pyGSTi 0.9.12__cp38-cp38-win_amd64.whl → 0.9.13__cp38-cp38-win_amd64.whl
Sign up to get free protection for your applications and to get access to all the features.
- pyGSTi-0.9.13.dist-info/METADATA +185 -0
- {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/RECORD +211 -220
- {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/WHEEL +1 -1
- pygsti/_version.py +2 -2
- pygsti/algorithms/contract.py +1 -1
- pygsti/algorithms/core.py +62 -35
- pygsti/algorithms/fiducialpairreduction.py +95 -110
- pygsti/algorithms/fiducialselection.py +17 -8
- pygsti/algorithms/gaugeopt.py +2 -2
- pygsti/algorithms/germselection.py +87 -77
- pygsti/algorithms/mirroring.py +0 -388
- pygsti/algorithms/randomcircuit.py +165 -1333
- pygsti/algorithms/rbfit.py +0 -234
- pygsti/baseobjs/basis.py +94 -396
- pygsti/baseobjs/errorgenbasis.py +0 -132
- pygsti/baseobjs/errorgenspace.py +0 -10
- pygsti/baseobjs/label.py +52 -168
- pygsti/baseobjs/opcalc/fastopcalc.cp38-win_amd64.pyd +0 -0
- pygsti/baseobjs/opcalc/fastopcalc.pyx +2 -2
- pygsti/baseobjs/polynomial.py +13 -595
- pygsti/baseobjs/protectedarray.py +72 -132
- pygsti/baseobjs/statespace.py +1 -0
- pygsti/circuits/__init__.py +1 -1
- pygsti/circuits/circuit.py +753 -504
- pygsti/circuits/circuitconstruction.py +0 -4
- pygsti/circuits/circuitlist.py +47 -5
- pygsti/circuits/circuitparser/__init__.py +8 -8
- pygsti/circuits/circuitparser/fastcircuitparser.cp38-win_amd64.pyd +0 -0
- pygsti/circuits/circuitstructure.py +3 -3
- pygsti/circuits/cloudcircuitconstruction.py +27 -14
- pygsti/data/datacomparator.py +4 -9
- pygsti/data/dataset.py +51 -46
- pygsti/data/hypothesistest.py +0 -7
- pygsti/drivers/bootstrap.py +0 -49
- pygsti/drivers/longsequence.py +46 -10
- pygsti/evotypes/basereps_cython.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/chp/opreps.py +0 -61
- pygsti/evotypes/chp/statereps.py +0 -32
- pygsti/evotypes/densitymx/effectcreps.cpp +9 -10
- pygsti/evotypes/densitymx/effectreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/densitymx/effectreps.pyx +1 -1
- pygsti/evotypes/densitymx/opreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/densitymx/opreps.pyx +2 -2
- pygsti/evotypes/densitymx/statereps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/densitymx/statereps.pyx +1 -1
- pygsti/evotypes/densitymx_slow/effectreps.py +7 -23
- pygsti/evotypes/densitymx_slow/opreps.py +16 -23
- pygsti/evotypes/densitymx_slow/statereps.py +10 -3
- pygsti/evotypes/evotype.py +39 -2
- pygsti/evotypes/stabilizer/effectreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/stabilizer/effectreps.pyx +0 -4
- pygsti/evotypes/stabilizer/opreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/stabilizer/opreps.pyx +0 -4
- pygsti/evotypes/stabilizer/statereps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/stabilizer/statereps.pyx +1 -5
- pygsti/evotypes/stabilizer/termreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/stabilizer/termreps.pyx +0 -7
- pygsti/evotypes/stabilizer_slow/effectreps.py +0 -22
- pygsti/evotypes/stabilizer_slow/opreps.py +0 -4
- pygsti/evotypes/stabilizer_slow/statereps.py +0 -4
- pygsti/evotypes/statevec/effectreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/statevec/effectreps.pyx +1 -1
- pygsti/evotypes/statevec/opreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/statevec/opreps.pyx +2 -2
- pygsti/evotypes/statevec/statereps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/statevec/statereps.pyx +1 -1
- pygsti/evotypes/statevec/termreps.cp38-win_amd64.pyd +0 -0
- pygsti/evotypes/statevec/termreps.pyx +0 -7
- pygsti/evotypes/statevec_slow/effectreps.py +0 -3
- pygsti/evotypes/statevec_slow/opreps.py +0 -5
- pygsti/extras/__init__.py +0 -1
- pygsti/extras/drift/signal.py +1 -1
- pygsti/extras/drift/stabilityanalyzer.py +3 -1
- pygsti/extras/interpygate/__init__.py +12 -0
- pygsti/extras/interpygate/core.py +0 -36
- pygsti/extras/interpygate/process_tomography.py +44 -10
- pygsti/extras/rpe/rpeconstruction.py +0 -2
- pygsti/forwardsims/__init__.py +1 -0
- pygsti/forwardsims/forwardsim.py +50 -93
- pygsti/forwardsims/mapforwardsim.py +78 -20
- pygsti/forwardsims/mapforwardsim_calc_densitymx.cp38-win_amd64.pyd +0 -0
- pygsti/forwardsims/mapforwardsim_calc_densitymx.pyx +65 -66
- pygsti/forwardsims/mapforwardsim_calc_generic.py +91 -13
- pygsti/forwardsims/matrixforwardsim.py +72 -17
- pygsti/forwardsims/termforwardsim.py +9 -111
- pygsti/forwardsims/termforwardsim_calc_stabilizer.cp38-win_amd64.pyd +0 -0
- pygsti/forwardsims/termforwardsim_calc_statevec.cp38-win_amd64.pyd +0 -0
- pygsti/forwardsims/termforwardsim_calc_statevec.pyx +0 -651
