pyGSTi 0.9.12__cp38-cp38-win_amd64.whl → 0.9.13__cp38-cp38-win_amd64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (225) hide show
  1. pyGSTi-0.9.13.dist-info/METADATA +185 -0
  2. {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/RECORD +211 -220
  3. {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/WHEEL +1 -1
  4. pygsti/_version.py +2 -2
  5. pygsti/algorithms/contract.py +1 -1
  6. pygsti/algorithms/core.py +62 -35
  7. pygsti/algorithms/fiducialpairreduction.py +95 -110
  8. pygsti/algorithms/fiducialselection.py +17 -8
  9. pygsti/algorithms/gaugeopt.py +2 -2
  10. pygsti/algorithms/germselection.py +87 -77
  11. pygsti/algorithms/mirroring.py +0 -388
  12. pygsti/algorithms/randomcircuit.py +165 -1333
  13. pygsti/algorithms/rbfit.py +0 -234
  14. pygsti/baseobjs/basis.py +94 -396
  15. pygsti/baseobjs/errorgenbasis.py +0 -132
  16. pygsti/baseobjs/errorgenspace.py +0 -10
  17. pygsti/baseobjs/label.py +52 -168
  18. pygsti/baseobjs/opcalc/fastopcalc.cp38-win_amd64.pyd +0 -0
  19. pygsti/baseobjs/opcalc/fastopcalc.pyx +2 -2
  20. pygsti/baseobjs/polynomial.py +13 -595
  21. pygsti/baseobjs/protectedarray.py +72 -132
  22. pygsti/baseobjs/statespace.py +1 -0
  23. pygsti/circuits/__init__.py +1 -1
  24. pygsti/circuits/circuit.py +753 -504
  25. pygsti/circuits/circuitconstruction.py +0 -4
  26. pygsti/circuits/circuitlist.py +47 -5
  27. pygsti/circuits/circuitparser/__init__.py +8 -8
  28. pygsti/circuits/circuitparser/fastcircuitparser.cp38-win_amd64.pyd +0 -0
  29. pygsti/circuits/circuitstructure.py +3 -3
  30. pygsti/circuits/cloudcircuitconstruction.py +27 -14
  31. pygsti/data/datacomparator.py +4 -9
  32. pygsti/data/dataset.py +51 -46
  33. pygsti/data/hypothesistest.py +0 -7
  34. pygsti/drivers/bootstrap.py +0 -49
  35. pygsti/drivers/longsequence.py +46 -10
  36. pygsti/evotypes/basereps_cython.cp38-win_amd64.pyd +0 -0
  37. pygsti/evotypes/chp/opreps.py +0 -61
  38. pygsti/evotypes/chp/statereps.py +0 -32
  39. pygsti/evotypes/densitymx/effectcreps.cpp +9 -10
  40. pygsti/evotypes/densitymx/effectreps.cp38-win_amd64.pyd +0 -0
  41. pygsti/evotypes/densitymx/effectreps.pyx +1 -1
  42. pygsti/evotypes/densitymx/opreps.cp38-win_amd64.pyd +0 -0
  43. pygsti/evotypes/densitymx/opreps.pyx +2 -2
  44. pygsti/evotypes/densitymx/statereps.cp38-win_amd64.pyd +0 -0
  45. pygsti/evotypes/densitymx/statereps.pyx +1 -1
  46. pygsti/evotypes/densitymx_slow/effectreps.py +7 -23
  47. pygsti/evotypes/densitymx_slow/opreps.py +16 -23
  48. pygsti/evotypes/densitymx_slow/statereps.py +10 -3
  49. pygsti/evotypes/evotype.py +39 -2
  50. pygsti/evotypes/stabilizer/effectreps.cp38-win_amd64.pyd +0 -0
  51. pygsti/evotypes/stabilizer/effectreps.pyx +0 -4
  52. pygsti/evotypes/stabilizer/opreps.cp38-win_amd64.pyd +0 -0
  53. pygsti/evotypes/stabilizer/opreps.pyx +0 -4
  54. pygsti/evotypes/stabilizer/statereps.cp38-win_amd64.pyd +0 -0
  55. pygsti/evotypes/stabilizer/statereps.pyx +1 -5
  56. pygsti/evotypes/stabilizer/termreps.cp38-win_amd64.pyd +0 -0
  57. pygsti/evotypes/stabilizer/termreps.pyx +0 -7
  58. pygsti/evotypes/stabilizer_slow/effectreps.py +0 -22
  59. pygsti/evotypes/stabilizer_slow/opreps.py +0 -4
  60. pygsti/evotypes/stabilizer_slow/statereps.py +0 -4
  61. pygsti/evotypes/statevec/effectreps.cp38-win_amd64.pyd +0 -0
  62. pygsti/evotypes/statevec/effectreps.pyx +1 -1
  63. pygsti/evotypes/statevec/opreps.cp38-win_amd64.pyd +0 -0
  64. pygsti/evotypes/statevec/opreps.pyx +2 -2
  65. pygsti/evotypes/statevec/statereps.cp38-win_amd64.pyd +0 -0
  66. pygsti/evotypes/statevec/statereps.pyx +1 -1
  67. pygsti/evotypes/statevec/termreps.cp38-win_amd64.pyd +0 -0
  68. pygsti/evotypes/statevec/termreps.pyx +0 -7
  69. pygsti/evotypes/statevec_slow/effectreps.py +0 -3
  70. pygsti/evotypes/statevec_slow/opreps.py +0 -5
  71. pygsti/extras/__init__.py +0 -1
  72. pygsti/extras/drift/signal.py +1 -1
  73. pygsti/extras/drift/stabilityanalyzer.py +3 -1
