pycontrails 0.54.0__cp312-cp312-macosx_10_13_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pycontrails might be problematic. Click here for more details.

Files changed (109) hide show
  1. pycontrails/__init__.py +70 -0
  2. pycontrails/_version.py +16 -0
  3. pycontrails/core/__init__.py +30 -0
  4. pycontrails/core/aircraft_performance.py +641 -0
  5. pycontrails/core/airports.py +226 -0
  6. pycontrails/core/cache.py +881 -0
  7. pycontrails/core/coordinates.py +174 -0
  8. pycontrails/core/fleet.py +470 -0
  9. pycontrails/core/flight.py +2314 -0
  10. pycontrails/core/flightplan.py +220 -0
  11. pycontrails/core/fuel.py +140 -0
  12. pycontrails/core/interpolation.py +721 -0
  13. pycontrails/core/met.py +2833 -0
  14. pycontrails/core/met_var.py +307 -0
  15. pycontrails/core/models.py +1181 -0
  16. pycontrails/core/polygon.py +549 -0
  17. pycontrails/core/rgi_cython.cpython-312-darwin.so +0 -0
  18. pycontrails/core/vector.py +2190 -0
  19. pycontrails/datalib/__init__.py +12 -0
  20. pycontrails/datalib/_leo_utils/search.py +250 -0
  21. pycontrails/datalib/_leo_utils/static/bq_roi_query.sql +6 -0
  22. pycontrails/datalib/_leo_utils/vis.py +59 -0
  23. pycontrails/datalib/_met_utils/metsource.py +746 -0
  24. pycontrails/datalib/ecmwf/__init__.py +73 -0
  25. pycontrails/datalib/ecmwf/arco_era5.py +340 -0
  26. pycontrails/datalib/ecmwf/common.py +109 -0
  27. pycontrails/datalib/ecmwf/era5.py +550 -0
  28. pycontrails/datalib/ecmwf/era5_model_level.py +487 -0
  29. pycontrails/datalib/ecmwf/hres.py +782 -0
  30. pycontrails/datalib/ecmwf/hres_model_level.py +459 -0
  31. pycontrails/datalib/ecmwf/ifs.py +284 -0
  32. pycontrails/datalib/ecmwf/model_levels.py +434 -0
  33. pycontrails/datalib/ecmwf/static/model_level_dataframe_v20240418.csv +139 -0
  34. pycontrails/datalib/ecmwf/variables.py +267 -0
  35. pycontrails/datalib/gfs/__init__.py +28 -0
  36. pycontrails/datalib/gfs/gfs.py +646 -0
  37. pycontrails/datalib/gfs/variables.py +100 -0
  38. pycontrails/datalib/goes.py +772 -0
  39. pycontrails/datalib/landsat.py +569 -0
  40. pycontrails/datalib/sentinel.py +511 -0
  41. pycontrails/datalib/spire.py +739 -0
  42. pycontrails/ext/bada.py +41 -0
  43. pycontrails/ext/cirium.py +14 -0
  44. pycontrails/ext/empirical_grid.py +140 -0
  45. pycontrails/ext/synthetic_flight.py +430 -0
  46. pycontrails/models/__init__.py +1 -0
  47. pycontrails/models/accf.py +406 -0
  48. pycontrails/models/apcemm/__init__.py +8 -0
  49. pycontrails/models/apcemm/apcemm.py +982 -0
  50. pycontrails/models/apcemm/inputs.py +226 -0
  51. pycontrails/models/apcemm/static/apcemm_yaml_template.yaml +183 -0
  52. pycontrails/models/apcemm/utils.py +437 -0
  53. pycontrails/models/cocip/__init__.py +29 -0
  54. pycontrails/models/cocip/cocip.py +2616 -0
  55. pycontrails/models/cocip/cocip_params.py +299 -0
  56. pycontrails/models/cocip/cocip_uncertainty.py +285 -0
  57. pycontrails/models/cocip/contrail_properties.py +1517 -0
  58. pycontrails/models/cocip/output_formats.py +2261 -0