- pygsti/forwardsims/torchfwdsim.py +265 -0
- pygsti/forwardsims/weakforwardsim.py +2 -2
- pygsti/io/__init__.py +1 -2
- pygsti/io/mongodb.py +0 -2
- pygsti/io/stdinput.py +6 -22
- pygsti/layouts/copalayout.py +10 -12
- pygsti/layouts/distlayout.py +0 -40
- pygsti/layouts/maplayout.py +103 -25
- pygsti/layouts/matrixlayout.py +99 -60
- pygsti/layouts/prefixtable.py +1534 -52
- pygsti/layouts/termlayout.py +1 -1
- pygsti/modelmembers/instruments/instrument.py +3 -3
- pygsti/modelmembers/instruments/tpinstrument.py +2 -2
- pygsti/modelmembers/modelmember.py +0 -17
- pygsti/modelmembers/operations/__init__.py +3 -4
- pygsti/modelmembers/operations/affineshiftop.py +206 -0
- pygsti/modelmembers/operations/composederrorgen.py +1 -1
- pygsti/modelmembers/operations/composedop.py +1 -24
- pygsti/modelmembers/operations/denseop.py +5 -5
- pygsti/modelmembers/operations/eigpdenseop.py +2 -2
- pygsti/modelmembers/operations/embeddederrorgen.py +1 -1
- pygsti/modelmembers/operations/embeddedop.py +0 -1
- pygsti/modelmembers/operations/experrorgenop.py +5 -2
- pygsti/modelmembers/operations/fullarbitraryop.py +1 -0
- pygsti/modelmembers/operations/fullcptpop.py +2 -2
- pygsti/modelmembers/operations/fulltpop.py +28 -6
- pygsti/modelmembers/operations/fullunitaryop.py +5 -4
- pygsti/modelmembers/operations/lindbladcoefficients.py +93 -78
- pygsti/modelmembers/operations/lindbladerrorgen.py +268 -441
- pygsti/modelmembers/operations/linearop.py +7 -27
- pygsti/modelmembers/operations/opfactory.py +1 -1
- pygsti/modelmembers/operations/repeatedop.py +1 -24
- pygsti/modelmembers/operations/staticstdop.py +1 -1
- pygsti/modelmembers/povms/__init__.py +3 -3
- pygsti/modelmembers/povms/basepovm.py +7 -36
- pygsti/modelmembers/povms/complementeffect.py +4 -9
- pygsti/modelmembers/povms/composedeffect.py +0 -320
- pygsti/modelmembers/povms/computationaleffect.py +1 -1
- pygsti/modelmembers/povms/computationalpovm.py +3 -1
- pygsti/modelmembers/povms/effect.py +3 -5
- pygsti/modelmembers/povms/marginalizedpovm.py +3 -81
- pygsti/modelmembers/povms/tppovm.py +74 -2
- pygsti/modelmembers/states/__init__.py +2 -5
- pygsti/modelmembers/states/composedstate.py +0 -317
- pygsti/modelmembers/states/computationalstate.py +3 -3
- pygsti/modelmembers/states/cptpstate.py +4 -4
- pygsti/modelmembers/states/densestate.py +10 -8
- pygsti/modelmembers/states/fullpurestate.py +0 -24
- pygsti/modelmembers/states/purestate.py +1 -1
- pygsti/modelmembers/states/state.py +5 -6
- pygsti/modelmembers/states/tpstate.py +28 -10
- pygsti/modelmembers/term.py +3 -6
- pygsti/modelmembers/torchable.py +50 -0
- pygsti/modelpacks/_modelpack.py +1 -1
- pygsti/modelpacks/smq1Q_ZN.py +3 -1
- pygsti/modelpacks/smq2Q_XXYYII.py +2 -1
- pygsti/modelpacks/smq2Q_XY.py +3 -3
- pygsti/modelpacks/smq2Q_XYI.py +2 -2
- pygsti/modelpacks/smq2Q_XYICNOT.py +3 -3
- pygsti/modelpacks/smq2Q_XYICPHASE.py +3 -3
- pygsti/modelpacks/smq2Q_XYXX.py +1 -1
- pygsti/modelpacks/smq2Q_XYZICNOT.py +3 -3
- pygsti/modelpacks/smq2Q_XYZZ.py +1 -1
- pygsti/modelpacks/stdtarget.py +0 -121
- pygsti/models/cloudnoisemodel.py +1 -2
- pygsti/models/explicitcalc.py +3 -3
- pygsti/models/explicitmodel.py +3 -13
- pygsti/models/fogistore.py +5 -3
- pygsti/models/localnoisemodel.py +1 -2
- pygsti/models/memberdict.py +0 -12
- pygsti/models/model.py +801 -68
- pygsti/models/modelconstruction.py +4 -4
- pygsti/models/modelnoise.py +2 -2
- pygsti/models/modelparaminterposer.py +1 -1
- pygsti/models/oplessmodel.py +1 -1
- pygsti/models/qutrit.py +15 -14
- pygsti/objectivefns/objectivefns.py +75 -140
- pygsti/objectivefns/wildcardbudget.py +2 -7
- pygsti/optimize/__init__.py +1 -0
- pygsti/optimize/arraysinterface.py +28 -0
- pygsti/optimize/customcg.py +0 -12
- pygsti/optimize/customlm.py +129 -323
- pygsti/optimize/customsolve.py +2 -2
- pygsti/optimize/optimize.py +0 -84
- pygsti/optimize/simplerlm.py +841 -0
- pygsti/optimize/wildcardopt.py +19 -598
- pygsti/protocols/confidenceregionfactory.py +28 -14
- pygsti/protocols/estimate.py +31 -14
- pygsti/protocols/gst.py +238 -142
- pygsti/protocols/modeltest.py +19 -12
- pygsti/protocols/protocol.py +9 -37
- pygsti/protocols/rb.py +450 -79
- pygsti/protocols/treenode.py +8 -2
- pygsti/protocols/vb.py +108 -206
- pygsti/protocols/vbdataframe.py +1 -1
- pygsti/report/factory.py +0 -15
- pygsti/report/fogidiagram.py +1 -17
- pygsti/report/modelfunction.py +12 -3
- pygsti/report/mpl_colormaps.py +1 -1
- pygsti/report/plothelpers.py +11 -3
- pygsti/report/report.py +16 -0
- pygsti/report/reportables.py +41 -37
- pygsti/report/templates/offline/pygsti_dashboard.css +6 -0