  74. pygsti/extras/interpygate/__init__.py +12 -0
  75. pygsti/extras/interpygate/core.py +0 -36
  76. pygsti/extras/interpygate/process_tomography.py +44 -10
  77. pygsti/extras/rpe/rpeconstruction.py +0 -2
  78. pygsti/forwardsims/__init__.py +1 -0
  79. pygsti/forwardsims/forwardsim.py +50 -93
  80. pygsti/forwardsims/mapforwardsim.py +78 -20
  81. pygsti/forwardsims/mapforwardsim_calc_densitymx.cp38-win_amd64.pyd +0 -0
  82. pygsti/forwardsims/mapforwardsim_calc_densitymx.pyx +65 -66
  83. pygsti/forwardsims/mapforwardsim_calc_generic.py +91 -13
  84. pygsti/forwardsims/matrixforwardsim.py +72 -17
  85. pygsti/forwardsims/termforwardsim.py +9 -111
  86. pygsti/forwardsims/termforwardsim_calc_stabilizer.cp38-win_amd64.pyd +0 -0
  87. pygsti/forwardsims/termforwardsim_calc_statevec.cp38-win_amd64.pyd +0 -0
  88. pygsti/forwardsims/termforwardsim_calc_statevec.pyx +0 -651
  89. pygsti/forwardsims/torchfwdsim.py +265 -0
  90. pygsti/forwardsims/weakforwardsim.py +2 -2
  91. pygsti/io/__init__.py +1 -2
  92. pygsti/io/mongodb.py +0 -2
  93. pygsti/io/stdinput.py +6 -22
  94. pygsti/layouts/copalayout.py +10 -12
  95. pygsti/layouts/distlayout.py +0 -40
  96. pygsti/layouts/maplayout.py +103 -25
  97. pygsti/layouts/matrixlayout.py +99 -60
  98. pygsti/layouts/prefixtable.py +1534 -52
  99. pygsti/layouts/termlayout.py +1 -1
  100. pygsti/modelmembers/instruments/instrument.py +3 -3
  101. pygsti/modelmembers/instruments/tpinstrument.py +2 -2
  102. pygsti/modelmembers/modelmember.py +0 -17
  103. pygsti/modelmembers/operations/__init__.py +3 -4
  104. pygsti/modelmembers/operations/affineshiftop.py +206 -0
  105. pygsti/modelmembers/operations/composederrorgen.py +1 -1
  106. pygsti/modelmembers/operations/composedop.py +1 -24
  107. pygsti/modelmembers/operations/denseop.py +5 -5
  108. pygsti/modelmembers/operations/eigpdenseop.py +2 -2
  109. pygsti/modelmembers/operations/embeddederrorgen.py +1 -1
  110. pygsti/modelmembers/operations/embeddedop.py +0 -1
  111. pygsti/modelmembers/operations/experrorgenop.py +5 -2
  112. pygsti/modelmembers/operations/fullarbitraryop.py +1 -0
  113. pygsti/modelmembers/operations/fullcptpop.py +2 -2
  114. pygsti/modelmembers/operations/fulltpop.py +28 -6
  115. pygsti/modelmembers/operations/fullunitaryop.py +5 -4
  116. pygsti/modelmembers/operations/lindbladcoefficients.py +93 -78
  117. pygsti/modelmembers/operations/lindbladerrorgen.py +268 -441
  118. pygsti/modelmembers/operations/linearop.py +7 -27
  119. pygsti/modelmembers/operations/opfactory.py +1 -1
  120. pygsti/modelmembers/operations/repeatedop.py +1 -24
  121. pygsti/modelmembers/operations/staticstdop.py +1 -1
  122. pygsti/modelmembers/povms/__init__.py +3 -3
  123. pygsti/modelmembers/povms/basepovm.py +7 -36
  124. pygsti/modelmembers/povms/complementeffect.py +4 -9
  125. pygsti/modelmembers/povms/composedeffect.py +0 -320
  126. pygsti/modelmembers/povms/computationaleffect.py +1 -1
  127. pygsti/modelmembers/povms/computationalpovm.py +3 -1
  128. pygsti/modelmembers/povms/effect.py +3 -5
  129. pygsti/modelmembers/povms/marginalizedpovm.py +3 -81
  130. pygsti/modelmembers/povms/tppovm.py +74 -2
  131. pygsti/modelmembers/states/__init__.py +2 -5
  132. pygsti/modelmembers/states/composedstate.py +0 -317
  133. pygsti/modelmembers/states/computationalstate.py +3 -3
  134. pygsti/modelmembers/states/cptpstate.py +4 -4
  135. pygsti/modelmembers/states/densestate.py +10 -8
  136. pygsti/modelmembers/states/fullpurestate.py +0 -24
  137. pygsti/modelmembers/states/purestate.py +1 -1
  138. pygsti/modelmembers/states/state.py +5 -6
  139. pygsti/modelmembers/states/tpstate.py +28 -10
  140. pygsti/modelmembers/term.py +3 -6
  141. pygsti/modelmembers/torchable.py +50 -0
  142. pygsti/modelpacks/_modelpack.py +1 -1
  143. pygsti/modelpacks/smq1Q_ZN.py +3 -1
  144. pygsti/modelpacks/smq2Q_XXYYII.py +2 -1
  145. pygsti/modelpacks/smq2Q_XY.py +3 -3
  146. pygsti/modelpacks/smq2Q_XYI.py +2 -2
