperature) ** 0.394
817
+
818
+
819
+ def ice_particle_mass(r_ice_vol: npt.NDArray[np.floating]) -> npt.NDArray[np.floating]:
820
+ """
821
+ Calculate the contrail ice particle mass.
822
+
823
+ It is calculated by multiplying the mean ice particle volume with the density of ice
824
+
825
+ Parameters
826
+ ----------
827
+ r_ice_vol : npt.NDArray[np.floating]
828
+ Ice particle volume mean radius, [:math:`m`]
829
+
830
+ Returns
831
+ -------
832
+ npt.NDArray[np.floating]
833
+ Mean contrail ice particle mass, [:math:`kg`]
834
+ """
835
+ return ((4 / 3) * np.pi * r_ice_vol**3) * constants.rho_ice
836
+
837
+
838
+ def horizontal_diffusivity(
839
+ ds_dz: npt.NDArray[np.floating], depth: npt.NDArray[np.floating]
840
+ ) -> npt.NDArray[np.floating]:
841
+ """
842
+ Calculate contrail horizontal diffusivity.
843
+
844
+ Parameters
845
+ ----------
846
+ ds_dz : npt.NDArray[np.floating]
847
+ Total wind shear (eastward and northward winds) with respect
848
+ to altitude (``dz``), [:math:`m s^{-1} / Pa`]
849
+ depth : npt.NDArray[np.floating]
850
+ Contrail depth at each waypoint, [:math:`m`]
851
+
852
+ Returns
853
+ -------
854
+ npt.NDArray[np.floating]
855
+ horizontal diffusivity, [:math:`m^{2} s^{-1}`]
856
+
857
+ References
858
+ ----------
859
+ - :cite:`schumannContrailCirrusPrediction2012`
860
+
861
+ Notes
862
+ -----
863
+ Accounts for the turbulence-induced diffusive contrail spreading in
864
+ the horizontal direction.
865
+ """
866
+ return 0.1 * ds_dz * depth**2
867
+
868
+
869
+ def vertical_diffusivity(
870
+ air_pressure: npt.NDArray[np.floating],
871
+ air_temperature: npt.NDArray[np.floating],
872
+ dT_dz: npt.NDArray[np.floating],
873
+ depth_eff: npt.NDArray[np.floating],
874
+ terminal_fall_speed: npt.NDArray[np.floating] | float,
875
+ sedimentation_impact_factor: npt.NDArray[np.floating] | float,
876
+ eff_heat_rate: npt.NDArray[np.floating] | None,
877
+ ) -> npt.NDArray[np.floating]:
878
+ """
879
+ Calculate contrail vertical diffusivity.
880
+
881
+ Parameters
882
+ ----------
883
+ air_pressure : npt.NDArray[np.floating]
884
+ Pressure altitude at each waypoint, [:math:`Pa`]
885
+ air_temperature : npt.NDArray[np.floating]
886
+ Ambient temperature for each waypoint, [:math:`K`]
887
+ dT_dz : npt.NDArray[np.floating]
888
+ Temperature gradient with respect to altitude (dz), [:math:`K m^{-1}`]
889
+ depth_eff : npt.NDArray[np.floating]
890
+ Effective depth of the contrail plume, [:math:`m`]
891
+ terminal_fall_speed : npt.NDArray[np.floating] | float
892
+ Terminal fall speed of contrail ice particles, [:math:`m s^{-1}`]
893
+ sedimentation_impact_factor : npt.NDArray[np.floating] | float
894
+ Enhancement parameter denoted by `f_T` in eq. (35) Schumann (2012).
895
+ eff_heat_rate: npt.NDArray[np.floating] | None
896
+ Effective heating rate, i.e., rate of which the contrail plume
897
+ is heated, [:math:`K s^{-1}`]. If None is passed, the radiative
898
+ heating effects on contrail cirrus properties are not included.
899
+
900
+ Returns
901
+ -------
902
+ npt.NDArray[np.floating]
903
+ vertical diffusivity, [:math:`m^{2} s^{-1}`]
904
+
905
+ References
906
+ ----------
907
+ - :cite:`schumannContrailCirrusPrediction2012`
908
+ - :cite:`schumannAviationinducedCirrusRadiation2013`
909
+
910
+ Notes
911
+ -----
912
+ Accounts for the turbulence-induced diffusive contrail spreading in the vertical direction.
913
+ See eq. (35) of :cite:`schumannContrailCirrusPrediction2012`.