- pygsti/report/templates/offline/pygsti_dashboard.js +12 -0
- pygsti/report/workspace.py +2 -14
- pygsti/report/workspaceplots.py +328 -505
- pygsti/tools/basistools.py +9 -36
- pygsti/tools/edesigntools.py +124 -96
- pygsti/tools/fastcalc.cp38-win_amd64.pyd +0 -0
- pygsti/tools/fastcalc.pyx +35 -81
- pygsti/tools/internalgates.py +151 -15
- pygsti/tools/jamiolkowski.py +5 -5
- pygsti/tools/lindbladtools.py +19 -11
- pygsti/tools/listtools.py +0 -114
- pygsti/tools/matrixmod2.py +1 -1
- pygsti/tools/matrixtools.py +173 -339
- pygsti/tools/nameddict.py +1 -1
- pygsti/tools/optools.py +154 -88
- pygsti/tools/pdftools.py +0 -25
- pygsti/tools/rbtheory.py +3 -320
- pygsti/tools/slicetools.py +64 -12
- pyGSTi-0.9.12.dist-info/METADATA +0 -157
- pygsti/algorithms/directx.py +0 -711
- pygsti/evotypes/qibo/__init__.py +0 -33
- pygsti/evotypes/qibo/effectreps.py +0 -78
- pygsti/evotypes/qibo/opreps.py +0 -376
- pygsti/evotypes/qibo/povmreps.py +0 -98
- pygsti/evotypes/qibo/statereps.py +0 -174
- pygsti/extras/rb/__init__.py +0 -13
- pygsti/extras/rb/benchmarker.py +0 -957
- pygsti/extras/rb/dataset.py +0 -378
- pygsti/extras/rb/io.py +0 -814
- pygsti/extras/rb/simulate.py +0 -1020
- pygsti/io/legacyio.py +0 -385
- pygsti/modelmembers/povms/denseeffect.py +0 -142
- {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/LICENSE +0 -0
- {pyGSTi-0.9.12.dist-info → pyGSTi-0.9.13.dist-info}/top_level.txt +0 -0
pygsti/drivers/longsequence.py
CHANGED
@@ -24,6 +24,8 @@ from pygsti.baseobjs.advancedoptions import GSTAdvancedOptions as _GSTAdvancedOp
|
|
24
24
|
from pygsti.models.model import Model as _Model
|
25
25
|
from pygsti.models.modelconstruction import _create_explicit_model, create_explicit_model
|
26
26
|
from pygsti.protocols.gst import _load_pspec_or_model
|
27
|
+
from pygsti.forwardsims import ForwardSimulator
|
28
|
+
from typing import Optional
|
27
29
|
|
28
30
|
ROBUST_SUFFIX_LIST = [".robust", ".Robust", ".robust+", ".Robust+"]
|
29
31
|
DEFAULT_BAD_FIT_THRESHOLD = 2.0
|
@@ -35,7 +37,8 @@ def run_model_test(model_filename_or_object,
|
|
35
37
|
germs_list_or_filename, max_lengths, gauge_opt_params=None,
|
36
38
|
advanced_options=None, comm=None, mem_limit=None,
|
37
39
|
output_pkl=None, verbosity=2, checkpoint=None, checkpoint_path=None,
|
38
|
-
disable_checkpointing=
|
40
|
+
disable_checkpointing=False,
|
41
|
+
simulator: Optional[ForwardSimulator.Castable]=None):
|
39
42
|
"""
|
40
43
|
Compares a :class:`Model`'s predictions to a `DataSet` using GST-like circuits.
|
41
44
|
|
@@ -138,6 +141,11 @@ def run_model_test(model_filename_or_object,
|
|
138
141
|
to disk during the course of this protocol. It is strongly recommended
|
139
142
|
that this be kept set to False without good reason to disable the checkpoints.
|
140
143
|
|
144
|
+
simulator : ForwardSimulator.Castable or None
|
145
|
+
Ignored if None. If not None, then we call
|
146
|
+
fwdsim = ForwardSimulator.cast(simulator),
|
147
|
+
and we set the .sim attribute of every Model we encounter to fwdsim.
|
148
|
+
|
141
149
|
Returns
|
142
150
|
-------
|
143
151
|
Results
|
@@ -170,6 +178,7 @@ def run_model_test(model_filename_or_object,
|
|
170
178
|
if isinstance(pspec_or_model, _Model):
|
171
179
|
target_model= pspec_or_model
|
172
180
|
elif isinstance(pspec_or_model, _ProcessorSpec):
|
181
|
+
|
173
182
|
target_model= create_explicit_model(pspec_or_model,
|
174
183
|
basis= _load_model(model_filename_or_object).basis)
|
175
184
|
|
@@ -185,7 +194,9 @@ def run_model_test(model_filename_or_object,
|
|
185
194
|
proto.circuit_weights = advanced_options.get('circuit_weights', None)
|
186
195
|
proto.unreliable_ops = advanced_options.get('unreliable_ops', ['Gcnot', 'Gcphase', 'Gms', 'Gcn', 'Gcx', 'Gcz'])
|
187
196
|
|
188
|
-
results = proto.run(data, mem_limit, comm,
|
197
|
+
results = proto.run(data, mem_limit, comm,
|
198
|
+
checkpoint=checkpoint, checkpoint_path=checkpoint_path, disable_checkpointing=disable_checkpointing,
|
199
|
+
simulator=simulator)
|
189
200
|
_output_to_pickle(results, output_pkl, comm)
|
190
201
|
return results
|
191
202
|
|
@@ -306,7 +317,8 @@ def run_long_sequence_gst(data_filename_or_set, target_model_filename_or_object,
|
|
306
317
|
germs_list_or_filename, max_lengths, gauge_opt_params=None,
|
307
318
|
advanced_options=None, comm=None, mem_limit=None,
|
308
319
|
output_pkl=None, verbosity=2, checkpoint=None, checkpoint_path=None,
|
309
|
-
disable_checkpointing
|
320
|
+
disable_checkpointing=False,
|
321
|
+
simulator: Optional[ForwardSimulator.Castable]=None):
|
310
322
|
"""
|
311
323
|
Perform long-sequence GST (LSGST).