  147. pygsti/modelpacks/smq2Q_XYICNOT.py +3 -3
  148. pygsti/modelpacks/smq2Q_XYICPHASE.py +3 -3
  149. pygsti/modelpacks/smq2Q_XYXX.py +1 -1
  150. pygsti/modelpacks/smq2Q_XYZICNOT.py +3 -3
  151. pygsti/modelpacks/smq2Q_XYZZ.py +1 -1
  152. pygsti/modelpacks/stdtarget.py +0 -121
  153. pygsti/models/cloudnoisemodel.py +1 -2
  154. pygsti/models/explicitcalc.py +3 -3
  155. pygsti/models/explicitmodel.py +3 -13
  156. pygsti/models/fogistore.py +5 -3
  157. pygsti/models/localnoisemodel.py +1 -2
  158. pygsti/models/memberdict.py +0 -12
  159. pygsti/models/model.py +801 -68
  160. pygsti/models/modelconstruction.py +4 -4
  161. pygsti/models/modelnoise.py +2 -2
  162. pygsti/models/modelparaminterposer.py +1 -1
  163. pygsti/models/oplessmodel.py +1 -1
  164. pygsti/models/qutrit.py +15 -14
  165. pygsti/objectivefns/objectivefns.py +75 -140
  166. pygsti/objectivefns/wildcardbudget.py +2 -7
  167. pygsti/optimize/__init__.py +1 -0
  168. pygsti/optimize/arraysinterface.py +28 -0
  169. pygsti/optimize/customcg.py +0 -12
  170. pygsti/optimize/customlm.py +129 -323
  171. pygsti/optimize/customsolve.py +2 -2
  172. pygsti/optimize/optimize.py +0 -84
  173. pygsti/optimize/simplerlm.py +841 -0
  174. pygsti/optimize/wildcardopt.py +19 -598
  175. pygsti/protocols/confidenceregionfactory.py +28 -14
  176. pygsti/protocols/estimate.py +31 -14
  177. pygsti/protocols/gst.py +238 -142
  178. pygsti/protocols/modeltest.py +19 -12
  179. pygsti/protocols/protocol.py +9 -37
  180. pygsti/protocols/rb.py +450 -79
  181. pygsti/protocols/treenode.py +8 -2
  182. pygsti/protocols/vb.py +108 -206
  183. pygsti/protocols/vbdataframe.py +1 -1
  184. pygsti/report/factory.py +0 -15
  185. pygsti/report/fogidiagram.py +1 -17
  186. pygsti/report/modelfunction.py +12 -3
  187. pygsti/report/mpl_colormaps.py +1 -1
  188. pygsti/report/plothelpers.py +11 -3
  189. pygsti/report/report.py +16 -0
  190. pygsti/report/reportables.py +41 -37
  191. pygsti/report/templates/offline/pygsti_dashboard.css +6 -0
  192. pygsti/report/templates/offline/pygsti_dashboard.js +12 -0
  193. pygsti/report/workspace.py +2 -14
  194. pygsti/report/workspaceplots.py +328 -505
  195. pygsti/tools/basistools.py +9 -36
  196. pygsti/tools/edesigntools.py +124 -96
  197. pygsti/tools/fastcalc.cp38-win_amd64.pyd +0 -0
  198. pygsti/tools/fastcalc.pyx +35 -81
  199. pygsti/tools/internalgates.py +151 -15
  200. pygsti/tools/jamiolkowski.py +5 -5
  201. pygsti/tools/lindbladtools.py +19 -11
  202. pygsti/tools/listtools.py +0 -114
  203. pygsti/tools/matrixmod2.py +1 -1
  204. pygsti/tools/matrixtools.py +173 -339
  205. pygsti/tools/nameddict.py +1 -1
  206. pygsti/tools/optools.py +154 -88
  207. pygsti/tools/pdftools.py +0 -25
  208. pygsti/tools/rbtheory.py +3 -320
  209. pygsti/tools/slicetools.py +64 -12
  210. pyGSTi-0.9.12.dist-info/METADATA +0 -157
  211. pygsti/algorithms/directx.py +0 -711
  212. pygsti/evotypes/qibo/__init__.py +0 -33
  213. pygsti/evotypes/qibo/effectreps.py +0 -78
  214. pygsti/evotypes/qibo/opreps.py +0 -376
  215. pygsti/evotypes/qibo/povmreps.py +0 -98
  216. pygsti/evotypes/qibo/statereps.py +0 -174
  217. pygsti/extras/rb/__init__.py +0 -13
  218. pygsti/extras/rb/benchmarker.py +0 -957
  219. pygsti/extras/rb/dataset.py +0 -378
  220. pygsti/extras/rb/io.py +0 -814
  221. pygsti/extras/rb/simulate.py +0 -1020
  222. pygsti/io/legacyio.py +0 -385
  223. pygsti/modelmembers/povms/denseeffect.py +0 -142
  224. {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/LICENSE +0 -0
  225. {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/top_level.txt +0 -0
@@ -1,33 +0,0 @@
1
- """
2
- An evolution type that uses the 3rd-party 'qibo' package.
3
- """
4
- #***************************************************************************************************
5
- # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
6
- # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights
7
- # in this software.