914
+
915
+ The first term in Eq. (35) of :cite:`schumannContrailCirrusPrediction2012` is
916
+ (c_V * w'_N^2 / N_BV, where c_V = 0.2 and w'_N^2 = 0.1) is different
917
+ than outlined below. Here, a constant of 0.01 is used when radiative
918
+ heating effects are not activated. This update comes from
919
+ :cite:`schumannAviationinducedCirrusRadiation2013`
920
+ , which found that the original formulation estimated thinner
921
+ contrails relative to satellite observations. The vertical diffusivity
922
+ was enlarged so that the simulated contrails are more consistent with observations.
923
+ """
924
+ n_bv = thermo.brunt_vaisala_frequency(air_pressure, air_temperature, dT_dz)
925
+ n_bv.clip(min=0.001, out=n_bv)
926
+
927
+ cvs: npt.NDArray[np.floating] | float
928
+ if eff_heat_rate is not None:
929
+ cvs = radiative_heating.convective_velocity_scale(depth_eff, eff_heat_rate, air_temperature)
930
+ cvs.clip(min=0.01, out=cvs)
931
+ else:
932
+ cvs = 0.01
933
+
934
+ return cvs / n_bv + sedimentation_impact_factor * terminal_fall_speed * depth_eff
935
+
936
+
937
+ ####################
938
+ # Ice particle losses
939
+ ####################
940
+
941
+
942
+ def particle_losses_aggregation(
943
+ r_ice_vol: npt.NDArray[np.floating],
944
+ terminal_fall_speed: npt.NDArray[np.floating],
945
+ area_eff: npt.NDArray[np.floating],
946
+ agg_efficiency: float = 1.0,
947
+ ) -> npt.NDArray[np.floating]:
948
+ """
949
+ Calculate the rate of contrail ice particle losses due to sedimentation-induced aggregation.
950
+
951
+ Parameters
952
+ ----------
953
+ r_ice_vol : npt.NDArray[np.floating]
954
+ Ice particle volume mean radius, [:math:`m`]
955
+ terminal_fall_speed : npt.NDArray[np.floating]
956
+ Terminal fall speed of contrail ice particles, [:math:`m s^{-1}`]
957
+ area_eff : npt.NDArray[np.floating]
958
+ Effective cross-sectional area of the contrail plume, [:math:`m^{2}`]
959
+ agg_efficiency : float, optional
960
+ Aggregation efficiency
961
+
962
+ Returns
963
+ -------
964
+ npt.NDArray[np.floating]
965
+ Rate of contrail ice particle losses due to sedimentation-induced
966
+ aggregation, [:math:`# s^{-1}`]
967
+
968
+ Notes
969
+ -----
970
+ The aggregation efficiency (``agg_efficiency = 1``) was calibrated based on
971
+ the observed lifetime and optical properties from the Contrail Library (COLI)
972
+ database (:cite:`schumannPropertiesIndividualContrails2017`).
973
+
974
+ References
975
+ ----------
976
+ - :cite:`schumannPropertiesIndividualContrails2017`
977
+ """
978
+ return (8.0 * agg_efficiency * np.pi * r_ice_vol**2 * terminal_fall_speed) / area_eff
979
+
980
+
981
+ def particle_losses_turbulence(
982
+ width: npt.NDArray[np.floating],
983
+ depth: npt.NDArray[np.floating],
984
+ depth_eff: npt.NDArray[np.floating],
985
+ diffuse_h: npt.NDArray[np.floating],
986
+ diffuse_v: npt.NDArray[np.floating],
987
+ turb_efficiency: float = 0.1,
988
+ ) -> npt.NDArray[np.floating]:
989
+ """
990
+ Calculate the rate of contrail ice particle losses due to plume-internal turbulence.
991
+
992
+ Parameters
993
+ ----------
994
+ width : npt.NDArray[np.floating]
995
+ Contrail width at each waypoint, [:math:`m`]
996
+ depth : npt.NDArray[np.floating]
997
+ Contrail depth at each waypoint, [:math:`m`]
998
+ depth_eff : npt.NDArray[np.floating]
999
+ Effective depth of the contrail plume, [:math:`m`]
1000
+ diffuse_h : npt.NDArray[np.floating]
1001
+ Horizontal diffusivity, [:math:`m^{2} s^{-1}`]
1002
+ diffuse_v : npt.NDArray[np.floating]
1003
+ Vertical diffusivity, [:math:`m^{2} s^{-1}`]
1004
+ turb_efficiency : float, optional
1005
+ Turbulence sublimation efficiency
1006
+
1007
+ Returns
1008
+ -------
1009
+ npt.NDArray[np.floating]
1010
+ Rate of contrail ice particle losses due to plume-internal turbulence, [:math:`# s^{-1}`]
1011
+
1012
+ Notes
1013
+ -----
1014
+ The turbulence sublimation efficiency (``turb_efficiency = 0.1``) was calibrated
1015
+ based on the observed lifetime and optical properties from the Contrail Library (COLI)
1016
+ database (:cite:`schumannPropertiesIndividualContrails2017`).