|
312
324
|
|
@@ -439,11 +451,17 @@ def run_long_sequence_gst(data_filename_or_set, target_model_filename_or_object,
|
|
439
451
|
completed iteration number appended to it before writing it to disk.
|
440
452
|
If none, the value of {name} will be set to the name of the protocol
|
441
453
|
being run.
|
454
|
+
|
442
455
|
disable_checkpointing : bool, optional (default False)
|
443
456
|
When set to True checkpoint objects will not be constructed and written
|
444
457
|
to disk during the course of this protocol. It is strongly recommended
|
445
458
|
that this be kept set to False without good reason to disable the checkpoints.
|
446
459
|
|
460
|
+
simulator : ForwardSimulator.Castable or None
|
461
|
+
Ignored if None. If not None, then we call
|
462
|
+
fwdsim = ForwardSimulator.cast(simulator),
|
463
|
+
and we set the .sim attribute of every Model we encounter to fwdsim.
|
464
|
+
|
447
465
|
Returns
|
448
466
|
-------
|
449
467
|
Results
|
@@ -488,7 +506,9 @@ def run_long_sequence_gst(data_filename_or_set, target_model_filename_or_object,
|
|
488
506
|
proto.circuit_weights = advanced_options.get('circuit_weights', None)
|
489
507
|
proto.unreliable_ops = advanced_options.get('unreliable_ops', ['Gcnot', 'Gcphase', 'Gms', 'Gcn', 'Gcx', 'Gcz'])
|
490
508
|
|
491
|
-
results = proto.run(data, mem_limit, comm,
|
509
|
+
results = proto.run(data, mem_limit, comm,
|
510
|
+
checkpoint=checkpoint, checkpoint_path= checkpoint_path, disable_checkpointing=disable_checkpointing,
|
511
|
+
simulator=simulator)
|
492
512
|
_output_to_pickle(results, output_pkl, comm)
|
493
513
|
return results
|
494
514
|
|
@@ -497,7 +517,8 @@ def run_long_sequence_gst_base(data_filename_or_set, target_model_filename_or_ob
|
|
497
517
|
lsgst_lists, gauge_opt_params=None,
|
498
518
|
advanced_options=None, comm=None, mem_limit=None,
|
499
519
|
output_pkl=None, verbosity=2, checkpoint=None, checkpoint_path=None,
|
500
|
-
disable_checkpointing
|
520
|
+
disable_checkpointing=False,
|
521
|
+
simulator: Optional[ForwardSimulator.Castable]=None):
|
501
522
|
"""
|
502
523
|
A more fundamental interface for performing end-to-end GST.
|
503
524
|
|
@@ -582,7 +603,12 @@ def run_long_sequence_gst_base(data_filename_or_set, target_model_filename_or_ob
|
|
582
603
|
When set to True checkpoint objects will not be constructed and written
|
583
604
|
to disk during the course of this protocol. It is strongly recommended
|
584
605
|
that this be kept set to False without good reason to disable the checkpoints.
|
585
|
-
|
606
|
+
|
607
|
+
simulator : ForwardSimulator.Castable or None
|
608
|
+
Ignored if None. If not None, then we call
|
609
|
+
fwdsim = ForwardSimulator.cast(simulator),
|
610
|
+
and we set the .sim attribute of every Model we encounter to fwdsim.
|
611
|
+
|
586
612
|
Returns
|
587
613
|
-------
|
588
614
|
Results
|
@@ -615,7 +641,9 @@ def run_long_sequence_gst_base(data_filename_or_set, target_model_filename_or_ob
|
|
615
641
|
proto.circuit_weights = advanced_options.get('circuit_weights', None)
|
616
642
|
proto.unreliable_ops = advanced_options.get('unreliable_ops', ['Gcnot', 'Gcphase', 'Gms', 'Gcn', 'Gcx', 'Gcz'])
|
617
643
|
|
618
|
-
results = proto.run(data, mem_limit, comm,
|
644
|
+
results = proto.run(data, mem_limit, comm,
|
645
|
+
checkpoint=checkpoint, checkpoint_path=checkpoint_path, disable_checkpointing=disable_checkpointing,
|
646
|
+
simulator=simulator)
|
619
647
|
_output_to_pickle(results, output_pkl, comm)
|
620
648
|
return results
|
621
649
|
|
@@ -624,7 +652,8 @@ def run_stdpractice_gst(data_filename_or_set, target_model_filename_or_object, p
|
|
624
652
|
meas_fiducial_list_or_filename, germs_list_or_filename, max_lengths,
|
625
653
|
modes=('full TP','CPTPLND','Target'), gaugeopt_suite='stdgaugeopt', gaugeopt_target=None,
|
626
654
|
models_to_test=None, comm=None, mem_limit=None, advanced_options=None, output_pkl=None,
|
627
|
-
verbosity=2, checkpoint=None, checkpoint_path=None, disable_checkpointing
|
655
|
+
verbosity=2, checkpoint=None, checkpoint_path=None, disable_checkpointing=False,
|
656
|
+
simulator: Optional[ForwardSimulator.Castable]=None):
|
628
657
|
"""
|
629
658
|
Perform end-to-end GST analysis using standard practices.
|
630
659
|
|
@@ -748,6 +777,11 @@ def run_stdpractice_gst(data_filename_or_set, target_model_filename_or_object, p
|
|
748
777
|
to disk during the course of this protocol. It is strongly recommended
|
749
778
|
that this be kept set to False without good reason to disable the checkpoints.
|
750
779
|
|
780
|
+
simulator : ForwardSimulator.Castable or None
|
781
|
+
Ignored if None. If not None, then we call
|
782
|
+
fwdsim = ForwardSimulator.cast(simulator),
|
783
|
+
and we set the .sim attribute of every Model we encounter to fwdsim.