8
- # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
9
- # in compliance with the License. You may obtain a copy of the License at
10
- # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory.
11
- #***************************************************************************************************
12
-
13
- densitymx_mode = False
14
- nshots = 1000
15
-
16
-
17
- def _get_densitymx_mode():
18
- return densitymx_mode
19
-
20
-
21
- def _get_nshots():
22
- return nshots
23
-
24
-
25
- def _get_minimal_space():
26
- return minimal_space
27
-
28
-
29
- minimal_space = 'Hilbert'
30
- from .povmreps import *
31
- from .effectreps import *
32
- from .opreps import *
33
- from .statereps import *
@@ -1,78 +0,0 @@
1
- """
2
- POVM effect representation classes for the `qibo` evolution type.
3
- """
4
- #***************************************************************************************************
5
- # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
6
- # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights
7
- # in this software.
8
- # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
9
- # in compliance with the License. You may obtain a copy of the License at
10
- # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory.
11
- #***************************************************************************************************
12
- import numpy as _np
13
-
14
- from .. import basereps as _basereps
15
- from pygsti.baseobjs.statespace import StateSpace as _StateSpace
16
-
17
- from . import _get_densitymx_mode, _get_nshots
18
-
19
-
20
- class EffectRep(_basereps.EffectRep):
21
- def __init__(self, state_space):
22
- self.state_space = _StateSpace.cast(state_space)
23
-
24
- @property
25
- def nqubits(self):
26
- return self.state_space.num_qubits
27
-
28
-
29
- class EffectRepComputational(EffectRep):
30
- def __init__(self, zvals, basis, state_space):
31
- self.zvals = zvals
32
- self.basis = basis
33
- super(EffectRepComputational, self).__init__(state_space)
34
-
35
-
36
- class EffectRepConjugatedState(EffectRep):
37
-
38
- def __init__(self, state_rep):
39
- self.state_rep = state_rep
40
- super(EffectRepConjugatedState, self).__init__(state_rep.state_space)
41
-
42
- def probability(self, state):
43
- # compute <s2|s1>
44
- assert(_get_densitymx_mode() is True), "Can only use EffectRepConjugatedState when densitymx_mode == True!"
45
-
46
- initial_state = state.qibo_state
47
- effect_state = self.state_rep.qibo_state
48
- if effect_state.ndim == 1: # b/c qibo_state can be either a vector or density mx
49
- #Promote this state vector to a density matrix to use it as a POVM effect
50
- effect_state = _np.kron(effect_state[:, None], effect_state.conjugate()[None, :])
51
- assert(effect_state.ndim == 2) # density matrices
52
-
53
- qibo_circuit = state.qibo_circuit
54
- results = qibo_circuit(initial_state)
55
- return _np.real_if_close(_np.dot(effect_state.flatten().conjugate(), results.state().flatten()))
56
-
57
- def to_dense(self, on_space):
58
- return self.state_rep.to_dense(on_space)
59
-
60
- @property
61
- def basis(self):
62
- # (all qibo effect reps need to have a .basis property)
63
- return self.state_rep.basis
64
-
65
-
66
- class EffectRepComposed(EffectRep):
67
- def __init__(self, op_rep, effect_rep, op_id, state_space):
68
- self.op_rep = op_rep
69
- self.effect_rep = effect_rep
70
- self.op_id = op_id
71
-
72
- self.state_space = _StateSpace.cast(state_space)
73
- assert(self.state_space.is_compatible_with(effect_rep.state_space))
74
-
75
- super(EffectRepComposed, self).__init__(effect_rep.state_space)
76
-
77
- def probability(self, state):
78
- return self.effect_rep.probability(self.op_rep.acton(state))
@@ -1,376 +0,0 @@
1
- """
2
- Operation representation classes for the `qibo` evolution type.
3
- """
4
- #***************************************************************************************************
5
- # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
6
- # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights
7
- # in this software.
8
- # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
9
- # in compliance with the License. You may obtain a copy of the License at
10
- # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory.