1017
+
1018
+ References
1019
+ ----------
1020
+ - :cite:`schumannPropertiesIndividualContrails2017`
1021
+ """
1022
+ inner_term = (diffuse_h / (np.maximum(width, depth)) ** 2) + (diffuse_v / depth_eff**2)
1023
+ return turb_efficiency * np.abs(inner_term)
1024
+
1025
+
1026
+ ####################
1027
+ # Optical properties
1028
+ ####################
1029
+
1030
+
1031
+ def contrail_optical_depth(
1032
+ r_ice_vol: npt.NDArray[np.floating],
1033
+ n_ice_per_m: npt.NDArray[np.floating],
1034
+ width: npt.NDArray[np.floating],
1035
+ ) -> npt.NDArray[np.floating]:
1036
+ """
1037
+ Calculate the contrail optical depth for each waypoint.
1038
+
1039
+ Parameters
1040
+ ----------
1041
+ r_ice_vol : npt.NDArray[np.floating]
1042
+ ice particle volume mean radius, [:math:`m`]
1043
+ n_ice_per_m : npt.NDArray[np.floating]
1044
+ Number of contrail ice particles per distance, [:math:`m^{-1}`]
1045
+ width : npt.NDArray[np.floating]
1046
+ Contrail width, [:math:`m`]
1047
+
1048
+ Returns
1049
+ -------
1050
+ npt.NDArray[np.floating]
1051
+ Contrail optical depth
1052
+ """
1053
+ q_ext = scattering_extinction_efficiency(r_ice_vol)
1054
+ tau_contrail = constants.c_r * np.pi * r_ice_vol**2 * (n_ice_per_m / width) * q_ext
1055
+
1056
+ bool_small = r_ice_vol <= 1e-9
1057
+ tau_contrail[bool_small] = 0.0
1058
+ tau_contrail.clip(min=0.0, out=tau_contrail)
1059
+ return tau_contrail
1060
+
1061
+
1062
+ def scattering_extinction_efficiency(
1063
+ r_ice_vol: npt.NDArray[np.floating],
1064
+ ) -> npt.NDArray[np.floating]:
1065
+ """
1066
+ Calculate the scattering extinction efficiency (``q_ext``) based on Mie-theory.
1067
+
1068
+ Parameters
1069
+ ----------
1070
+ r_ice_vol : npt.NDArray[np.floating]
1071
+ ice particle volume mean radius, [:math:`m`]
1072
+
1073
+ Returns
1074
+ -------
1075
+ npt.NDArray[np.floating]
1076
+ scattering extinction efficiency
1077
+
1078
+ References
1079
+ ----------
1080
+ - https://en.wikipedia.org/wiki/Mie_scattering
1081
+ """
1082
+ phase_delay = light_wave_phase_delay(r_ice_vol)
1083
+ return 2.0 - (4.0 / phase_delay) * (
1084
+ np.sin(phase_delay) - ((1.0 - np.cos(phase_delay)) / phase_delay)
1085
+ )
1086
+
1087
+
1088
+ def light_wave_phase_delay(r_ice_vol: npt.NDArray[np.floating]) -> npt.NDArray[np.floating]:
1089
+ """
1090
+ Calculate the phase delay of the light wave passing through the contrail ice particle.
1091
+
1092
+ Parameters
1093
+ ----------
1094
+ r_ice_vol : npt.NDArray[np.floating]
1095
+ ice particle volume mean radius, [:math:`m`]
1096
+
1097
+ Returns
1098
+ -------
1099
+ npt.NDArray[np.floating]
1100
+ phase delay of the light wave passing through the contrail ice particle
1101
+
1102
+ References
1103
+ ----------
1104
+ - https://en.wikipedia.org/wiki/Mie_scattering
1105
+ """
1106
+ phase_delay = (4.0 * np.pi * (constants.mu_ice - 1.0) / constants.lambda_light) * r_ice_vol
1107
+ phase_delay.clip(min=None, max=100.0, out=phase_delay)
1108
+ return phase_delay
1109
+
1110
+
1111
+ #######################################################
1112
+ # Contrail evolution: second-order Runge Kutta scheme
1113
+ #######################################################
1114
+ # Notation "t1" implies properties at the start of the time step (before the time integration step)
1115
+ # Notation "t2" implies properties at the end of the time step (after the time integration step)
1116
+
1117
+
1118
+ def segment_length_ratio(
1119
+ seg_length_t1: npt.NDArray[np.floating],
1120
+ seg_length_t2: npt.NDArray[np.floating],
1121
+ ) -> npt.NDArray[np.floating]:
1122
+ """Calculate the ratio of contrail segment length pre-advection to post-advection.