|
784
|
+
|
751
785
|
Returns
|
752
786
|
-------
|
753
787
|
Results
|
@@ -791,7 +825,9 @@ def run_stdpractice_gst(data_filename_or_set, target_model_filename_or_object, p
|
|
791
825
|
badfit_options=_get_badfit_options(advanced_options), verbosity=printer,
|
792
826
|
name=advanced_options.get('estimate_label', None))
|
793
827
|
|
794
|
-
results = proto.run(data, mem_limit, comm,
|
828
|
+
results = proto.run(data, mem_limit, comm,
|
829
|
+
checkpoint=checkpoint, checkpoint_path= checkpoint_path, disable_checkpointing=disable_checkpointing,
|
830
|
+
simulator=simulator)
|
795
831
|
_output_to_pickle(results, output_pkl, comm)
|
796
832
|
return results
|
797
833
|
|
@@ -895,7 +931,7 @@ def _get_optimizer(advanced_options, model_being_optimized):
|
|
895
931
|
from pygsti.forwardsims.matrixforwardsim import MatrixForwardSimulator as _MatrixFSim
|
896
932
|
advanced_options = advanced_options or {}
|
897
933
|
default_fditer = 1 if isinstance(model_being_optimized.sim, _MatrixFSim) else 0
|
898
|
-
optimizer = {'maxiter': advanced_options.get('max_iterations',
|
934
|
+
optimizer = {'maxiter': advanced_options.get('max_iterations', 100),
|
899
935
|
'tol': advanced_options.get('tolerance', 1e-6),
|
900
936
|
'fditer': advanced_options.get('finitediff_iterations', default_fditer)}
|
901
937
|
optimizer.update(advanced_options.get('extra_lm_opts', {}))
|
Binary file
|
pygsti/evotypes/chp/opreps.py
CHANGED
@@ -49,11 +49,6 @@ class OpRep(_basereps.OpRep):
|
|
49
49
|
def _chp_ops(self, seed_or_state=None):
|
50
50
|
return self.base_chp_ops
|
51
51
|
|
52
|
-
#def chp_str(self, seed_or_state=None):
|
53
|
-
# op_str = '\n'.join(self.chp_ops(seed_or_state=seed_or_state))
|
54
|
-
# if len(op_str) > 0: op_str += '\n'
|
55
|
-
# return op_str
|
56
|
-
|
57
52
|
def to_dense(self, on_space):
|
58
53
|
try:
|
59
54
|
str_ops = str(self._chp_ops())
|
@@ -217,63 +212,7 @@ class OpRepStochastic(OpRepRandomUnitary):
|
|
217
212
|
|
218
213
|
super(OpRepStochastic, self).__init__(basis, _np.array(rates, 'd'), reps, seed_or_state, state_space)
|
219
214
|
|
220
|
-
#OLD
|
221
|
-
#self.basis = basis
|
222
|
-
#assert (basis.name == 'pp'), "Only Pauli basis is allowed for 'chp' evotype"
|
223
|
-
#
|
224
|
-
#if isinstance(seed_or_state, _RandomState):
|
225
|
-
# self.rand_state = seed_or_state
|
226
|
-
#else:
|
227
|
-
# self.rand_state = _RandomState(seed_or_state)
|
228
|
-
#
|
229
|
-
##TODO: need to fix this: `basis` above functions as basis to make superoperators out of, but here we have
|
230
|
-
## a CHP stochastic op which is given a basis for the space - e.g. a dim=2 vector space for 1 qubit, so
|
231
|
-
## we need to distinguish/specify the basis better for this... and what about rate_poly_dicts (see svterm)
|
232
|
-
#nqubits = state_space.num_qubits
|
233
|
-
#assert(self.basis.dim == 4**nqubits), "Must have an integral number of qubits"
|
234
|
-
#
|
235
|
-
#std_chp_ops = _itgs.standard_gatenames_chp_conversions()
|
236
|
-
#
|
237
|
-
## For CHP, need to make a Composed + EmbeddedOp for the super operators
|
238
|
-
## For lower overhead, make this directly using the rep instead of with objects
|
239
|
-
#self.stochastic_superop_reps = []
|
240
|
-
#for label in self.basis.labels[1:]:
|
241
|
-
# combined_chp_ops = []
|
242
|
-
#
|
243
|
-
# for i, pauli in enumerate(label):
|
244
|
-
# name = 'Gi' if pauli == "I" else 'G%spi' % pauli.lower()
|
245
|
-
# chp_op = std_chp_ops[name]
|
246
|
-
# chp_op_targeted = [op.replace('0', str(i)) for op in chp_op]
|
247
|
-
# combined_chp_ops.extend(chp_op_targeted)
|
248
|
-
#
|
249
|
-
# sub_rep = OpRep(combined_chp_ops, state_space)
|
250
|
-
# self.stochastic_superop_reps.append(sub_rep)
|
251
|
-
#self.rates = initial_rates
|
252
|
-
#super(OpRepStochastic, self).__init__([], state_space) # don't store any chp_ops in base
|
253
|
-
|
254
215
|
def update_rates(self, rates):
|
255
216
|
unitary_rates = [1 - sum(rates)] + list(rates)
|
256
217
|
self.rates[:] = rates
|
257
218
|
self.update_unitary_rates(unitary_rates)
|
258
|
-
|
259
|
-
#TODO REMOVE - covered by OpRepRandomUnitary
|
260
|
-
#def chp_ops(self, seed_or_state=None):
|
261
|
-
# # Optionally override RNG for this call
|
262
|
-
# if seed_or_state is not None:
|
263
|
-
# if isinstance(seed_or_state, _np.random.RandomState):
|
264
|
-
# rand_state = seed_or_state
|
265
|
-
# else:
|
266
|
-
# rand_state = _np.random.RandomState(seed_or_state)
|
267
|
-
# else:
|
268
|
-
# rand_state = self.rand_state
|
269
|
-
#
|
270
|
-
# rates = self.rates
|
271
|
-
# all_rates = [*rates, 1.0 - sum(rates)] # Include identity so that probabilities are 1
|
