pyGSTi 0.9.12__cp38-cp38-win_amd64.whl → 0.9.13__cp38-cp38-win_amd64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (225) hide show
  1. pyGSTi-0.9.13.dist-info/METADATA +185 -0
  2. {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/RECORD +211 -220
  3. {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/WHEEL +1 -1
  4. pygsti/_version.py +2 -2
  5. pygsti/algorithms/contract.py +1 -1
  6. pygsti/algorithms/core.py +62 -35
  7. pygsti/algorithms/fiducialpairreduction.py +95 -110
  8. pygsti/algorithms/fiducialselection.py +17 -8
  9. pygsti/algorithms/gaugeopt.py +2 -2
  10. pygsti/algorithms/germselection.py +87 -77
  11. pygsti/algorithms/mirroring.py +0 -388
  12. pygsti/algorithms/randomcircuit.py +165 -1333
  13. pygsti/algorithms/rbfit.py +0 -234
  14. pygsti/baseobjs/basis.py +94 -396
  15. pygsti/baseobjs/errorgenbasis.py +0 -132
  16. pygsti/baseobjs/errorgenspace.py +0 -10
  17. pygsti/baseobjs/label.py +52 -168
  18. pygsti/baseobjs/opcalc/fastopcalc.cp38-win_amd64.pyd +0 -0
  19. pygsti/baseobjs/opcalc/fastopcalc.pyx +2 -2
  20. pygsti/baseobjs/polynomial.py +13 -595
  21. pygsti/baseobjs/protectedarray.py +72 -132
  22. pygsti/baseobjs/statespace.py +1 -0
  23. pygsti/circuits/__init__.py +1 -1
  24. pygsti/circuits/circuit.py +753 -504
  25. pygsti/circuits/circuitconstruction.py +0 -4
  26. pygsti/circuits/circuitlist.py +47 -5
  27. pygsti/circuits/circuitparser/__init__.py +8 -8
  28. pygsti/circuits/circuitparser/fastcircuitparser.cp38-win_amd64.pyd +0 -0
  29. pygsti/circuits/circuitstructure.py +3 -3
  30. pygsti/circuits/cloudcircuitconstruction.py +27 -14
  31. pygsti/data/datacomparator.py +4 -9
  32. pygsti/data/dataset.py +51 -46
  33. pygsti/data/hypothesistest.py +0 -7
  34. pygsti/drivers/bootstrap.py +0 -49
  35. pygsti/drivers/longsequence.py +46 -10
  36. pygsti/evotypes/basereps_cython.cp38-win_amd64.pyd +0 -0
  37. pygsti/evotypes/chp/opreps.py +0 -61
  38. pygsti/evotypes/chp/statereps.py +0 -32
  39. pygsti/evotypes/densitymx/effectcreps.cpp +9 -10
  40. pygsti/evotypes/densitymx/effectreps.cp38-win_amd64.pyd +0 -0
  41. pygsti/evotypes/densitymx/effectreps.pyx +1 -1
  42. pygsti/evotypes/densitymx/opreps.cp38-win_amd64.pyd +0 -0
  43. pygsti/evotypes/densitymx/opreps.pyx +2 -2
  44. pygsti/evotypes/densitymx/statereps.cp38-win_amd64.pyd +0 -0
  45. pygsti/evotypes/densitymx/statereps.pyx +1 -1
  46. pygsti/evotypes/densitymx_slow/effectreps.py +7 -23
  47. pygsti/evotypes/densitymx_slow/opreps.py +16 -23
  48. pygsti/evotypes/densitymx_slow/statereps.py +10 -3
  49. pygsti/evotypes/evotype.py +39 -2
  50. pygsti/evotypes/stabilizer/effectreps.cp38-win_amd64.pyd +0 -0
  51. pygsti/evotypes/stabilizer/effectreps.pyx +0 -4
  52. pygsti/evotypes/stabilizer/opreps.cp38-win_amd64.pyd +0 -0
  53. pygsti/evotypes/stabilizer/opreps.pyx +0 -4
  54. pygsti/evotypes/stabilizer/statereps.cp38-win_amd64.pyd +0 -0
  55. pygsti/evotypes/stabilizer/statereps.pyx +1 -5
  56. pygsti/evotypes/stabilizer/termreps.cp38-win_amd64.pyd +0 -0
  57. pygsti/evotypes/stabilizer/termreps.pyx +0 -7
  58. pygsti/evotypes/stabilizer_slow/effectreps.py +0 -22
  59. pygsti/evotypes/stabilizer_slow/opreps.py +0 -4
  60. pygsti/evotypes/stabilizer_slow/statereps.py +0 -4
  61. pygsti/evotypes/statevec/effectreps.cp38-win_amd64.pyd +0 -0
  62. pygsti/evotypes/statevec/effectreps.pyx +1 -1
  63. pygsti/evotypes/statevec/opreps.cp38-win_amd64.pyd +0 -0
  64. pygsti/evotypes/statevec/opreps.pyx +2 -2
  65. pygsti/evotypes/statevec/statereps.cp38-win_amd64.pyd +0 -0
  66. pygsti/evotypes/statevec/statereps.pyx +1 -1
  67. pygsti/evotypes/statevec/termreps.cp38-win_amd64.pyd +0 -0
  68. pygsti/evotypes/statevec/termreps.pyx +0 -7
  69. pygsti/evotypes/statevec_slow/effectreps.py +0 -3
  70. pygsti/evotypes/statevec_slow/opreps.py +0 -5
  71. pygsti/extras/__init__.py +0 -1
  72. pygsti/extras/drift/signal.py +1 -1
  73. pygsti/extras/drift/stabilityanalyzer.py +3 -1
  74. pygsti/extras/interpygate/__init__.py +12 -0
  75. pygsti/extras/interpygate/core.py +0 -36
  76. pygsti/extras/interpygate/process_tomography.py +44 -10
  77. pygsti/extras/rpe/rpeconstruction.py +0 -2
  78. pygsti/forwardsims/__init__.py +1 -0
  79. pygsti/forwardsims/forwardsim.py +50 -93
  80. pygsti/forwardsims/mapforwardsim.py +78 -20
  81. pygsti/forwardsims/mapforwardsim_calc_densitymx.cp38-win_amd64.pyd +0 -0
  82. pygsti/forwardsims/mapforwardsim_calc_densitymx.pyx +65 -66
  83. pygsti/forwardsims/mapforwardsim_calc_generic.py +91 -13
  84. pygsti/forwardsims/matrixforwardsim.py +72 -17