1123
+
1124
+ Parameters
1125
+ ----------
1126
+ seg_length_t1 : npt.NDArray[np.floating]
1127
+ Segment length of contrail waypoint at the start of the time step, [:math:`m`]
1128
+ seg_length_t2 : npt.NDArray[np.floating]
1129
+ Segment length of contrail waypoint after time step and advection, [:math:`m`]
1130
+
1131
+ Returns
1132
+ -------
1133
+ npt.NDArray[np.floating]
1134
+ Ratio of segment length before advection to segment length after advection.
1135
+
1136
+ Notes
1137
+ -----
1138
+ This implementation differs from the original fortran implementation.
1139
+ Instead of taking a geometric mean between
1140
+ the previous and following segments, a simple ratio is computed.
1141
+
1142
+ For terminal waypoints along a flight trajectory, the associated segment length is 0. In this
1143
+ case, the segment ratio is set to 1 (the naive ratio 0 / 0 is undefined). According to CoCiP
1144
+ conventions, terminus waypoints are "discontinuous" within the flight trajectory, and will not
1145
+ contribute to contrail calculations.
1146
+
1147
+ More broadly, any undefined (nan values, or division by 0) segment ratio is set to 1.
1148
+ This convention ensures that the contrail calculations are not affected by undefined
1149
+ segment-based properties.
1150
+
1151
+ Presently, the output of this function is only used by :func:`plume_temporal_evolution`
1152
+ and :func:`new_ice_particle_number` as a scaling term.
1153
+
1154
+ A `seg_ratio` value of 1 is the same as not applying any scaling in these two functions.
1155
+ """
1156
+ is_defined = (seg_length_t2 > 0.0) & np.isfinite(seg_length_t1)
1157
+ default_value = np.ones_like(seg_length_t1)
1158
+ return np.divide(seg_length_t1, seg_length_t2, out=default_value, where=is_defined)
1159
+
1160
+
1161
+ def plume_temporal_evolution(
1162
+ width_t1: npt.NDArray[np.floating],
1163
+ depth_t1: npt.NDArray[np.floating],
1164
+ sigma_yz_t1: npt.NDArray[np.floating],
1165
+ dsn_dz_t1: npt.NDArray[np.floating],
1166
+ diffuse_h_t1: npt.NDArray[np.floating],
1167
+ diffuse_v_t1: npt.NDArray[np.floating],
1168
+ seg_ratio: npt.NDArray[np.floating] | float,
1169
+ dt: npt.NDArray[np.timedelta64] | np.timedelta64,
1170
+ max_depth: float | None,
1171
+ ) -> tuple[npt.NDArray[np.floating], npt.NDArray[np.floating], npt.NDArray[np.floating]]:
1172
+ """
1173
+ Calculate the temporal evolution of the contrail plume parameters.
1174
+
1175
+ Refer to equation (6) of Schumann (2012). See also equations (29), (30), and (31).
1176
+
1177
+ Parameters
1178
+ ----------
1179
+ width_t1 : npt.NDArray[np.floating]
1180
+ contrail width at the start of the time step, [:math:`m`]
1181
+ depth_t1 : npt.NDArray[np.floating]
1182
+ contrail depth at the start of the time step, [:math:`m`]
1183
+ sigma_yz_t1 : npt.NDArray[np.floating]
1184
+ sigma_yz governs the contrail plume's temporal evolution at the start of the time step
1185
+ dsn_dz_t1 : npt.NDArray[np.floating]
1186
+ vertical gradient of the horizontal velocity (wind shear) normal to the contrail axis
1187
+ at the start of the time step, [:math:`m s^{-1} / Pa`]::
1188
+
1189
+ X-----------------------X X
1190
+ ^ |
1191
+ | (dsn_dz) | <-- (dsn_dz)
1192
+ | |
1193
+ X
1194
+ diffuse_h_t1 : npt.NDArray[np.floating]
1195
+ horizontal diffusivity at the start of the time step, [:math:`m^{2} s^{-1}`]
1196
+ diffuse_v_t1 : npt.NDArray[np.floating]
1197
+ vertical diffusivity at the start of the time step, [:math:`m^{2} s^{-1}`]
1198
+ seg_ratio : npt.NDArray[np.floating] | float
1199
+ Segment length ratio before and after it is advected to the new location.
1200
+ See :func:`segment_length_ratio`.
1201
+ dt : npt.NDArray[np.timedelta64] | np.timedelta64
1202
+ integrate contrails with time steps of dt, [:math:`s`]
1203
+ max_depth: float | None
1204
+ Constrain maximum plume depth to prevent unrealistic values, [:math:`m`].