272
|
-
# index = rand_state.choice(self.basis.size, p=all_rates)
|
273
|
-
#
|
274
|
-
# # If final entry, no operation selected
|
275
|
-
# if index == self.basis.size - 1:
|
276
|
-
# return []
|
277
|
-
#
|
278
|
-
# rep = self.stochastic_superop_reps[index]
|
279
|
-
# return rep._chp_ops()
|
pygsti/evotypes/chp/statereps.py
CHANGED
@@ -40,16 +40,6 @@ class StateRep(_basereps.StateRep):
|
|
40
40
|
def num_qubits(self):
|
41
41
|
return self.state_space.num_qubits
|
42
42
|
|
43
|
-
#REMOVE
|
44
|
-
#def chp_ops(self, seed_or_state=None):
|
45
|
-
# return self.base_chp_ops
|
46
|
-
|
47
|
-
#REMOVE
|
48
|
-
#def chp_str(self, seed_or_state=None):
|
49
|
-
# op_str = '\n'.join(self.chp_ops(seed_or_state=seed_or_state))
|
50
|
-
# if len(op_str) > 0: op_str += '\n'
|
51
|
-
# return op_str
|
52
|
-
|
53
43
|
def copy(self):
|
54
44
|
return StateRep(self.chp_ops, self.state_space)
|
55
45
|
|
@@ -87,25 +77,3 @@ class StateRepComposed(StateRep):
|
|
87
77
|
def actionable_staterep(self):
|
88
78
|
state_rep = self.state_rep.actionable_staterep()
|
89
79
|
return self.op_rep.acton(state_rep)
|
90
|
-
|
91
|
-
#REMOVE
|
92
|
-
# def chp_ops(self, seed_or_state=None):
|
93
|
-
# return self.state_rep.chp_ops(seed_or_state=seed_or_state) \
|
94
|
-
# + self.op_rep.chp_ops(seed_or_state=seed_or_state)
|
95
|
-
|
96
|
-
# TODO: Untested, only support computational and composed for now
|
97
|
-
#class StateRepTensorProduct(StateRep):
|
98
|
-
# def __init__(self, factor_state_reps, state_space):
|
99
|
-
# self.factor_reps = factor_state_reps
|
100
|
-
# super(StateRepTensorProduct, self).__init__([], state_space)
|
101
|
-
# self.reps_have_changed()
|
102
|
-
#
|
103
|
-
# def reps_have_changed(self):
|
104
|
-
# chp_ops = []
|
105
|
-
# current_iqubit = 0
|
106
|
-
# for factor in self.factor_reps:
|
107
|
-
# local_to_tp_index = {str(iloc): str(itp) for iloc, itp in
|
108
|
-
# enumerate(range(current_iqubit, current_iqubit + factor.num_qubits))}
|
109
|
-
# chp_ops.extend([_update_chp_op(op, local_to_tp_index) for op in self.chp_ops])
|
110
|
-
# current_iqubit += factor.num_qubits
|
111
|
-
# self.chp_ops = chp_ops
|
@@ -147,7 +147,7 @@ namespace CReps_densitymx {
|
|
147
147
|
finalIndx += ((finds >> k) & 1) * 3 * base;
|
148
148
|
base = base >> 2; // /= 4 so base == 4**(N-1-k)
|
149
149
|
}
|
150
|
-
|
150
|
+
|
151
151
|
//Apply result
|
152
152
|
if(parity(finds & _zvals_int))
|
153
153
|
ret -= _abs_elval * state->_dataptr[finalIndx]; // minus sign
|
@@ -157,15 +157,14 @@ namespace CReps_densitymx {
|
|
157
157
|
return ret;
|
158
158
|
}
|
159
159
|
|
160
|
-
INT EffectCRep_Computational::parity(INT x) {
|
161
|
-
|
162
|
-
x
|
163
|
-
x
|
164
|
-
x
|
165
|
-
x
|
166
|
-
x
|
167
|
-
|
168
|
-
return x & 1; // return the last bit (0 or 1)
|
160
|
+
inline INT EffectCRep_Computational::parity(INT x) {
|
161
|
+
x ^= (x >> 32);
|
162
|
+
x ^= (x >> 16);
|
163
|
+
x ^= (x >> 8);
|
164
|
+
x ^= (x >> 4);
|
165
|
+
x ^= (x >> 2);
|
166
|
+
x ^= (x >> 1);
|
167
|
+
return x & 1; // Return the last bit
|
169
168
|
}
|
170
169
|
|
171
170
|
|
Binary file
|
@@ -108,7 +108,7 @@ cdef class EffectRepTensorProduct(EffectRep):
|
|
108
108
|
cdef _np.ndarray[_np.int64_t, ndim=1, mode='c'] factor_dims = \
|
109
109
|
_np.ascontiguousarray(_np.array([fct.state_space.dim for fct in povm_factors], _np.int64))
|
110
110
|
|
111
|
-
cdef INT dim = _np.
|
111
|
+
cdef INT dim = _np.prod(factor_dims)
|
112
112
|
cdef INT nfactors = len(povm_factors)
|
113
113
|
self.povm_factors = povm_factors
|
114
114
|
self.effect_labels = effect_labels
|
Binary file
|
@@ -540,7 +540,7 @@ def _compute_embedding_quantities_cachekey(state_space, target_labels, embedded_
|
|
540
540
|
# final map just acts as identity w.r.t.
|
541
541
|
labelIndices = [tensorProdBlkLabels.index(label) for label in target_labels]
|
542
542
|
cdef _np.ndarray[_np.int64_t, ndim=1, mode='c'] action_inds = _np.array(labelIndices, _np.int64)
|
543
|
-
assert(_np.
|
543
|
+
assert(_np.prod([num_basis_els[i] for i in action_inds]) == embedded_rep_dim), \
|
544
544
|
"Embedded operation has dimension (%d) inconsistent with the given target labels (%s)" % (
|
545
545
|
embedded_rep_dim, str(target_labels))
|
546
546
|
|
@@ -550,7 +550,7 @@ def _compute_embedding_quantities_cachekey(state_space, target_labels, embedded_
|
|
550
550
|
cdef INT ncomponents_in_active_block = len(state_space.tensor_product_block_labels(active_block_index))
|
551
551
|
cdef INT embedded_dim = embedded_rep_dim
|
552
552
|
cdef _np.ndarray[_np.int64_t, ndim=1, mode='c'] blocksizes = \
|
553
|
-
_np.array([_np.