11
- #***************************************************************************************************
12
-
13
- import itertools as _itertools
14
- import copy as _copy
15
- from functools import partial as _partial
16
-
17
- import numpy as _np
18
- from scipy.sparse.linalg import LinearOperator
19
- from numpy.random import RandomState as _RandomState
20
-
21
- from . import _get_minimal_space
22
- from .statereps import StateRep as _StateRep
23
- from .. import basereps as _basereps
24
- from pygsti.baseobjs.statespace import StateSpace as _StateSpace
25
- from pygsti.baseobjs.basis import Basis as _Basis
26
- from ...tools import jamiolkowski as _jt
27
- from ...tools import basistools as _bt
28
- from ...tools import internalgates as _itgs
29
- from ...tools import optools as _ot
30
-
31
-
32
- try:
33
- import qibo as _qibo
34
-
35
- std_qibo_creation_fns = { # functions that create the desired op given qubit indices & gate args
36
- 'Gi': _qibo.gates.I,
37
- 'Gxpi2': _partial(_qibo.gates.RX, theta=_np.pi / 2, trainable=False),
38
- 'Gypi2': _partial(_qibo.gates.RY, theta=_np.pi / 2, trainable=False),
39
- 'Gzpi2': _partial(_qibo.gates.RZ, theta=_np.pi / 2, trainable=False),
40
- 'Gxpi': _qibo.gates.X,
41
- 'Gypi': _qibo.gates.Y,
42
- 'Gzpi': _qibo.gates.Z,
43
- 'Gxmpi2': _partial(_qibo.gates.RX, theta=-_np.pi / 2, trainable=False),
44
- 'Gympi2': _partial(_qibo.gates.RY, theta=-_np.pi / 2, trainable=False),
45
- 'Gzmpi2': _partial(_qibo.gates.RZ, theta=-_np.pi / 2, trainable=False),
46
- 'Gh': _qibo.gates.H,
47
- 'Gp': _qibo.gates.S,
48
- 'Gpdag': _partial(_qibo.gates.U1, theta=-_np.pi / 2, trainable=False),
49
- 'Gt': _qibo.gates.T,
50
- 'Gtdag': _partial(_qibo.gates.U1, theta=-_np.pi / 4, trainable=False),
51
- 'Gcphase': _qibo.gates.CZ,
52
- 'Gcnot': _qibo.gates.CNOT,
53
- 'Gswap': _qibo.gates.SWAP,
54
- #'Gzr': _qibo.gates.RZ, # takes (q, theta)
55
- #'Gczr': _qibo.gates.CRZ, # takes (q0, q1, theta)
56
- 'Gx': _partial(_qibo.gates.RX, theta=_np.pi / 2, trainable=False),
57
- 'Gy': _partial(_qibo.gates.RY, theta=_np.pi / 2, trainable=False),
58
- 'Gz': _partial(_qibo.gates.RZ, theta=_np.pi / 2, trainable=False)
59
- }
60
- except (ImportError, AttributeError): # AttributeError if an early version of qibo without some of the above gates
61
- _qibo = None
62
-
63
-
64
- class OpRep(_basereps.OpRep):
65
- def __init__(self, state_space):
66
- self.state_space = state_space
67
-
68
- @property
69
- def dim(self):
70
- return self.state_space.udim
71
-
72
- def create_qibo_ops_on(self, qubit_indices):
73
- raise NotImplementedError("Derived classes must implement this!")
74
-
75
- def acton(self, state):
76
- c = state.qibo_circuit.copy()
77
- # TODO: change below to: sole_tensor_product_block_labels
78
- for qibo_op in self.create_qibo_ops_on(self.state_space.tensor_product_block_labels(0)):
79
- c.add(qibo_op)
80
- return _StateRep(c, state.qibo_state.copy(), state.state_space)
81
-
82
- def adjoint_acton(self, state):
83
- raise NotImplementedError()
84
-
85
- def acton_random(self, state, rand_state):
86
- return self.acton(state) # default is to ignore rand_state
87
-
88
- def adjoint_acton_random(self, state, rand_state):
89
- return self.adjoint_acton(state) # default is to ignore rand_state
90
-
91
- # def aslinearoperator(self):
92
- # def mv(v):
93
- # if v.ndim == 2 and v.shape[1] == 1: v = v[:, 0]
94
- # in_state = _StateRepDensePure(_np.ascontiguousarray(v, complex), self.state_space, basis=None)
95
- # return self.acton(in_state).to_dense('Hilbert')
96
- #
97
- # def rmv(v):
98
- # if v.ndim == 2 and v.shape[1] == 1: v = v[:, 0]
99
- # in_state = _StateRepDensePure(_np.ascontiguousarray(v, complex), self.state_space, basis=None)
100
- # return self.adjoint_acton(in_state).to_dense('Hilbert')
101
- # return LinearOperator((self.dim, self.dim), matvec=mv, rmatvec=rmv) # transpose, adjoint, dot, matmat?
102
-
103
- def copy(self):
104
- return _copy.deepcopy(self)
105
-
106
-
107
- class OpRepDenseUnitary(OpRep):
108
- def __init__(self, mx, basis, state_space):
109
- state_space = _StateSpace.cast(state_space)
110
- if mx is None:
111
- mx = _np.identity(state_space.udim, complex)
112
- assert(mx.ndim == 2 and mx.shape[0] == state_space.udim)
113
- self.basis = basis
114
- self.base = _np.require(mx, requirements=['OWNDATA', 'C_CONTIGUOUS'])
115
- super(OpRepDenseUnitary, self).__init__(state_space)
116
-
117
- def create_qibo_ops_on(self, qubit_indices):
118
- return [_qibo.gates.UnitaryChannel([1.0], [(qubit_indices, self.base)], seed=None)]
119
-
120
- def base_has_changed(self):
121
- pass # nothing needed
122
-
123
- def to_dense(self, on_space):
124
- if on_space == 'Hilbert' or (on_space == 'minimal' and _get_minimal_space() == 'Hilbert'):
125
- return self.base
126
- elif on_space == 'HilbertSchmidt' or (on_space == 'minimal' and _get_minimal_space() == 'HilbertSchmidt'):
127
- return _ot.unitary_to_superop(self.base, self.basis)
128
- else:
129
- raise ValueError("Invalid `on_space` argument: %s" % str(on_space))
130
-
131
- def __str__(self):
132
- return "OpRepDenseUnitary:\n" + str(self.base)
133
-
134
-
135
- class OpRepDenseSuperop(OpRep):
136
- def __init__(self, mx, basis, state_space):
137
- state_space = _StateSpace.cast(state_space)
138
- if mx is None:
139
- mx = _np.identity(state_space.dim, 'd')
140
- assert(mx.ndim == 2 and mx.shape[0] == state_space.dim)
141
- self.basis = basis
142
- assert(self.basis is not None), "Qibo evotype requires OpRepDenseSuperop be given a basis (to get Kraus ops!)"