  85. pygsti/forwardsims/termforwardsim.py +9 -111
  86. pygsti/forwardsims/termforwardsim_calc_stabilizer.cp38-win_amd64.pyd +0 -0
  87. pygsti/forwardsims/termforwardsim_calc_statevec.cp38-win_amd64.pyd +0 -0
  88. pygsti/forwardsims/termforwardsim_calc_statevec.pyx +0 -651
  89. pygsti/forwardsims/torchfwdsim.py +265 -0
  90. pygsti/forwardsims/weakforwardsim.py +2 -2
  91. pygsti/io/__init__.py +1 -2
  92. pygsti/io/mongodb.py +0 -2
  93. pygsti/io/stdinput.py +6 -22
  94. pygsti/layouts/copalayout.py +10 -12
  95. pygsti/layouts/distlayout.py +0 -40
  96. pygsti/layouts/maplayout.py +103 -25
  97. pygsti/layouts/matrixlayout.py +99 -60
  98. pygsti/layouts/prefixtable.py +1534 -52
  99. pygsti/layouts/termlayout.py +1 -1
  100. pygsti/modelmembers/instruments/instrument.py +3 -3
  101. pygsti/modelmembers/instruments/tpinstrument.py +2 -2
  102. pygsti/modelmembers/modelmember.py +0 -17
  103. pygsti/modelmembers/operations/__init__.py +3 -4
  104. pygsti/modelmembers/operations/affineshiftop.py +206 -0
  105. pygsti/modelmembers/operations/composederrorgen.py +1 -1
  106. pygsti/modelmembers/operations/composedop.py +1 -24
  107. pygsti/modelmembers/operations/denseop.py +5 -5
  108. pygsti/modelmembers/operations/eigpdenseop.py +2 -2
  109. pygsti/modelmembers/operations/embeddederrorgen.py +1 -1
  110. pygsti/modelmembers/operations/embeddedop.py +0 -1
  111. pygsti/modelmembers/operations/experrorgenop.py +5 -2
  112. pygsti/modelmembers/operations/fullarbitraryop.py +1 -0
  113. pygsti/modelmembers/operations/fullcptpop.py +2 -2
  114. pygsti/modelmembers/operations/fulltpop.py +28 -6
  115. pygsti/modelmembers/operations/fullunitaryop.py +5 -4
  116. pygsti/modelmembers/operations/lindbladcoefficients.py +93 -78
  117. pygsti/modelmembers/operations/lindbladerrorgen.py +268 -441
  118. pygsti/modelmembers/operations/linearop.py +7 -27
  119. pygsti/modelmembers/operations/opfactory.py +1 -1
  120. pygsti/modelmembers/operations/repeatedop.py +1 -24
  121. pygsti/modelmembers/operations/staticstdop.py +1 -1
  122. pygsti/modelmembers/povms/__init__.py +3 -3
  123. pygsti/modelmembers/povms/basepovm.py +7 -36
  124. pygsti/modelmembers/povms/complementeffect.py +4 -9
  125. pygsti/modelmembers/povms/composedeffect.py +0 -320
  126. pygsti/modelmembers/povms/computationaleffect.py +1 -1
  127. pygsti/modelmembers/povms/computationalpovm.py +3 -1
  128. pygsti/modelmembers/povms/effect.py +3 -5
  129. pygsti/modelmembers/povms/marginalizedpovm.py +3 -81
  130. pygsti/modelmembers/povms/tppovm.py +74 -2
  131. pygsti/modelmembers/states/__init__.py +2 -5
  132. pygsti/modelmembers/states/composedstate.py +0 -317
  133. pygsti/modelmembers/states/computationalstate.py +3 -3
  134. pygsti/modelmembers/states/cptpstate.py +4 -4
  135. pygsti/modelmembers/states/densestate.py +10 -8
  136. pygsti/modelmembers/states/fullpurestate.py +0 -24
  137. pygsti/modelmembers/states/purestate.py +1 -1
  138. pygsti/modelmembers/states/state.py +5 -6
  139. pygsti/modelmembers/states/tpstate.py +28 -10
  140. pygsti/modelmembers/term.py +3 -6
  141. pygsti/modelmembers/torchable.py +50 -0
  142. pygsti/modelpacks/_modelpack.py +1 -1
  143. pygsti/modelpacks/smq1Q_ZN.py +3 -1
  144. pygsti/modelpacks/smq2Q_XXYYII.py +2 -1
  145. pygsti/modelpacks/smq2Q_XY.py +3 -3
  146. pygsti/modelpacks/smq2Q_XYI.py +2 -2
  147. pygsti/modelpacks/smq2Q_XYICNOT.py +3 -3
  148. pygsti/modelpacks/smq2Q_XYICPHASE.py +3 -3
  149. pygsti/modelpacks/smq2Q_XYXX.py +1 -1
  150. pygsti/modelpacks/smq2Q_XYZICNOT.py +3 -3
  151. pygsti/modelpacks/smq2Q_XYZZ.py +1 -1
  152. pygsti/modelpacks/stdtarget.py +0 -121
  153. pygsti/models/cloudnoisemodel.py +1 -2
  154. pygsti/models/explicitcalc.py +3 -3
  155. pygsti/models/explicitmodel.py +3 -13
  156. pygsti/models/fogistore.py +5 -3
  157. pygsti/models/localnoisemodel.py +1 -2
  158. pygsti/models/memberdict.py +0 -12
  159. pygsti/models/model.py +801 -68
  160. pygsti/models/modelconstruction.py +4 -4
  161. pygsti/models/modelnoise.py +2 -2
  162. pygsti/models/modelparaminterposer.py +1 -1
  163. pygsti/models/oplessmodel.py +1 -1
  164. pygsti/models/qutrit.py +15 -14
  165. pygsti/objectivefns/objectivefns.py +75 -140
  166. pygsti/objectivefns/wildcardbudget.py +2 -7
  167. pygsti/optimize/__init__.py +1 -0
  168. pygsti/optimize/arraysinterface.py +28 -0
  169. pygsti/optimize/customcg.py +0 -12
  170. pygsti/optimize/customlm.py +129 -323
  171. pygsti/optimize/customsolve.py +2 -2
  172. pygsti/optimize/optimize.py +0 -84
  173. pygsti/optimize/simplerlm.py +841 -0