|
553
|
+
_np.array([_np.prod(state_space.tensor_product_block_dimensions(k))
|
554
554
|
for k in range(nblocks)], _np.int64)
|
555
555
|
cdef INT i, j
|
556
556
|
|
Binary file
|
@@ -163,7 +163,7 @@ cdef class StateRepTensorProduct(StateRep):
|
|
163
163
|
|
164
164
|
def __cinit__(self, factor_state_reps, state_space):
|
165
165
|
self.factor_reps = factor_state_reps
|
166
|
-
dim = _np.
|
166
|
+
dim = _np.prod([fct.dim for fct in self.factor_reps])
|
167
167
|
self._cinit_base(_np.zeros(dim, 'd'), state_space)
|
168
168
|
self.reps_have_changed()
|
169
169
|
|
@@ -13,12 +13,13 @@ POVM effect representation classes for the `densitymx_slow` evolution type.
|
|
13
13
|
import numpy as _np
|
14
14
|
|
15
15
|
# import functools as _functools
|
16
|
-
from .. import basereps as _basereps
|
17
16
|
from pygsti.baseobjs.statespace import StateSpace as _StateSpace
|
18
17
|
from ...tools import matrixtools as _mt
|
19
18
|
|
20
19
|
|
21
|
-
class EffectRep
|
20
|
+
class EffectRep:
|
21
|
+
"""Any representation of an "effect" in the sense of a POVM."""
|
22
|
+
|
22
23
|
def __init__(self, state_space):
|
23
24
|
self.state_space = _StateSpace.cast(state_space)
|
24
25
|
|
@@ -27,6 +28,10 @@ class EffectRep(_basereps.EffectRep):
|
|
27
28
|
|
28
29
|
|
29
30
|
class EffectRepConjugatedState(EffectRep):
|
31
|
+
"""
|
32
|
+
A real superket representation of an "effect" in the sense of a POVM.
|
33
|
+
Internally uses a StateRepDense object to hold the real superket.
|
34
|
+
"""
|
30
35
|
|
31
36
|
def __init__(self, state_rep):
|
32
37
|
self.state_rep = state_rep
|
@@ -100,11 +105,6 @@ class EffectRepTensorProduct(EffectRep):
|
|
100
105
|
super(EffectRepTensorProduct, self).__init__(state_space)
|
101
106
|
self.factor_effects_have_changed()
|
102
107
|
|
103
|
-
#TODO: fix this:
|
104
|
-
#def __reduce__(self):
|
105
|
-
# return (EffectRepTensorProduct,
|
106
|
-
# (self.kron_array, self.factor_dims, self.nfactors, self.max_factor_dim, self.dim))
|
107
|
-
|
108
108
|
def to_dense(self, on_space, outvec=None):
|
109
109
|
|
110
110
|
if on_space not in ('minimal', 'HilbertSchmidt'):
|
@@ -159,22 +159,6 @@ class EffectRepTensorProduct(EffectRep):
|
|
159
159
|
def factor_effects_have_changed(self):
|
160
160
|
self._fill_fast_kron() # updates effect reps
|
161
161
|
|
162
|
-
#def to_dense(self):
|
163
|
-
# if len(self.factors) == 0: return _np.empty(0, complex if self._evotype == "statevec" else 'd')
|
164
|
-
# #NOTE: moved a fast version of to_dense to replib - could use that if need a fast to_dense call...
|
165
|
-
#
|
166
|
-
# factorPOVMs = self.factors
|
167
|
-
# ret = factorPOVMs[0][self.effectLbls[0]].to_dense()
|
168
|
-
# for i in range(1, len(factorPOVMs)):
|
169
|
-
# ret = _np.kron(ret, factorPOVMs[i][self.effectLbls[i]].to_dense())
|
170
|
-
# return ret
|
171
|
-
# elif self._evotype == "stabilizer":
|
172
|
-
# # each factor is a StabilizerEffectVec
|
173
|
-
# raise ValueError("Cannot convert Stabilizer tensor product effect to an array!")
|
174
|
-
# # should be using effect.outcomes property...
|
175
|
-
# else: # self._evotype in ("svterm","cterm")
|
176
|
-
# raise NotImplementedError("to_dense() not implemented for %s evolution type" % self._evotype)
|
177
|
-
|
178
162
|
|
179
163
|
class EffectRepComposed(EffectRep):
|
180
164
|
def __init__(self, op_rep, effect_rep, op_id, state_space):
|
@@ -17,7 +17,6 @@ import scipy.sparse as _sps
|
|
17
17
|
from scipy.sparse.linalg import LinearOperator
|
18
18
|
|
19
19
|
from .statereps import StateRepDense as _StateRepDense
|
20
|
-
from .. import basereps as _basereps
|
21
20
|
from pygsti.baseobjs.statespace import StateSpace as _StateSpace
|
22
21
|
from ...tools import basistools as _bt
|
23
22
|
from ...tools import internalgates as _itgs
|
@@ -26,7 +25,11 @@ from ...tools import matrixtools as _mt
|
|
26
25
|
from ...tools import optools as _ot
|
27
26
|
|
28
27
|
|
29
|
-
class OpRep
|
28
|
+
class OpRep:
|
29
|
+
"""
|
30
|
+
A real superoperator on Hilbert-Schmidt space.
|
31
|
+
"""
|
32
|
+
|
30
33
|
def __init__(self, state_space):
|
31
34
|
self.state_space = state_space
|
32
35
|
|
@@ -41,6 +44,10 @@ class OpRep(_basereps.OpRep):
|
|
41
44
|
raise NotImplementedError()
|
42
45
|
|
43
46
|
def aslinearoperator(self):
|
47
|
+
"""
|
48
|
+
Return a SciPy LinearOperator that accepts superket representations of vectors
|
49
|
+
in Hilbert-Schmidt space and returns a vector of that same representation.
|
50
|
+
"""
|
44
51
|
def mv(v):
|
45
52
|
if v.ndim == 2 and v.shape[1] == 1: v = v[:, 0]
|
46
53
|
in_state = _StateRepDense(_np.ascontiguousarray(v, 'd'), self.state_space, None)
|
@@ -54,6 +61,12 @@ class OpRep(_basereps.OpRep):
|
|
54
61
|
|
55
62
|
|
56
63
|
class OpRepDenseSuperop(OpRep):
|
64
|
+
"""
|
65
|
+
A real superoperator on Hilbert-Schmidt space.