143
-
144
- self.base = _np.require(mx, requirements=['OWNDATA', 'C_CONTIGUOUS'])
145
- super(OpRepDenseSuperop, self).__init__(state_space)
146
- self.base_has_changed() # sets self.kraus_ops
147
-
148
- def base_has_changed(self):
149
- #recompute Kraus ops for creating qibo op
150
- superop_mx = self.base; d = int(_np.round(_np.sqrt(superop_mx.shape[0])))
151
- std_basis = _Basis.cast('std', superop_mx.shape[0])
152
- choi_mx = _jt.jamiolkowski_iso(superop_mx, self.basis, std_basis) * d # see NOTE below
153
- evals, evecs = _np.linalg.eig(choi_mx)
154
- assert(all([ev > -1e-7 for ev in evals])), \
155
- "Cannot compute Kraus decomposition of non-positive-definite superoperator (within OpRepDenseSuperop!)"
156
- self.kraus_ops = [evecs[:, i].reshape(d, d) * _np.sqrt(ev) for i, ev in enumerate(evals) if abs(ev) > 1e-7]
157
-
158
- def to_dense(self, on_space):
159
- if not (on_space == 'HilbertSchmidt' or (on_space == 'minimal' and _get_minimal_space() == 'HilbertSchmidt')):
160
- raise ValueError("'densitymx_slow' evotype cannot produce Hilbert-space ops!")
161
- return self.base
162
-
163
- def create_qibo_ops_on(self, qubit_indices):
164
- return [_qibo.gates.KrausChannel([(qubit_indices, Ki) for Ki in self.kraus_ops])]
165
-
166
- def __str__(self):
167
- return "OpRepDenseSuperop:\n" + str(self.base)
168
-
169
- def copy(self):
170
- return OpRepDenseSuperop(self.base.copy(), self.basis, self.state_space)
171
-
172
-
173
- class OpRepStandard(OpRep):
174
- def __init__(self, name, basis, state_space):
175
- self.name = name
176
- if self.name not in std_qibo_creation_fns:
177
- raise ValueError("Standard name '%s' is not available in 'qibo' evotype" % self.name)
178
-
179
- self.basis = basis # used anywhere?
180
- self.creation_fn = std_qibo_creation_fns[name]
181
- # create the desired op given qubit indices & gate args
182
-
183
- super(OpRepStandard, self).__init__(state_space)
184
-
185
- def create_qibo_ops_on(self, qubit_indices):
186
- return [self.creation_fn(*qubit_indices)]
187
-
188
-
189
- #class OpRepStochastic(OpRepDense):
190
- # - maybe we could add this, but it wouldn't be a "dense" op here,
191
- # perhaps we need to change API?
192
-
193
-
194
- class OpRepComposed(OpRep):
195
- # exactly the same as densitymx case
196
- def __init__(self, factor_op_reps, state_space):
197
- #assert(len(factor_op_reps) > 0), "Composed gates must contain at least one factor gate!"
198
- self.factor_reps = factor_op_reps
199
- super(OpRepComposed, self).__init__(state_space)
200
-
201
- def create_qibo_ops_on(self, qubit_indices):
202
- return list(_itertools.chain(*[f.create_qibo_ops_on(qubit_indices) for f in self.factor_reps]))
203
-
204
- def reinit_factor_op_reps(self, new_factor_op_reps):
205
- self.factors_reps = new_factor_op_reps
206
-
207
-
208
- # This might work, but we won't need it unless we get OpRepExpErrorgen, etc, working.
209
- #class OpRepSum(OpRep):
210
- # # exactly the same as densitymx case
211
- # def __init__(self, factor_reps, state_space):
212
- # #assert(len(factor_reps) > 0), "Composed gates must contain at least one factor gate!"
213
- # self.factor_reps = factor_reps
214
- # super(OpRepSum, self).__init__(state_space)
215
- #
216
- # def acton(self, state):
217
- # """ Act this gate map on an input state """
218
- # output_state = _StateRepDensePure(_np.zeros(state.data.shape, complex), state.state_space, state.basis)
219
- # for f in self.factor_reps:
220
- # output_state.data += f.acton(state).data
221
- # return output_state
222
- #
223
- # def adjoint_acton(self, state):
224
- # """ Act the adjoint of this operation matrix on an input state """
225
- # output_state = _StateRepDensePure(_np.zeros(state.data.shape, complex), state.state_space, state.basis)
226
- # for f in self.factor_reps:
227
- # output_state.data += f.adjoint_acton(state).data
228
- # return output_state
229
- #
230
- # def acton_random(self, state, rand_state):
231
- # """ Act this gate map on an input state """
232
- # output_state = _StateRepDensePure(_np.zeros(state.data.shape, complex), state.state_space, state.basis)
233
- # for f in self.factor_reps:
234
- # output_state.data += f.acton_random(state, rand_state).data
235
- # return output_state
236
- #
237
- # def adjoint_acton_random(self, state, rand_state):
238
- # """ Act the adjoint of this operation matrix on an input state """
239
- # output_state = _StateRepDensePure(_np.zeros(state.data.shape, complex), state.state_space, state.basis)
240
- # for f in self.factor_reps:
241
- # output_state.data += f.adjoint_acton_random(state, rand_state).data
242
- # return output_state
243
-
244
-
245
- class OpRepEmbedded(OpRep):
246
-
247
- def __init__(self, state_space, target_labels, embedded_rep):
248
- self.target_labels = target_labels
249
- self.embedded_rep = embedded_rep
250
- super(OpRepEmbedded, self).__init__(state_space)
251
-
252
- def create_qibo_ops_on(self, qubit_indices):
253
- # TODO: change below to: sole_tensor_product_block_labels
254
- assert(qubit_indices == self.state_space.tensor_product_block_labels(0))
255
- return self.embedded_rep.create_qibo_ops_on(self.target_labels)
256
-
257
-
258
- #REMOVE
259
- #class OpRepExpErrorgen(OpRep):
260
- #
261
- # def __init__(self, errorgen_rep):
262
- # state_space = errorgen_rep.state_space
263
- # self.errorgen_rep = errorgen_rep
264
- # super(OpRepExpErrorgen, self).__init__(state_space)
265
- #
266
- # def errgenrep_has_changed(self, onenorm_upperbound):
267
- # pass
268
- #
269
- # def acton(self, state):
270
- # raise AttributeError("Cannot currently act with statevec.OpRepExpErrorgen - for terms only!")