  174. pygsti/optimize/wildcardopt.py +19 -598
  175. pygsti/protocols/confidenceregionfactory.py +28 -14
  176. pygsti/protocols/estimate.py +31 -14
  177. pygsti/protocols/gst.py +238 -142
  178. pygsti/protocols/modeltest.py +19 -12
  179. pygsti/protocols/protocol.py +9 -37
  180. pygsti/protocols/rb.py +450 -79
  181. pygsti/protocols/treenode.py +8 -2
  182. pygsti/protocols/vb.py +108 -206
  183. pygsti/protocols/vbdataframe.py +1 -1
  184. pygsti/report/factory.py +0 -15
  185. pygsti/report/fogidiagram.py +1 -17
  186. pygsti/report/modelfunction.py +12 -3
  187. pygsti/report/mpl_colormaps.py +1 -1
  188. pygsti/report/plothelpers.py +11 -3
  189. pygsti/report/report.py +16 -0
  190. pygsti/report/reportables.py +41 -37
  191. pygsti/report/templates/offline/pygsti_dashboard.css +6 -0
  192. pygsti/report/templates/offline/pygsti_dashboard.js +12 -0
  193. pygsti/report/workspace.py +2 -14
  194. pygsti/report/workspaceplots.py +328 -505
  195. pygsti/tools/basistools.py +9 -36
  196. pygsti/tools/edesigntools.py +124 -96
  197. pygsti/tools/fastcalc.cp38-win_amd64.pyd +0 -0
  198. pygsti/tools/fastcalc.pyx +35 -81
  199. pygsti/tools/internalgates.py +151 -15
  200. pygsti/tools/jamiolkowski.py +5 -5
  201. pygsti/tools/lindbladtools.py +19 -11
  202. pygsti/tools/listtools.py +0 -114
  203. pygsti/tools/matrixmod2.py +1 -1
  204. pygsti/tools/matrixtools.py +173 -339
  205. pygsti/tools/nameddict.py +1 -1
  206. pygsti/tools/optools.py +154 -88
  207. pygsti/tools/pdftools.py +0 -25
  208. pygsti/tools/rbtheory.py +3 -320
  209. pygsti/tools/slicetools.py +64 -12
  210. pyGSTi-0.9.12.dist-info/METADATA +0 -157
  211. pygsti/algorithms/directx.py +0 -711
  212. pygsti/evotypes/qibo/__init__.py +0 -33
  213. pygsti/evotypes/qibo/effectreps.py +0 -78
  214. pygsti/evotypes/qibo/opreps.py +0 -376
  215. pygsti/evotypes/qibo/povmreps.py +0 -98
  216. pygsti/evotypes/qibo/statereps.py +0 -174
  217. pygsti/extras/rb/__init__.py +0 -13
  218. pygsti/extras/rb/benchmarker.py +0 -957
  219. pygsti/extras/rb/dataset.py +0 -378
  220. pygsti/extras/rb/io.py +0 -814
  221. pygsti/extras/rb/simulate.py +0 -1020
  222. pygsti/io/legacyio.py +0 -385
  223. pygsti/modelmembers/povms/denseeffect.py +0 -142
  224. {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/LICENSE +0 -0
  225. {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/top_level.txt +0 -0
@@ -1,711 +0,0 @@
1
- """
2
- Functions for generating Direct-(LGST, MC2GST, MLGST) models
3
- """
4
- #***************************************************************************************************
5
- # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
6
- # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights
7
- # in this software.
8
- # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
9
- # in compliance with the License. You may obtain a copy of the License at
10
- # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory.
11
- #***************************************************************************************************
12
-
13
- import warnings as _warnings
14
- _warnings.warn("pygsti.algorithms.directx is deprecated and will be removed in pyGSTi 0.9.13")
15
-
16
- from pygsti.algorithms import core as _core
17
- from pygsti import baseobjs as _baseobjs
18
- from pygsti.baseobjs import Label
19
- from pygsti import circuits as _circuits
20
- from pygsti import objectivefns as _objfns
21
- from pygsti.modelmembers.operations import FullArbitraryOp as _FullArbitraryOp
22
-
23
-
24
- def model_with_lgst_circuit_estimates(
25
- circuits_to_estimate, dataset, prep_fiducials, meas_fiducials,
26
- target_model, include_target_ops=True, op_label_aliases=None,
27
- guess_model_for_gauge=None, circuit_labels=None, svd_truncate_to=None,
28
- verbosity=0):
29
- """
30
- Constructs a model that contains LGST estimates for `circuits_to_estimate`.
31
-
32
- For each circuit in `circuits_to_estimate`, the constructed model
33
- contains the LGST estimate for s as separate gate, labeled either by
34
- the corresponding element of circuit_labels or by the tuple of s itself.
35
-
36
- Parameters
37
- ----------
38
- circuits_to_estimate : list of Circuits or tuples
39
- The circuits to estimate using LGST
40
-
41
- dataset : DataSet
42
- The data to use for LGST
43
-
44
- prep_fiducials : list of Circuits
45
- Fiducial circuits used to construct an informationally complete
46
- effective preparation.
47
-
48
- meas_fiducials : list of Circuits
49
- Fiducial circuits used to construct an informationally complete
50
- effective measurement.