1205
+ If None is passed, the maximum plume depth is not constrained.
1206
+
1207
+ Returns
1208
+ -------
1209
+ sigma_yy_t2 : npt.NDArray[np.floating]
1210
+ The ``yy`` component of convariance matrix, [:math:`m^{2}`]
1211
+ sigma_zz_t2 : npt.NDArray[np.floating]
1212
+ The ``zz`` component of convariance matrix, [:math:`m^{2}`]
1213
+ sigma_yz_t2 : npt.NDArray[np.floating]
1214
+ The ``yz`` component of convariance matrix, [:math:`m^{2}`]
1215
+ """
1216
+ # Convert dt to seconds value and use dtype of other variables
1217
+ dtype = np.result_type(width_t1, depth_t1, sigma_yz_t1, dsn_dz_t1, diffuse_h_t1, diffuse_v_t1)
1218
+ dt_s = units.dt_to_seconds(dt, dtype)
1219
+
1220
+ sigma_yy = 0.125 * width_t1**2
1221
+ sigma_zz = 0.125 * depth_t1**2
1222
+
1223
+ # Convert from max_depth to an upper bound for diffuse_v_t1
1224
+ # All three terms involve the diffuse_v_t1 variable, so we need to
1225
+ # calculate the max value for diffuse_v_t1 and apply it to all three terms.
1226
+ # If we don't do this, we violate the some mathematical constraints of the
1227
+ # covariance matrix (positive definite). In particular, for downstream
1228
+ # calculations, we required that
1229
+ # sigma_yy_t2 * sigma_zz_t2 - sigma_yz_t2**2 >= 0
1230
+ if max_depth is not None:
1231
+ max_sigma_zz = 0.125 * max_depth**2
1232
+ max_diffuse_v = (max_sigma_zz - sigma_zz) / (2.0 * dt_s)
1233
+ diffuse_v_t1 = np.minimum(diffuse_v_t1, max_diffuse_v)
1234
+
1235
+ # Avoid some redundant calculations
1236
+ dsn_dz_t1_2 = dsn_dz_t1**2
1237
+ dt_s_2 = dt_s**2
1238
+ dt_s_3 = dt_s * dt_s_2
1239
+
1240
+ # Calculate the return arrays
1241
+ sigma_yy_t2 = (
1242
+ ((2 / 3) * dsn_dz_t1_2 * diffuse_v_t1 * dt_s_3)
1243
+ + (dsn_dz_t1_2 * sigma_zz * dt_s_2)
1244
+ + (2.0 * (diffuse_h_t1 + dsn_dz_t1 * sigma_yz_t1) * dt_s)
1245
+ + sigma_yy
1246
+ ) * (seg_ratio**2)
1247
+
1248
+ sigma_zz_t2 = (2.0 * diffuse_v_t1 * dt_s) + sigma_zz
1249
+
1250
+ sigma_yz_t2 = (
1251
+ (dsn_dz_t1 * diffuse_v_t1 * dt_s_2) + (dsn_dz_t1 * sigma_zz * dt_s) + sigma_yz_t1
1252
+ ) * seg_ratio
1253
+
1254
+ return sigma_yy_t2, sigma_zz_t2, sigma_yz_t2
1255
+
1256
+
1257
+ def new_contrail_dimensions(
1258
+ sigma_yy_t2: npt.NDArray[np.floating],
1259
+ sigma_zz_t2: npt.NDArray[np.floating],
1260
+ ) -> tuple[npt.NDArray[np.floating], npt.NDArray[np.floating]]:
1261
+ """
1262
+ Calculate the new contrail width and depth.
1263
+
1264
+ Parameters
1265
+ ----------
1266
+ sigma_yy_t2 : npt.NDArray[np.floating]
1267
+ element yy, covariance matrix of the Gaussian concentration
1268
+ field, Eq. (6) of Schumann (2012)
1269
+ sigma_zz_t2 : npt.NDArray[np.floating]
1270
+ element zz, covariance matrix of the Gaussian concentration
1271
+ field, Eq. (6) of Schumann (2012)
1272
+
1273
+ Returns
1274
+ -------
1275
+ width_t2 : npt.NDArray[np.floating]
1276
+ Contrail width at the end of the time step, [:math:`m`]
1277
+ depth_t2 : npt.NDArray[np.floating]
1278
+ Contrail depth at the end of the time step, [:math:`m`]
1279
+ """
1280
+ width_t2 = (8 * sigma_yy_t2) ** 0.5
1281
+ depth_t2 = (8 * sigma_zz_t2) ** 0.5
1282
+ return width_t2, depth_t2
1283
+
1284
+
1285
+ def new_effective_area_from_sigma(
1286
+ sigma_yy: npt.NDArray[np.floating],
1287
+ sigma_zz: npt.NDArray[np.floating],
1288
+ sigma_yz: npt.NDArray[np.floating] | float,
1289
+ ) -> npt.NDArray[np.floating]:
1290
+ """
1291
+ Calculate effective cross-sectional area of contrail plume (``area_eff``) from sigma parameters.