  59. pycontrails/models/cocip/radiative_forcing.py +1262 -0
  60. pycontrails/models/cocip/radiative_heating.py +520 -0
  61. pycontrails/models/cocip/unterstrasser_wake_vortex.py +403 -0
  62. pycontrails/models/cocip/wake_vortex.py +396 -0
  63. pycontrails/models/cocip/wind_shear.py +120 -0
  64. pycontrails/models/cocipgrid/__init__.py +9 -0
  65. pycontrails/models/cocipgrid/cocip_grid.py +2573 -0
  66. pycontrails/models/cocipgrid/cocip_grid_params.py +138 -0
  67. pycontrails/models/dry_advection.py +494 -0
  68. pycontrails/models/emissions/__init__.py +21 -0
  69. pycontrails/models/emissions/black_carbon.py +594 -0
  70. pycontrails/models/emissions/emissions.py +1353 -0
  71. pycontrails/models/emissions/ffm2.py +336 -0
  72. pycontrails/models/emissions/static/default-engine-uids.csv +239 -0
  73. pycontrails/models/emissions/static/edb-gaseous-v29b-engines.csv +596 -0
  74. pycontrails/models/emissions/static/edb-nvpm-v29b-engines.csv +215 -0
  75. pycontrails/models/humidity_scaling/__init__.py +37 -0
  76. pycontrails/models/humidity_scaling/humidity_scaling.py +1025 -0
  77. pycontrails/models/humidity_scaling/quantiles/era5-model-level-quantiles.pq +0 -0
  78. pycontrails/models/humidity_scaling/quantiles/era5-pressure-level-quantiles.pq +0 -0
  79. pycontrails/models/issr.py +210 -0
  80. pycontrails/models/pcc.py +327 -0
  81. pycontrails/models/pcr.py +154 -0
  82. pycontrails/models/ps_model/__init__.py +17 -0
  83. pycontrails/models/ps_model/ps_aircraft_params.py +376 -0
  84. pycontrails/models/ps_model/ps_grid.py +505 -0
  85. pycontrails/models/ps_model/ps_model.py +1017 -0
  86. pycontrails/models/ps_model/ps_operational_limits.py +540 -0
  87. pycontrails/models/ps_model/static/ps-aircraft-params-20240524.csv +68 -0
  88. pycontrails/models/ps_model/static/ps-synonym-list-20240524.csv +103 -0
  89. pycontrails/models/sac.py +459 -0
  90. pycontrails/models/tau_cirrus.py +168 -0
  91. pycontrails/physics/__init__.py +1 -0
  92. pycontrails/physics/constants.py +116 -0
  93. pycontrails/physics/geo.py +989 -0
  94. pycontrails/physics/jet.py +837 -0
  95. pycontrails/physics/thermo.py +451 -0
  96. pycontrails/physics/units.py +472 -0
  97. pycontrails/py.typed +0 -0
  98. pycontrails/utils/__init__.py +1 -0
  99. pycontrails/utils/dependencies.py +66 -0
  100. pycontrails/utils/iteration.py +13 -0
  101. pycontrails/utils/json.py +188 -0
  102. pycontrails/utils/temp.py +50 -0
  103. pycontrails/utils/types.py +165 -0
  104. pycontrails-0.54.0.dist-info/LICENSE +178 -0
  105. pycontrails-0.54.0.dist-info/METADATA +179 -0
  106. pycontrails-0.54.0.dist-info/NOTICE +43 -0
  107. pycontrails-0.54.0.dist-info/RECORD +109 -0
  108. pycontrails-0.54.0.dist-info/WHEEL +5 -0
  109. pycontrails-0.54.0.dist-info/top_level.txt +3 -0
@@ -0,0 +1,226 @@
1
+ """Airport data support."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+
8
+ from pycontrails.core import cache
9
+ from pycontrails.physics import geo, units
10
+
11
+ #: URL for `Our Airports <https://ourairports.com/>`_ database.