51
-
52
- target_model : Model
53
- A model used by LGST to specify which operation labels should be estimated,
54
- a guess for which gauge these estimates should be returned in, and
55
- used to simplify circuits.
56
-
57
- include_target_ops : bool, optional
58
- If True, the operation labels in target_model will be included in the
59
- returned model.
60
-
61
- op_label_aliases : dictionary, optional
62
- Dictionary whose keys are operation label "aliases" and whose values are tuples
63
- corresponding to what that operation label should be expanded into before querying
64
- the dataset. Defaults to the empty dictionary (no aliases defined)
65
- e.g. opLabelAliases['Gx^3'] = ('Gx','Gx','Gx')
66
-
67
- guess_model_for_gauge : Model, optional
68
- A model used to compute a gauge transformation that is applied to
69
- the LGST estimates. This gauge transformation is computed such that
70
- if the estimated gates matched the model given, then the gate
71
- matrices would match, i.e. the gauge would be the same as
72
- the model supplied. Defaults to the target_model.
73
-
74
- circuit_labels : list of strings, optional
75
- A list of labels in one-to-one correspondence with the
76
- circuit in `circuits_to_estimate`. These labels are
77
- the keys to access the operation matrices in the returned
78
- Model, i.e. op_matrix = returned_model[op_label]
79
-
80
- svd_truncate_to : int, optional
81
- The Hilbert space dimension to truncate the operation matrices to using
82
- a SVD to keep only the largest svdToTruncateTo singular values of
83
- the I_tildle LGST matrix. Zero means no truncation.
84
- Defaults to dimension of `target_model`.
85
-
86
- verbosity : int, optional
87
- Verbosity value to send to `run_lgst(...)` call.
88
-
89
- Returns
90
- -------
91
- Model
92
- A model containing LGST estimates for all the requested
93
- circuits and possibly the gates in target_model.
94
- """
95
- opLabels = [] # list of operation labels for LGST to estimate
96
- if op_label_aliases is None: aliases = {}
97
- else: aliases = op_label_aliases.copy()
98
-
99
- #Add circuits to estimate as aliases
100
- if circuit_labels is not None:
101
- assert(len(circuit_labels) == len(circuits_to_estimate))
102
- for opLabel, opStr in zip(circuit_labels, circuits_to_estimate):
103
- aliases[opLabel] = opStr.replace_layers_with_aliases(op_label_aliases)
104
- opLabels.append(opLabel)
105
- else:
106
- for opStr in circuits_to_estimate:
107
- newLabel = 'G' + '.'.join(map(str, tuple(opStr)))
108
- aliases[newLabel] = opStr.replace_layers_with_aliases(op_label_aliases) # use circuit tuple as label
109
- opLabels.append(newLabel)
110
-
111
- #Add target model labels (not aliased) if requested
112
- if include_target_ops and target_model is not None:
113
- for targetOpLabel in target_model.operations:
114
- if targetOpLabel not in opLabels: # very unlikely that this is false
115
- opLabels.append(targetOpLabel)
116
-
117
- return _core.run_lgst(dataset, prep_fiducials, meas_fiducials, target_model,
118
- opLabels, aliases, guess_model_for_gauge,
119
- svd_truncate_to, verbosity)
120
-
121
-
122
- def direct_lgst_model(circuit_to_estimate, circuit_label, dataset,
123
- prep_fiducials, meas_fiducials, target_model,
124
- op_label_aliases=None, svd_truncate_to=None, verbosity=0):
125
- """
126
- Constructs a model of LGST estimates for target gates and circuit_to_estimate.
127
-
128
- Parameters
129
- ----------
130
- circuit_to_estimate : Circuit or tuple
131
- The single circuit to estimate using LGST
132
-
133
- circuit_label : string
134
- The label for the estimate of `circuit_to_estimate`.
135
- i.e. op_matrix = returned_model[op_label]
136
-
137
- dataset : DataSet
138
- The data to use for LGST
139
-
140
- prep_fiducials : list of Circuits
141
- Fiducial circuits used to construct an informationally complete
142
- effective preparation.
143
-
144
- meas_fiducials : list of Circuits
145
- Fiducial circuits used to construct an informationally complete
146
- effective measurement.
147
-
148
- target_model : Model
149
- The target model used by LGST to extract operation labels and an initial gauge
150
-
151
- op_label_aliases : dictionary, optional
152
- Dictionary whose keys are operation label "aliases" and whose values are tuples
153
- corresponding to what that operation label should be expanded into before querying
154
- the dataset. Defaults to the empty dictionary (no aliases defined)
155
- e.g. opLabelAliases['Gx^3'] = ('Gx','Gx','Gx')
156
-
157
- svd_truncate_to : int, optional
158
- The Hilbert space dimension to truncate the operation matrices to using
159
- a SVD to keep only the largest svdToTruncateTo singular values of
160
- the I_tildle LGST matrix. Zero means no truncation.
161
- Defaults to dimension of `target_model`.
162
-
163
- verbosity : int, optional
164
- Verbosity value to send to `run_lgst(...)` call.
165
-
166
- Returns
167
- -------
168
- Model
169
- A model containing LGST estimates of `circuit_to_estimate`
170
- and the gates of `target_model`.
171
- """
172
- return model_with_lgst_circuit_estimates(
173
- [circuit_to_estimate], dataset, prep_fiducials, meas_fiducials, target_model,
174
- True, op_label_aliases, None, [circuit_label], svd_truncate_to,
175
- verbosity)
176
-
177
-
178
- def direct_lgst_models(circuits, dataset, prep_fiducials, meas_fiducials, target_model,
179
- op_label_aliases=None, svd_truncate_to=None, verbosity=0):
180
- """
181
- Constructs a dictionary with keys == circuits and values == Direct-LGST Models.
182
-
183
- Parameters
184
- ----------
185
- circuits : list of Circuit or tuple objects
186
- The circuits to estimate using LGST. The elements of this list
187
- are the keys of the returned dictionary.
188
-
189
- dataset : DataSet
190
- The data to use for all LGST estimates.