1292
+
1293
+ This method calculates the same output as :func`plume_effective_cross_sectional_area`, but
1294
+ calculated with different input parameters.
1295
+
1296
+ Parameters
1297
+ ----------
1298
+ sigma_yy : npt.NDArray[np.floating]
1299
+ element yy, covariance matrix of the Gaussian concentration
1300
+ field, Eq. (6) of Schumann (2012)
1301
+ sigma_zz : npt.NDArray[np.floating]
1302
+ element zz, covariance matrix of the Gaussian concentration
1303
+ field, Eq. (6) of Schumann (2012)
1304
+ sigma_yz : npt.NDArray[np.floating] | float
1305
+ element yz, covariance matrix of the Gaussian concentration
1306
+ field, Eq. (6) of Schumann (2012)
1307
+
1308
+ Returns
1309
+ -------
1310
+ npt.NDArray[np.floating]
1311
+ Effective cross-sectional area of the contrail plume (area_eff)
1312
+ """
1313
+ det_sigma = sigma_yy * sigma_zz - sigma_yz**2
1314
+ return 2.0 * np.pi * det_sigma**0.5
1315
+
1316
+
1317
+ def new_ice_water_content(
1318
+ iwc_t1: npt.NDArray[np.floating],
1319
+ q_t1: npt.NDArray[np.floating],
1320
+ q_t2: npt.NDArray[np.floating],
1321
+ q_sat_t1: npt.NDArray[np.floating],
1322
+ q_sat_t2: npt.NDArray[np.floating],
1323
+ mass_plume_t1: npt.NDArray[np.floating],
1324
+ mass_plume_t2: npt.NDArray[np.floating],
1325
+ ) -> npt.NDArray[np.floating]:
1326
+ """
1327
+ Calculate the new contrail ice water content after the time integration step (``iwc_t2``).
1328
+
1329
+ Parameters
1330
+ ----------
1331
+ iwc_t1 : npt.NDArray[np.floating]
1332
+ contrail ice water content, i.e., contrail ice mass per kg of air,
1333
+ at the start of the time step, [:math:`kg_{H_{2}O}/kg_{air}`]
1334
+ q_t1 : npt.NDArray[np.floating]
1335
+ specific humidity for each waypoint at the start of the
1336
+ time step, [:math:`kg_{H_{2}O}/kg_{air}`]
1337
+ q_t2 : npt.NDArray[np.floating]
1338
+ specific humidity for each waypoint at the end of the
1339
+ time step, [:math:`kg_{H_{2}O}/kg_{air}`]
1340
+ q_sat_t1 : npt.NDArray[np.floating]
1341
+ saturation humidity for each waypoint at the start of the
1342
+ time step, [:math:`kg_{H_{2}O}/kg_{air}`]
1343
+ q_sat_t2 : npt.NDArray[np.floating]
1344
+ saturation humidity for each waypoint at the end of the
1345
+ time step, [:math:`kg_{H_{2}O}/kg_{air}`]
1346
+ mass_plume_t1 : npt.NDArray[np.floating]
1347
+ contrail plume mass per unit length at the start of the
1348
+ time step, [:math:`kg_{air} m^{-1}`]
1349
+ mass_plume_t2 : npt.NDArray[np.floating]
1350
+ contrail plume mass per unit length at the end of the
1351
+ time step, [:math:`kg_{air} m^{-1}`]
1352
+
1353
+ Returns
1354
+ -------
1355
+ npt.NDArray[np.floating]
1356
+ Contrail ice water content at the end of the time step, [:math:`kg_{ice} kg_{air}^{-1}`]
1357
+
1358
+ Notes
1359
+ -----
1360
+ (1) The ice water content is fully conservative.
1361
+ (2) ``mass_h2o_t2``: the total H2O mass (ice + vapour) per unit of
1362
+ contrail plume [Units of kg-H2O/m]
1363
+ (3) ``q_sat`` is used to calculate mass_h2o because air inside the
1364
+ contrail is assumed to be ice saturated.
1365
+ (4) ``(mass_plume_t2 - mass_plume) * q_mean``: contrail absorbs
1366
+ (releases) H2O from (to) surrounding air.
1367
+ (5) ``iwc_t2 = mass_h2o_t2 / mass_plume_t2 - q_sat_t2``: H2O in the
1368
+ gas phase is removed (``- q_sat_t2``).