12
+ #: Fork of the `ourairports-data repository <https://github.com/davidmegginson/ourairports-data>`_.
13
+ OURAIRPORTS_DATABASE_URL: str = (
14
+ "https://github.com/contrailcirrus/ourairports-data/raw/main/airports.csv"
15
+ )
16
+
17
+
18
+ def _download_ourairports_csv() -> pd.DataFrame:
19
+ """Download CSV file from fork of ourairports-data github."""
20
+ return pd.read_csv(
21
+ OURAIRPORTS_DATABASE_URL,
22
+ usecols=[
23
+ "type",
24
+ "name",
25
+ "latitude_deg",
26
+ "longitude_deg",
27
+ "elevation_ft",
28
+ "iso_country",
29
+ "iso_region",
30
+ "municipality",
31
+ "scheduled_service",
32
+ "gps_code",
33
+ "iata_code",
34
+ ],
35
+ )
36
+
37
+
38
+ def global_airport_database(
39
+ cachestore: cache.CacheStore | None = None, update_cache: bool = False
40
+ ) -> pd.DataFrame:
41
+ """
42
+ Load and process global airport database from `Our Airports <https://ourairports.com/>`_.
43
+
44
+ The database includes coordinates and metadata for 74867 unique airports.
45
+
46
+ Parameters
47
+ ----------
48
+ cachestore : cache.CacheStore | None, optional
49
+ Cache store for airport database.
50
+ Defaults to :class:`cache.DiskCacheStore`.
51
+ update_cache : bool, optional
52
+ Force update to cached airports database.
53
+
54
+ Returns
55
+ -------
56
+ pd.DataFrame
57
+ Processed global airport database.
58
+
59
+ Global airport database.
60
+
61
+ Notes
62
+ -----
63
+ As of 2023 March 30, the global airport database contains:
64
+
65
+ .. csv-table::
66
+ :header: "Airport Type", "Number"
67
+ :widths: 70, 30
68
+
69
+ "small_airport", 39327
70
+ "heliport", 19039
71
+ "closed", 10107
72
+ "medium_airport", 4753
73
+ "seaplane_base", 1133
74
+ "large_airport", 463
75
+ "balloonport", 45
76
+
77
+ References
78
+ ----------
79
+ - :cite:`megginsonOpendataDownloadsOurAirports2023`
80
+ """
81
+ cachestore = cachestore or cache.DiskCacheStore()
82
+
83
+ cache_key = "ourairports-data_airports.csv"
84
+ if cachestore.exists(cache_key) and not update_cache:
85
+ airports = pd.read_csv(cachestore.path(cache_key))
86
+ else:
87
+ airports = _download_ourairports_csv()
88
+ airports.to_csv(cachestore.path(cache_key), index=False)
89
+
90
+ #: Format dataset by renaming columns & filling nan values
91
+ airports = airports.rename(
92
+ columns={"latitude_deg": "latitude", "longitude_deg": "longitude", "gps_code": "icao_code"},
93
+ )
94
+ airports.fillna({"elevation_ft": 0}, inplace=True)
95
+
96
+ # Keep specific airport types used by commercial aviation
97
+ subset = ("large_airport", "medium_airport", "small_airport", "heliport")
98
+ select_airport_types = airports["type"].isin(subset)
99
+
100
+ # Keep airports with valid ICAO codes
101
+ select_icao_codes = (airports["icao_code"].str.len() == 4) & (
102
+ airports["icao_code"].str.isalpha()
103
+ )
104
+
105
+ # filter airports
106
+ airports = airports.loc[select_airport_types & select_icao_codes]
107
+
108
+ # Format dataset
109
+ airports["elevation_m"] = units.ft_to_m(airports["elevation_ft"].to_numpy())
110
+ airports = airports.sort_values(by="icao_code", ascending=True)
111
+
112
+ return airports.reset_index(drop=True)
113
+
114
+
115
+ def find_nearest_airport(
116
+ airports: pd.DataFrame,
117
+ longitude: float,
118
+ latitude: float,
119
+ altitude: float,
120
+ *,
121
+ bbox: float = 2.0,
122
+ ) -> str | None:
123
+ r"""
124
+ Find airport nearest to the waypoints.