271
- #
272
- # def adjoint_acton(self, state):
273
- # raise AttributeError("Cannot currently act with statevec.OpRepExpErrorgen - for terms only!")
274
-
275
-
276
- class OpRepRepeated(OpRep):
277
- def __init__(self, rep_to_repeat, num_repetitions, state_space):
278
- state_space = _StateSpace.cast(state_space)
279
- self.repeated_rep = rep_to_repeat
280
- self.num_repetitions = num_repetitions
281
- super(OpRepRepeated, self).__init__(state_space)
282
-
283
- def create_qibo_ops_on(self, qubit_indices):
284
- return [self.repeated_rep.create_qibo_ops_on(qubit_indices)] * self.num_repetitions
285
-
286
-
287
- #REMOVE
288
- #class OpRepLindbladErrorgen(OpRep):
289
- # def __init__(self, lindblad_coefficient_blocks, state_space):
290
- # super(OpRepLindbladErrorgen, self).__init__(state_space)
291
- # self.Lterms = None
292
- # self.Lterm_coeffs = None
293
- # self.lindblad_coefficient_blocks = lindblad_coefficient_blocks
294
-
295
-
296
- class OpRepKraus(OpRep):
297
- def __init__(self, basis, kraus_reps, state_space):
298
- self.basis = basis
299
- self.kraus_reps = kraus_reps # superop reps in this evotype (must be reps of *this* evotype)
300
- assert(all([isinstance(rep, OpRepDenseUnitary) for rep in kraus_reps]))
301
- state_space = _StateSpace.cast(state_space)
302
- assert(self.basis.dim == state_space.dim)
303
- super(OpRepKraus, self).__init__(state_space)
304
-
305
- def create_qibo_ops_on(self, qubit_indices):
306
- kraus_ops = [Krep.base for Krep in self.kraus_reps]
307
- kraus_norms = list(map(_np.linalg.norm, kraus_ops))
308
- return [_qibo.gates.KrausChannel([(qubit_indices, Ki)
309
- for Ki, nrm in zip(kraus_ops, kraus_norms) if nrm > 1e-7])]
310
-
311
- def __str__(self):
312
- return "OpRepKraus with ops\n" + str(self.kraus_reps)
313
-
314
- def copy(self):
315
- return OpRepKraus(self.basis, list(self.kraus_reps), None, self.state_space)
316
-
317
- def to_dense(self, on_space):
318
- assert(on_space == 'HilbertSchmidt' or (on_space == 'minimal' and _get_minimal_space() == 'HilbertSchmidt')), \
319
- 'Can only compute OpRepKraus.to_dense on HilbertSchmidt space!'
320
- return sum([rep.to_dense(on_space) for rep in self.kraus_reps])
321
-
322
-
323
- class OpRepRandomUnitary(OpRep):
324
- def __init__(self, basis, unitary_rates, unitary_reps, seed_or_state, state_space):
325
- self.basis = basis
326
- self.unitary_reps = unitary_reps
327
- self.unitary_rates = unitary_rates.copy()
328
-
329
- if isinstance(seed_or_state, _RandomState):
330
- self.rand_state = seed_or_state
331
- else:
332
- self.rand_state = _RandomState(seed_or_state)
333
-
334
- self.state_space = _StateSpace.cast(state_space)
335
- assert(self.basis.dim == self.state_space.dim)
336
- super(OpRepRandomUnitary, self).__init__(state_space)
337
-
338
- def create_qibo_ops_on(self, qubit_indices):
339
- return [_qibo.gates.UnitaryChannel(self.unitary_rates, [(qubit_indices, Uk.to_dense('Hilbert'))
340
- for Uk in self.unitary_reps],
341
- seed=self.rand_state.randint(0, 2**30))] # HARDCODED 2**30!! (max seed)
342
-
343
- def __str__(self):
344
- return "OpRepRandomUnitary:\n" + " rates: " + str(self.unitary_rates) # maybe show ops too?