1369
+ """
1370
+ q_mean = 0.5 * (q_t1 + q_t2)
1371
+ mass_h2o_t1 = mass_plume_t1 * (iwc_t1 + q_sat_t1)
1372
+ mass_h2o_t2 = mass_h2o_t1 + (mass_plume_t2 - mass_plume_t1) * q_mean
1373
+ iwc_t2 = (mass_h2o_t2 / mass_plume_t2) - q_sat_t2
1374
+ iwc_t2.clip(min=0.0, out=iwc_t2)
1375
+ return iwc_t2
1376
+
1377
+
1378
+ def new_ice_particle_number(
1379
+ n_ice_per_m_t1: npt.NDArray[np.floating],
1380
+ dn_dt_agg: npt.NDArray[np.floating],
1381
+ dn_dt_turb: npt.NDArray[np.floating],
1382
+ seg_ratio: npt.NDArray[np.floating] | float,
1383
+ dt: npt.NDArray[np.timedelta64] | np.timedelta64,
1384
+ ) -> npt.NDArray[np.floating]:
1385
+ """Calculate the number of ice particles per distance at the end of the time step.
1386
+
1387
+ Parameters
1388
+ ----------
1389
+ n_ice_per_m_t1 : npt.NDArray[np.floating]
1390
+ number of contrail ice particles per distance at the start of
1391
+ the time step, [:math:`m^{-1}`]
1392
+ dn_dt_agg : npt.NDArray[np.floating]
1393
+ rate of ice particle losses due to sedimentation-induced aggregation, [:math:`# s^{-1}`]
1394
+ dn_dt_turb : npt.NDArray[np.floating]
1395
+ rate of contrail ice particle losses due to plume-internal turbulence, [:math:`# s^{-1}`]
1396
+ seg_ratio : npt.NDArray[np.floating] | float
1397
+ Segment length ratio before and after it is advected to the new location.
1398
+ dt : npt.NDArray[np.timedelta64] | np.timedelta64
1399
+ integrate contrails with time steps of dt, [:math:`s`]
1400
+
1401
+ Returns
1402
+ -------
1403
+ npt.NDArray[np.floating]
1404
+ number of ice particles per distance at the end of the time step, [:math:`m^{-1}`]
1405
+ """
1406
+ # Convert dt to seconds value and use dtype of other variables
1407
+ dtype = np.result_type(n_ice_per_m_t1, dn_dt_agg, dn_dt_turb, seg_ratio)
1408
+ dt_s = units.dt_to_seconds(dt, dtype)
1409
+
1410
+ n_ice_per_m_t1 = np.maximum(n_ice_per_m_t1, 0.0)
1411
+
1412
+ exp_term = np.where(dn_dt_turb * dt_s < 80.0, np.exp(-dn_dt_turb * dt_s), 0.0)
1413
+
1414
+ numerator = dn_dt_turb * n_ice_per_m_t1 * exp_term
1415
+ denominator = dn_dt_turb + (dn_dt_agg * n_ice_per_m_t1 * (1 - exp_term))
1416
+ n_ice_per_m_t2 = (numerator / denominator) * seg_ratio
1417
+
1418
+ small_loss = (dn_dt_turb * dt_s) < 1e-5 # For small ice particle losses
1419
+ denom = 1 + (dn_dt_agg * dt_s * n_ice_per_m_t1)
1420
+ n_ice_per_m_t2[small_loss] = n_ice_per_m_t1[small_loss] / denom[small_loss]
1421
+ n_ice_per_m_t2.clip(min=0.0, out=n_ice_per_m_t2)
1422
+ return n_ice_per_m_t2
1423
+
1424
+
1425
+ ########
1426
+ # Energy Forcing
1427
+ ########
1428
+ # TODO: This should be moved closer to the radiative forcing calculations
1429
+
1430
+
1431
+ def energy_forcing(
1432
+ rf_net_t1: npt.NDArray[np.floating],
1433
+ rf_net_t2: npt.NDArray[np.floating],
1434
+ width_t1: npt.NDArray[np.floating],
1435
+ width_t2: npt.NDArray[np.floating],
1436
+ seg_length_t2: npt.NDArray[np.floating] | float,
1437
+ dt: npt.NDArray[np.timedelta64] | np.timedelta64,
1438
+ ) -> npt.NDArray[np.floating]:
1439
+ """Calculate the contrail energy forcing over time step.
1440
+
1441
+ The contrail energy forcing is calculated as the local contrail net
1442
+ radiative forcing (RF', change in energy flux per contrail area) multiplied
1443
+ by its width and integrated over its length and lifetime.