191
-
192
- prep_fiducials : list of Circuits
193
- Fiducial circuits used to construct an informationally complete
194
- effective preparation.
195
-
196
- meas_fiducials : list of Circuits
197
- Fiducial circuits used to construct an informationally complete
198
- effective measurement.
199
-
200
- target_model : Model
201
- The target model used by LGST to extract operation labels and an initial gauge
202
-
203
- op_label_aliases : dictionary, optional
204
- Dictionary whose keys are operation label "aliases" and whose values are tuples
205
- corresponding to what that operation label should be expanded into before querying
206
- the dataset. Defaults to the empty dictionary (no aliases defined)
207
- e.g. opLabelAliases['Gx^3'] = ('Gx','Gx','Gx')
208
-
209
- svd_truncate_to : int, optional
210
- The Hilbert space dimension to truncate the operation matrices to using
211
- a SVD to keep only the largest svdToTruncateTo singular values of
212
- the I_tildle LGST matrix. Zero means no truncation.
213
- Defaults to dimension of `target_model`.
214
-
215
- verbosity : int, optional
216
- Verbosity value to send to run_lgst(...) call.
217
-
218
- Returns
219
- -------
220
- dict
221
- A dictionary that relates each circuit to a Model containing the LGST
222
- estimate of that circuit's action (as a SPAM-less operation sequence)
223
- stored under the operation label "GsigmaLbl", along with LGST estimates
224
- of the gates in `target_model`.
225
- """
226
- printer = _baseobjs.VerbosityPrinter.create_printer(verbosity)
227
-
228
- directLGSTmodels = {}
229
- printer.log("--- Direct LGST precomputation ---")
230
- with printer.progress_logging(1):
231
- for i, sigma in enumerate(circuits):
232
- printer.show_progress(i, len(circuits), prefix="--- Computing model for string -", suffix='---')
233
- directLGSTmodels[sigma] = direct_lgst_model(
234
- sigma, "GsigmaLbl", dataset, prep_fiducials, meas_fiducials, target_model,
235
- op_label_aliases, svd_truncate_to, verbosity)
236
- return directLGSTmodels
237
-
238
-
239
- def direct_mc2gst_model(circuit_to_estimate, circuit_label, dataset,
240
- prep_fiducials, meas_fiducials, target_model,
241
- op_label_aliases=None, svd_truncate_to=None,
242
- min_prob_clip_for_weighting=1e-4,
243
- prob_clip_interval=(-1e6, 1e6), verbosity=0):
244
- """
245
- Constructs a model of LSGST estimates for target gates and circuit_to_estimate.
246
-
247
- Starting with a Direct-LGST estimate for circuit_to_estimate, runs LSGST
248
- using the same strings that LGST would have used to estimate circuit_to_estimate
249
- and each of the target gates. That is, LSGST is run with strings of the form:
250
-
251
- 1. prep_fiducial
252
- 2. meas_fiducial
253
- 3. prep_fiducial + meas_fiducial
254
- 4. prep_fiducial + single_gate + meas_fiducial
255
- 5. prep_fiducial + circuit_to_estimate + meas_fiducial
256
-
257
- and the resulting Model estimate is returned.
258
-
259
- Parameters
260
- ----------
261
- circuit_to_estimate : Circuit
262
- The single circuit to estimate using LSGST
263
-
264
- circuit_label : string
265
- The label for the estimate of `circuit_to_estimate`.
266
- i.e. op_matrix = returned_mode[op_label]
267
-
268
- dataset : DataSet
269
- The data to use for LGST
270
-
271
- prep_fiducials : list of Circuits
272
- Fiducial circuits used to construct an informationally complete
273
- effective preparation.
274
-
275
- meas_fiducials : list of Circuits
276
- Fiducial circuits used to construct an informationally complete
277
- effective measurement.
278
-
279
- target_model : Model
280
- The target model used by LGST to extract operation labels and an initial gauge
281
-
282
- op_label_aliases : dictionary, optional
283
- Dictionary whose keys are operation label "aliases" and whose values are tuples
284
- corresponding to what that operation label should be expanded into before querying
285
- the dataset. Defaults to the empty dictionary (no aliases defined)
286
- e.g. opLabelAliases['Gx^3'] = ('Gx','Gx','Gx')
287
-
288
- svd_truncate_to : int, optional
289
- The Hilbert space dimension to truncate the operation matrices to using
290
- a SVD to keep only the largest svdToTruncateTo singular values of
291
- the I_tildle LGST matrix. Zero means no truncation.
292
- Defaults to dimension of `target_model`.
293
-
294
- min_prob_clip_for_weighting : float, optional
295
- defines the clipping interval for the statistical weight used
296
- within the chi^2 function (see chi2fn).
297
-
298
- prob_clip_interval : 2-tuple, optional
299
- (min,max) to clip probabilities to within Model probability
300
- computation routines (see Model.bulk_fill_probs)
301
-
302
- verbosity : int, optional
303
- Verbosity value to send to run_lgst(...) and do_mc2gst(...) calls.
304
-
305
- Returns
306
- -------
307
- Model
308
- A model containing LSGST estimates of `circuit_to_estimate`
309
- and the gates of `target_model`.