345
-
346
- def copy(self):
347
- return OpRepRandomUnitary(self.basis, self.unitary_rates, list(self.unitary_reps),
348
- self.rand_state, self.state_space)
349
-
350
- def update_unitary_rates(self, rates):
351
- self.unitary_rates[:] = rates
352
-
353
- def to_dense(self, on_space):
354
- assert(on_space == 'HilbertSchmidt') # below code only works in this case
355
- return sum([rate * rep.to_dense(on_space) for rate, rep in zip(self.unitary_rates, self.unitary_reps)])
356
-
357
-
358
- class OpRepStochastic(OpRepRandomUnitary):
359
-
360
- def __init__(self, stochastic_basis, basis, initial_rates, seed_or_state, state_space):
361
- self.rates = initial_rates
362
- self.stochastic_basis = stochastic_basis
363
- rates = [1 - sum(initial_rates)] + list(initial_rates)
364
- reps = [OpRepDenseUnitary(bel, basis, state_space) for bel in stochastic_basis.elements]
365
- assert(len(reps) == len(rates))
366
-
367
- state_space = _StateSpace.cast(state_space)
368
- assert(basis.dim == state_space.dim)
369
- self.basis = basis
370
-
371
- super(OpRepStochastic, self).__init__(basis, _np.array(rates, 'd'), reps, seed_or_state, state_space)
372
-
373
- def update_rates(self, rates):
374
- unitary_rates = [1 - sum(rates)] + list(rates)
375
- self.rates[:] = rates
376
- self.update_unitary_rates(unitary_rates)
@@ -1,98 +0,0 @@
1
- """
2
- POVM representation classes for the `qibo` evolution type.
3
- """
4
- #***************************************************************************************************
5
- # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
6
- # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights
7
- # in this software.
8
- # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
9
- # in compliance with the License. You may obtain a copy of the License at
10
- # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory.
11
- #***************************************************************************************************
12
-
13
- import os as _os
14
- import re as _re
15
- import subprocess as _sp
16
- import tempfile as _tf
17
- import numpy as _np
18
-
19
- from .. import basereps as _basereps
20
- from . import _get_densitymx_mode, _get_nshots
21
- from pygsti.baseobjs.statespace import StateSpace as _StateSpace
22
- from pygsti.baseobjs.outcomelabeldict import OutcomeLabelDict as _OutcomeLabelDict
23
-
24
- try:
25
- import qibo as _qibo
26
- except ImportError:
27
- _qibo = None
28
-
29
-
30
- class POVMRep(_basereps.POVMRep):
31
- def __init__(self):
32
- super(POVMRep, self).__init__()
33
-
34
-
35
- class ComputationalPOVMRep(POVMRep):
36
- def __init__(self, nqubits, qubit_filter):
37
- self.nqubits = nqubits
38
- self.qubit_filter = qubit_filter
39
- super(ComputationalPOVMRep, self).__init__()
40
-
41
- #REMOVE
42
- #def sample_outcome(self, state, rand_state):
43
- # chp_ops = state.chp_ops
44
- #
45
- # povm_qubits = _np.array(range(self.nqubits))
46
- # for iqubit in povm_qubits:
47
- # if self.qubit_filter is None or iqubit in self.qubit_filter:
48
- # chp_ops.append(f'm {iqubit}')
49
- #
50
- # # TODO: Make sure this handles intermediate measurements
51
- # outcomes, _ = self._run_chp_ops(chp_ops)
52
- # outcome = ''.join(outcomes)
53
- # outcome_label = _OutcomeLabelDict.to_outcome(outcome)
54
- # return outcome_label
55
-
56
- def probabilities(self, state, rand_state, effect_labels):
57
- qibo_circuit = state.qibo_circuit
58
- initial_state = state.qibo_state
59
- # TODO: change below to: sole_tensor_product_block_labels
60
- qubits_to_measure = state.state_space.tensor_product_block_labels(0) \
61
- if (self.qubit_filter is None) else self.qubit_filter
62
-
63
- gatetypes_requiring_shots = set(('UnitaryChannel', 'PauliNoiseChannel',
64
- 'ResetChannel', 'ThermalRelaxationChannel'))
65
- circuit_requires_shots = len(gatetypes_requiring_shots.intersection(set(qibo_circuit.gate_types.keys()))) > 0
66
- if _get_densitymx_mode() or circuit_requires_shots is False:
67
- #then we can use QIBO's exact .probabilities call:
68
- results = qibo_circuit(initial_state)
69
- prob_tensor = results.probabilities(qubits_to_measure)
70
-
71
- probs = [prob_tensor[tuple(map(int, effect_lbl))] for effect_lbl in effect_labels]
72
- # Above map & int converts, e.g., '01' -> (0,1)
73
- else:
74
- #we must use built-in weak fwdsim
75
- qibo_circuit.add(_qibo.gates.M(*qubits_to_measure))
76
- nshots = _get_nshots()
77
- results = qibo_circuit(initial_state, nshots=nshots)
78
- freqs = results.frequencies(binary=True)
79
- probs = [freqs[effect_lbl] / nshots for effect_lbl in effect_labels]
80
-
81
- return probs
82
-
83
-
84
- class ComposedPOVMRep(POVMRep):
85
- def __init__(self, errmap_rep, base_povm_rep, state_space):
86
- self.errmap_rep = errmap_rep
87
- self.base_povm_rep = base_povm_rep
88
- self.state_space = state_space
89
- super(ComposedPOVMRep, self).__init__()
90
-
91
- #REMOVE
92
- # def sample_outcome(self, state, rand_state):
93
- # state = self.errmap_rep.acton_random(state, rand_state)
94
- # return self.base_povm_rep.sample_outcome(state)
95
-
96
- def probabilities(self, state, rand_state, effect_labels):
97
- state = self.errmap_rep.acton_random(state, rand_state)
98
- return self.base_povm_rep.probabilities(state, rand_state, effect_labels)