1444
+
1445
+ Parameters
1446
+ ----------
1447
+ rf_net_t1 : npt.NDArray[np.floating]
1448
+ local contrail net radiative forcing at the start of the time step, [:math:`W m^{-2}`]
1449
+ rf_net_t2 : npt.NDArray[np.floating]
1450
+ local contrail net radiative forcing at the end of the time step, [:math:`W m^{-2}`]
1451
+ width_t1 : npt.NDArray[np.floating]
1452
+ contrail width at the start of the time step, [:math:`m`]
1453
+ width_t2 : npt.NDArray[np.floating]
1454
+ contrail width at the end of the time step, [:math:`m`]
1455
+ seg_length_t2 : npt.NDArray[np.floating] | float
1456
+ Segment length of contrail waypoint at the end of the time step, [:math:`m`]
1457
+ dt : npt.NDArray[np.timedelta64] | np.timedelta64
1458
+ integrate contrails with time steps of dt, [:math:`s`]
1459
+
1460
+ Returns
1461
+ -------
1462
+ npt.NDArray[np.floating]
1463
+ Contrail energy forcing over time step dt, [:math:`J`].
1464
+ """
1465
+ rad_flux_per_m = mean_radiative_flux_per_m(rf_net_t1, rf_net_t2, width_t1, width_t2)
1466
+ energy_flux_per_m = mean_energy_flux_per_m(rad_flux_per_m, dt)
1467
+ return energy_flux_per_m * seg_length_t2
1468
+
1469
+
1470
+ def mean_radiative_flux_per_m(
1471
+ rf_net_t1: npt.NDArray[np.floating],
1472
+ rf_net_t2: npt.NDArray[np.floating],
1473
+ width_t1: npt.NDArray[np.floating],
1474
+ width_t2: npt.NDArray[np.floating],
1475
+ ) -> npt.NDArray[np.floating]:
1476
+ """Calculate the mean radiative flux per length of contrail between two time steps.
1477
+
1478
+ Parameters
1479
+ ----------
1480
+ rf_net_t1 : npt.NDArray[np.floating]
1481
+ local contrail net radiative forcing at the start of the time step, [:math:`W m^{-2}`]
1482
+ rf_net_t2 : npt.NDArray[np.floating]
1483
+ local contrail net radiative forcing at the end of the time step, [:math:`W m^{-2}`]
1484
+ width_t1 : npt.NDArray[np.floating]
1485
+ contrail width at the start of the time step, [:math:`m`]
1486
+ width_t2 : npt.NDArray[np.floating]
1487
+ contrail width at the end of the time step, [:math:`m`]
1488
+
1489
+ Returns
1490
+ -------
1491
+ npt.NDArray[np.floating]
1492
+ Mean radiative flux between time steps, [:math:`W m^{-1}`]
1493
+ """
1494
+ rad_flux_per_m_t1 = width_t1 * rf_net_t1
1495
+ rad_flux_per_m_t2 = width_t2 * rf_net_t2
1496
+ return (rad_flux_per_m_t1 + rad_flux_per_m_t2) * 0.5
1497
+
1498
+
1499
+ def mean_energy_flux_per_m(
1500
+ rad_flux_per_m: npt.NDArray[np.floating], dt: npt.NDArray[np.timedelta64] | np.timedelta64
1501
+ ) -> npt.NDArray[np.floating]:
1502
+ """Calculate the mean energy flux per length of contrail on segment following waypoint.
1503
+
1504
+ Parameters
1505
+ ----------
1506
+ rad_flux_per_m : npt.NDArray[np.floating]
1507
+ Mean radiative flux between time steps for waypoint, [:math:`W m^{-1}`].
1508
+ See :func:`mean_radiative_flux_per_m`.
1509
+ dt : npt.NDArray[np.timedelta64] | np.timedelta64
1510
+ timedelta of integration timestep for each waypoint.
1511
+
1512
+ Returns
1513
+ -------
1514
+ npt.NDArray[np.floating]
1515
+ Mean energy flux per length of contrail after waypoint, [:math:`J m^{-1}`]
1516
+
1517
+ Notes
1518
+ -----
1519
+ Implementation differs from original fortran in two ways:
1520
+
1521
+ - Discontinuity is no longer set to 0 (this occurs directly in model :class:`Cocip`)
1522
+ - Instead of taking an average of the previous and following segments,
1523
+ energy flux is only calculated for the following segment.
1524
+
1525
+ See Also
1526
+ --------
1527
+ :func:`mean_radiative_flux_per_m`
1528
+ """
1529
+ dt_s = units.dt_to_seconds(dt, rad_flux_per_m.dtype)
1530
+ return rad_flux_per_m * dt_s