310
- """
311
- direct_lgst = model_with_lgst_circuit_estimates(
312
- [circuit_to_estimate], dataset, prep_fiducials, meas_fiducials, target_model,
313
- True, op_label_aliases, None, [circuit_label], svd_truncate_to, verbosity)
314
-
315
- # LEXICOGRAPHICAL VS MATRIX ORDER
316
- circuits = prep_fiducials + meas_fiducials + [prepC + measC for prepC in prep_fiducials
317
- for measC in meas_fiducials]
318
- for opLabel in direct_lgst.operations:
319
- circuits.extend([prepC + _circuits.Circuit((opLabel,)) + measC
320
- for prepC in prep_fiducials for measC in meas_fiducials])
321
-
322
- aliases = {} if (op_label_aliases is None) else op_label_aliases.copy()
323
- aliases[circuit_label] = circuit_to_estimate.replace_layers_with_aliases(op_label_aliases)
324
-
325
- obuilder = _objfns.Chi2Function.builder(regularization={'min_prob_clip_for_weighting': min_prob_clip_for_weighting},
326
- penalties={'prob_clip_interval': prob_clip_interval})
327
- bulk_circuits = _circuits.CircuitList(circuits, aliases)
328
- _, direct_lsgst = _core.run_gst_fit_simple(dataset, direct_lgst, bulk_circuits, optimizer=None,
329
- objective_function_builder=obuilder, resource_alloc=None,
330
- verbosity=verbosity)
331
-
332
- return direct_lsgst
333
-
334
-
335
- def direct_mc2gst_models(circuits, dataset, prep_fiducials, meas_fiducials,
336
- target_model, op_label_aliases=None,
337
- svd_truncate_to=None, min_prob_clip_for_weighting=1e-4,
338
- prob_clip_interval=(-1e6, 1e6), verbosity=0):
339
- """
340
- Constructs a dictionary with keys == circuits and values == Direct-LSGST Models.
341
-
342
- Parameters
343
- ----------
344
- circuits : list of Circuit or tuple objects
345
- The circuits to estimate using LSGST. The elements of this list
346
- are the keys of the returned dictionary.
347
-
348
- dataset : DataSet
349
- The data to use for all LGST and LSGST estimates.
350
-
351
- prep_fiducials : list of Circuits
352
- Fiducial circuits used to construct an informationally complete
353
- effective preparation.
354
-
355
- meas_fiducials : list of Circuits
356
- Fiducial circuits used to construct an informationally complete
357
- effective measurement.
358
-
359
- target_model : Model
360
- The target model used by LGST to extract operation labels and an initial gauge
361
-
362
- op_label_aliases : dictionary, optional
363
- Dictionary whose keys are operation label "aliases" and whose values are tuples
364
- corresponding to what that operation label should be expanded into before querying
365
- the dataset. Defaults to the empty dictionary (no aliases defined)
366
- e.g. opLabelAliases['Gx^3'] = ('Gx','Gx','Gx')
367
-
368
- svd_truncate_to : int, optional
369
- The Hilbert space dimension to truncate the operation matrices to using
370
- a SVD to keep only the largest svdToTruncateTo singular values of
371
- the I_tildle LGST matrix. Zero means no truncation.
372
- Defaults to dimension of `target_model`.
373
-
374
- min_prob_clip_for_weighting : float, optional
375
- defines the clipping interval for the statistical weight used
376
- within the chi^2 function (see chi2fn).
377
-
378
- prob_clip_interval : 2-tuple, optional
379
- (min,max) to clip probabilities to within Model probability
380
- computation routines (see Model.bulk_fill_probs)
381
-
382
- verbosity : int, optional
383
- Verbosity value to send to run_lgst(...) and do_mc2gst(...) calls.
384
-
385
- Returns
386
- -------
387
- dict
388
- A dictionary that relates each circuit to a Model containing the LGST
389
- estimate of that circuit's action (as a SPAM-less operation sequence)
390
- stored under the operation label "GsigmaLbl", along with LSGST estimates
391
- of the gates in `target_model`.
392
- """
393
- printer = _baseobjs.VerbosityPrinter.create_printer(verbosity)
394
- directLSGSTmodels = {}
395
- printer.log("--- Direct LSGST precomputation ---")
396
- with printer.progress_logging(1):
397
- for i, sigma in enumerate(circuits):
398
- printer.show_progress(i, len(circuits), prefix="--- Computing model for string-", suffix='---')
399
- directLSGSTmodels[sigma] = direct_mc2gst_model(
400
- sigma,
401
- Label('GsigmaLbl') if sigma.line_labels == ('*',) else Label('GsigmaLbl', sigma.line_labels),
402
- dataset, prep_fiducials, meas_fiducials, target_model,
403
- op_label_aliases, svd_truncate_to, min_prob_clip_for_weighting,
404
- prob_clip_interval, verbosity)
405
-
406
- return directLSGSTmodels
407
-
408
-
409
- def direct_mlgst_model(circuit_to_estimate, circuit_label, dataset,
410
- prep_fiducials, meas_fiducials, target_model,
411
- op_label_aliases=None, svd_truncate_to=None, min_prob_clip=1e-6,
412
- prob_clip_interval=(-1e6, 1e6), verbosity=0):
413
- """
414
- Constructs a model of MLEGST estimates for target gates and circuit_to_estimate.
415
-
416
- Starting with a Direct-LGST estimate for circuit_to_estimate, runs MLEGST
417
- using the same strings that LGST would have used to estimate circuit_to_estimate
418
- and each of the target gates. That is, MLEGST is run with strings of the form:
419
-
420
- 1. prep_fiducial
421
- 2. meas_fiducial
422
- 3. prep_fiducial + meas_fiducial
423
- 4. prep_fiducial + singleGate + meas_fiducial
424
- 5. prep_fiducial + circuit_to_estimate + meas_fiducial
425
-
426
- and the resulting Model estimate is returned.
427
-
428
- Parameters
429
- ----------
430
- circuit_to_estimate : Circuit or tuple
431
- The single circuit to estimate using LSGST
432
-
433
- circuit_label : string
434
- The label for the estimate of `circuit_to_estimate`.
435
- i.e. `op_matrix = returned_model[op_label]`
436
-
437
- dataset : DataSet
438
- The data to use for LGST
439
-
440
- prep_fiducials : list of Circuits
441
- Fiducial circuits used to construct an informationally complete
442
- effective preparation.
443
-
444
- meas_fiducials : list of Circuits
445
- Fiducial circuits used to construct an informationally complete
446
- effective measurement.