125
+
126
+ Parameters
127
+ ----------
128
+ airports: pd.DataFrame
129
+ Airport database in the format returned from :func:`global_airport_database`.
130
+ longitude: float
131
+ Waypoint longitude, [:math:`\deg`]
132
+ latitude: float
133
+ Waypoint latitude, [:math:`\deg`]
134
+ altitude: float
135
+ Waypoint altitude, [:math:`m`]
136
+ bbox: float
137
+ Search airports within spatial bounding box of ± `bbox` from the waypoint, [:math:`\deg`]
138
+ Defaults to :math:`2\deg`
139
+
140
+ Returns
141
+ -------
142
+ str
143
+ ICAO code of nearest airport.
144
+ Returns None if no airport is found within ``bbox``.
145
+
146
+ Notes
147
+ -----
148
+ Function will first search for large airports around the waypoint vicinity.
149
+ If none is found, it will search for medium and small airports
150
+ around the waypoint vicinity.
151
+
152
+ The waypoint must be below 10,000 feet to increase the
153
+ probability of identifying the correct airport.
154
+ """
155
+ if altitude > 3000:
156
+ raise ValueError(
157
+ f"Altitude ({altitude} m) is too high (> 3000 m) to identify nearest airport."
158
+ )
159
+
160
+ is_near_waypoint = airports["longitude"].between(
161
+ (longitude - bbox), (longitude + bbox)
162
+ ) & airports["latitude"].between((latitude - bbox), (latitude + bbox))
163
+
164
+ # Find the nearest airport from largest to smallest airport type
165
+ search_priority = ["large_airport", "medium_airport", "small_airport"]
166
+
167
+ for airport_type in search_priority:
168
+ is_airport_type = airports["type"] == airport_type
169
+ nearest_airports = airports.loc[is_near_waypoint & is_airport_type]
170
+
171
+ if len(nearest_airports) == 1:
172
+ return nearest_airports["icao_code"].values[0]
173
+
174
+ elif len(nearest_airports) > 1:
175
+ distance = distance_to_airports(
176
+ nearest_airports,
177
+ longitude,
178
+ latitude,
179
+ altitude,
180
+ )
181
+ i_nearest = np.argmin(distance)
182
+ return nearest_airports["icao_code"].values[i_nearest]
183
+
184
+ else:
185
+ continue
186
+
187
+ return None
188
+
189
+
190
+ def distance_to_airports(
191
+ airports: pd.DataFrame,
192
+ longitude: float,
193
+ latitude: float,
194
+ altitude: float,
195
+ ) -> np.ndarray:
196
+ r"""
197
+ Calculate the 3D distance from the waypoint to the provided airports.
198
+
199
+ Parameters
200
+ ----------
201
+ airports : pd.DataFrame
202
+ Airport database in the format returned from :func:`global_airport_database`.
203
+ longitude : float
204
+ Waypoint longitude, [:math:`\deg`]
205
+ latitude : float
206
+ Waypoint latitude, [:math:`\deg`]
207
+ altitude : float
208
+ Waypoint altitude, [:math:`m`]
209
+
210
+ Returns
211
+ -------
212
+ np.ndarray
213
+ 3D distance from waypoint to airports, [:math:`m`]
214
+
215
+ See Also
216
+ --------
217
+ :func:`geo.haversine`
218
+ """
219
+ dist_horizontal = geo.haversine(
220
+ np.full(airports["longitude"].shape, longitude),
221
+ np.full(airports["latitude"].shape, latitude),
222
+ airports["longitude"].to_numpy(),
223
+ airports["latitude"].to_numpy(),
224
+ )
225
+ dist_vertical = altitude - airports["elevation_m"].to_numpy()
226
+ return (dist_horizontal**2 + dist_vertical**2) ** 0.5