447
-
448
- target_model : Model
449
- The target model used by LGST to extract operation labels and an initial gauge
450
-
451
- op_label_aliases : dictionary, optional
452
- Dictionary whose keys are operation label "aliases" and whose values are tuples
453
- corresponding to what that operation label should be expanded into before querying
454
- the dataset. Defaults to the empty dictionary (no aliases defined)
455
- e.g. opLabelAliases['Gx^3'] = ('Gx','Gx','Gx')
456
-
457
- svd_truncate_to : int, optional
458
- The Hilbert space dimension to truncate the operation matrices to using
459
- a SVD to keep only the largest svdToTruncateTo singular values of
460
- the I_tildle LGST matrix. Zero means no truncation.
461
- Defaults to dimension of `target_model`.
462
-
463
- min_prob_clip : float, optional
464
- defines the minimum probability "patch point" used
465
- within the logl function.
466
-
467
- prob_clip_interval : 2-tuple, optional
468
- (min,max) to clip probabilities to within Model probability
469
- computation routines (see Model.bulk_fill_probs)
470
-
471
- verbosity : int, optional
472
- Verbosity value to send to run_lgst(...) and do_mlgst(...) calls.
473
-
474
- Returns
475
- -------
476
- Model
477
- A model containing MLEGST estimates of `circuit_to_estimate`
478
- and the gates of `target_model`.
479
- """
480
- direct_lgst = model_with_lgst_circuit_estimates(
481
- [circuit_to_estimate], dataset, prep_fiducials, meas_fiducials, target_model,
482
- True, op_label_aliases, None, [circuit_label], svd_truncate_to, verbosity)
483
-
484
- # LEXICOGRAPHICAL VS MATRIX ORDER
485
- circuits = prep_fiducials + meas_fiducials + [prepC + measC for prepC in prep_fiducials
486
- for measC in meas_fiducials]
487
- for opLabel in direct_lgst.operations:
488
- circuits.extend([prepC + _circuits.Circuit((opLabel,)) + measC
489
- for prepC in prep_fiducials for measC in meas_fiducials])
490
-
491
- aliases = {} if (op_label_aliases is None) else op_label_aliases.copy()
492
- aliases[circuit_label] = circuit_to_estimate.replace_layers_with_aliases(op_label_aliases)
493
-
494
- obuilder = _objfns.PoissonPicDeltaLogLFunction.builder(regularization={'min_prob_clip': min_prob_clip},
495
- penalties={'prob_clip_interval': prob_clip_interval})
496
- bulk_circuits = _circuits.CircuitList(circuits, aliases)
497
- _, direct_mlegst = _core.run_gst_fit_simple(dataset, direct_lgst, bulk_circuits, optimizer=None,
498
- objective_function_builder=obuilder, resource_alloc=None,
499
- verbosity=verbosity)
500
-
501
- return direct_mlegst
502
-
503
-
504
- def direct_mlgst_models(circuits, dataset, prep_fiducials, meas_fiducials, target_model,
505
- op_label_aliases=None, svd_truncate_to=None, min_prob_clip=1e-6,
506
- prob_clip_interval=(-1e6, 1e6), verbosity=0):
507
- """
508
- Constructs a dictionary with keys == circuits and values == Direct-MLEGST Models.
509
-
510
- Parameters
511
- ----------
512
- circuits : list of Circuit or tuple objects
513
- The circuits to estimate using MLEGST. The elements of this list
514
- are the keys of the returned dictionary.
515
-
516
- dataset : DataSet
517
- The data to use for all LGST and LSGST estimates.
518
-
519
- prep_fiducials : list of Circuits
520
- Fiducial circuits used to construct an informationally complete
521
- effective preparation.
522
-
523
- meas_fiducials : list of Circuits
524
- Fiducial circuits used to construct an informationally complete
525
- effective measurement.
526
-
527
- target_model : Model
528
- The target model used by LGST to extract operation labels and an initial gauge
529
-
530
- op_label_aliases : dictionary, optional
531
- Dictionary whose keys are operation label "aliases" and whose values are tuples
532
- corresponding to what that operation label should be expanded into before querying
533
- the dataset. Defaults to the empty dictionary (no aliases defined)
534
- e.g. opLabelAliases['Gx^3'] = ('Gx','Gx','Gx')
535
-
536
- svd_truncate_to : int, optional
537
- The Hilbert space dimension to truncate the operation matrices to using
538
- a SVD to keep only the largest svdToTruncateTo singular values of
539
- the I_tildle LGST matrix. Zero means no truncation.
540
- Defaults to dimension of `target_model`.
541
-
542
- min_prob_clip : float, optional
543
- defines the minimum probability "patch point" used
544
- within the logl function.
545
-
546
- prob_clip_interval : 2-tuple, optional
547
- (min,max) to clip probabilities to within Model probability
548
- computation routines (see Model.bulk_fill_probs)
549
-
550
- verbosity : int, optional
551
- Verbosity value to send to run_lgst(...) and do_mlgst(...) calls.
552
-
553
- Returns
554
- -------
555
- dict
556
- A dictionary that relates each circuit to a Model containing the LGST
557
- estimate of that circuit's action (as a SPAM-less operation sequence)
558
- stored under the operation label "GsigmaLbl", along with MLEGST estimates
559
- of the gates in `target_model`.
560
- """
561
- printer = _baseobjs.VerbosityPrinter.create_printer(verbosity)
562
- directMLEGSTmodels = {}
563
- printer.log("--- Direct MLEGST precomputation ---")
564
- with printer.progress_logging(1):
565
- for i, sigma in enumerate(circuits):
566
- printer.show_progress(i, len(circuits), prefix="--- Computing model for string ", suffix="---")
567
- directMLEGSTmodels[sigma] = direct_mlgst_model(
568
- sigma,
569
- Label('GsigmaLbl') if sigma.line_labels == ('*',) else Label('GsigmaLbl', sigma.line_labels),
570
- dataset, prep_fiducials, meas_fiducials, target_model,
571
- op_label_aliases, svd_truncate_to, min_prob_clip,
572
- prob_clip_interval, verbosity)
573
-
574
- return directMLEGSTmodels
575
-
576
-
577
- def focused_mc2gst_model(circuit_to_estimate, circuit_label, dataset,
578
- prep_fiducials, meas_fiducials, start_model,
579
- op_label_aliases=None, min_prob_clip_for_weighting=1e-4,
580
- prob_clip_interval=(-1e6, 1e6), verbosity=0):
581
- """
582
- Constructs a model containing a single LSGST estimate of `circuit_to_estimate`.
583
-
584
- Starting with `start_model`, run LSGST with the same circuits that LGST
585
- would use to estimate `circuit_to_estimate`. That is, LSGST is run with
586
- strings of the form: prep_fiducial + circuit_to_estimate + meas_fiducial
587
- and return the resulting Model.
588
-
589
- Parameters
590
- ----------
591
- circuit_to_estimate : Circuit or tuple
592
- The single circuit to estimate using LSGST
593
-
594
- circuit_label : string
595
- The label for the estimate of `circuit_to_estimate`.
596
- i.e. `op_matrix = returned_model[op_label]`
597
-
598
- dataset : DataSet
599
- The data to use for LGST
600
-
601
- prep_fiducials : list of Circuits
602
- Fiducial circuits used to construct an informationally complete
603
- effective preparation.
604
-
605
- meas_fiducials : list of Circuits
606
- Fiducial circuits used to construct an informationally complete
607
- effective measurement.
608
-
609
- start_model : Model
610
- The model to seed LSGST with. Often times obtained via LGST.
611
-
612
- op_label_aliases : dictionary, optional
613
- Dictionary whose keys are operation label "aliases" and whose values are tuples
614
- corresponding to what that operation label should be expanded into before querying
615
- the dataset. Defaults to the empty dictionary (no aliases defined)
616
- e.g. opLabelAliases['Gx^3'] = ('Gx','Gx','Gx')
617
-
618
- min_prob_clip_for_weighting : float, optional
619
- defines the clipping interval for the statistical weight used
620
- within the chi^2 function (see chi2fn).
621
-
622
- prob_clip_interval : 2-tuple, optional
623
- (min,max) to clip probabilities to within Model probability
624
- computation routines (see Model.bulk_fill_probs)
625
-
626
- verbosity : int, optional
627
- Verbosity value to send do_mc2gst(...) call.
628
-
629
- Returns
630
- -------
631
- Model
632
- A model containing LSGST estimate of `circuit_to_estimate`.
633
- """
634
- circuits = [prepC + circuit_to_estimate + measC for prepC in prep_fiducials for measC in meas_fiducials]
635
-
636
- obuilder = _objfns.Chi2Function.builder(regularization={'min_prob_clip_for_weighting': min_prob_clip_for_weighting},
637
- penalties={'prob_clip_interval': prob_clip_interval})
638
- bulk_circuits = _circuits.CircuitList(circuits, op_label_aliases)
639
- _, focused_lsgst = _core.run_gst_fit_simple(dataset, start_model, bulk_circuits, optimizer=None,
640
- objective_function_builder=obuilder, resource_alloc=None,
641
- verbosity=verbosity)
642
-
643
- focused_lsgst.operations[circuit_label] = _FullArbitraryOp(
644
- focused_lsgst.sim.product(circuit_to_estimate)) # add desired string as a separate labeled gate
645
- return focused_lsgst
646
-
647
-
648
- def focused_mc2gst_models(circuits, dataset, prep_fiducials, meas_fiducials,
649
- start_model, op_label_aliases=None,
650
- min_prob_clip_for_weighting=1e-4,
651
- prob_clip_interval=(-1e6, 1e6), verbosity=0):
652
- """
653
- Constructs a dictionary with keys == circuits and values == Focused-LSGST Models.
654
-
655
- Parameters
656
- ----------
657
- circuits : list of Circuit or tuple objects
658
- The circuits to estimate using LSGST. The elements of this list
659
- are the keys of the returned dictionary.
660
-
661
- dataset : DataSet
662
- The data to use for all LGST and LSGST estimates.
663
-
664
- prep_fiducials : list of Circuits
665
- Fiducial circuits used to construct an informationally complete
666
- effective preparation.
667
-
668
- meas_fiducials : list of Circuits
669
- Fiducial circuits used to construct an informationally complete
670
- effective measurement.
671
-
672
- start_model : Model
673
- The model to seed LSGST with. Often times obtained via LGST.
674
-
675
- op_label_aliases : dictionary, optional
676
- Dictionary whose keys are operation label "aliases" and whose values are tuples
677
- corresponding to what that operation label should be expanded into before querying
678
- the dataset. Defaults to the empty dictionary (no aliases defined)
679
- e.g. opLabelAliases['Gx^3'] = ('Gx','Gx','Gx')
680
-
681
- min_prob_clip_for_weighting : float, optional
682
- defines the clipping interval for the statistical weight used
683
- within the chi^2 function (see chi2fn).
684
-
685
- prob_clip_interval : 2-tuple, optional
686
- (min,max) to clip probabilities to within Model probability
687
- computation routines (see Model.bulk_fill_probs)
688
-
689
- verbosity : int, optional
690
- Verbosity value to send to do_mc2gst(...) call.
691
-
692
- Returns
693
- -------
694
- dict
695
- A dictionary that relates each circuit to a Model containing the
696
- LSGST estimate of that circuit's action, stored under the
697
- operation label "GsigmaLbl".
698
- """
699
-
700
- printer = _baseobjs.VerbosityPrinter.create_printer(verbosity)
701
- focusedLSGSTmodels = {}
702
- printer.log("--- Focused LSGST precomputation ---")
703
- with printer.progress_logging(1):
704
- for i, sigma in enumerate(circuits):
705
- printer.show_progress(i, len(circuits), prefix="--- Computing model for string", suffix='---')
706
- focusedLSGSTmodels[sigma] = focused_mc2gst_model(
707
- sigma,
708
- Label('GsigmaLbl') if sigma.line_labels == ('*',) else Label('GsigmaLbl', sigma.line_labels),
709
- dataset, prep_fiducials, meas_fiducials, start_model,
710
- op_label_aliases, min_prob_clip_for_weighting, prob_clip_interval, verbosity)
711
- return focusedLSGSTmodels