|
66
|
+
The operator's action (and adjoint action) work with Hermitian matrices
|
67
|
+
stored as *vectors* in their real superket representations.
|
68
|
+
"""
|
69
|
+
|
57
70
|
def __init__(self, mx, basis, state_space):
|
58
71
|
state_space = _StateSpace.cast(state_space)
|
59
72
|
if mx is None:
|
@@ -174,7 +187,7 @@ class OpRepStandard(OpRepDenseSuperop):
|
|
174
187
|
state_space = _StateSpace.cast(state_space)
|
175
188
|
assert(superop.shape[0] == state_space.dim)
|
176
189
|
|
177
|
-
super(OpRepStandard, self).__init__(superop, state_space)
|
190
|
+
super(OpRepStandard, self).__init__(superop, basis, state_space)
|
178
191
|
|
179
192
|
|
180
193
|
class OpRepKraus(OpRep):
|
@@ -257,10 +270,6 @@ class OpRepStochastic(OpRepRandomUnitary):
|
|
257
270
|
self.rates[:] = rates
|
258
271
|
self.update_unitary_rates(unitary_rates)
|
259
272
|
|
260
|
-
#class OpRepClifford(OpRep): # TODO?
|
261
|
-
# #def __init__(self, unitarymx, symplecticrep):
|
262
|
-
# # pass
|
263
|
-
|
264
273
|
|
265
274
|
class OpRepComposed(OpRep):
|
266
275
|
|
@@ -362,13 +371,6 @@ class OpRepEmbedded(OpRep):
|
|
362
371
|
self.offset = sum(blocksizes[0:self.active_block_index])
|
363
372
|
super(OpRepEmbedded, self).__init__(state_space)
|
364
373
|
|
365
|
-
#def __reduce__(self):
|
366
|
-
# return (DMOpRepEmbedded, (self.embedded,
|
367
|
-
# self.num_basis_els, self.action_inds,
|
368
|
-
# self.blocksizes, self.embeddedDim,
|
369
|
-
# self.ncomponents, self.active_block_index,
|
370
|
-
# self.nblocks, self.dim))
|
371
|
-
|
372
374
|
def _acton_other_blocks_trivially(self, output_state, state):
|
373
375
|
offset = 0
|
374
376
|
for iBlk, blockSize in enumerate(self.blocksizes):
|
@@ -453,15 +455,6 @@ class OpRepExpErrorgen(OpRep):
|
|
453
455
|
def exp_params(self):
|
454
456
|
return (self.mu, self.eta, self.m_star, self.s)
|
455
457
|
|
456
|
-
#def __reduce__(self):
|
457
|
-
# if self.unitary_postfactor is None:
|
458
|
-
# return (DMOpRepLindblad, (self.errorgen_rep, self.mu, self.eta, self.m_star, self.s,
|
459
|
-
# _np.empty(0, 'd'), _np.empty(0, _np.int64), _np.zeros(1, _np.int64)))
|
460
|
-
# else:
|
461
|
-
# return (DMOpRepLindblad, (self.errorgen_rep, self.mu, self.eta, self.m_star, self.s,
|
462
|
-
# self.unitary_postfactor.data, self.unitary_postfactor.indices,
|
463
|
-
# self.unitary_postfactor.indptr))
|
464
|
-
|
465
458
|
def acton(self, state):
|
466
459
|
""" Act this gate map on an input state """
|
467
460
|
statedata = state.data.copy() # must COPY because _custom... call below *modifies* "b" arg
|
@@ -14,7 +14,6 @@ import functools as _functools
|
|
14
14
|
|
15
15
|
import numpy as _np
|
16
16
|
|
17
|
-
from .. import basereps as _basereps
|
18
17
|
from pygsti.baseobjs.statespace import StateSpace as _StateSpace
|
19
18
|
from ...tools import basistools as _bt
|
20
19
|
from ...tools import optools as _ot
|
@@ -25,13 +24,17 @@ except ImportError:
|
|
25
24
|
_fastcalc = None
|
26
25
|
|
27
26
|
|
28
|
-
class StateRep
|
27
|
+
class StateRep:
|
28
|
+
"""A real superket representation of an element in Hilbert-Schmidt space."""
|
29
|
+
|
29
30
|
def __init__(self, data, state_space):
|
30
31
|
#vec = _np.asarray(vec, dtype='d')
|
31
32
|
assert(data.dtype == _np.dtype('d'))
|
32
33
|
self.data = _np.require(data.copy(), requirements=['OWNDATA', 'C_CONTIGUOUS'])
|
33
34
|
self.state_space = _StateSpace.cast(state_space)
|
34
|
-
|
35
|
+
ds0 = self.data.shape[0]
|
36
|
+
assert(ds0 == self.state_space.dim)
|
37
|
+
assert(ds0 == self.data.size)
|
35
38
|
|
36
39
|
def __reduce__(self):
|
37
40
|
return (StateRep, (self.data, self.state_space), (self.data.flags.writeable,))
|
@@ -62,6 +65,10 @@ class StateRep(_basereps.StateRep):
|
|
62
65
|
|
63
66
|
|
64
67
|
class StateRepDense(StateRep):
|
68
|
+
"""
|
69
|
+
An almost-trivial wrapper around StateRep.
|
70
|
+
Implements the "base" property and defines a trivial "base_has_changed" function.
|
71
|
+
"""
|
65
72
|
|
66
73
|
def __init__(self, data, state_space, basis):
|
67
74
|
#ignore basis for now (self.basis = basis in future?)
|
pygsti/evotypes/evotype.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1
1
|
import importlib as _importlib
|
2
2
|
|
3
3
|
from . import basereps as _basereps
|
4
|
+
from pygsti.baseobjs.statespace import StateSpace as _StateSpace
|
4
5
|
|
5
6
|
|
6
7
|
class Evotype(object):
|
@@ -50,10 +51,46 @@ class Evotype(object):
|
|
50
51
|
}
|
51
52
|
|
52
53
|
@classmethod
|
53
|
-
def cast(cls, obj, default_prefer_dense_reps=
|
54
|
+
def cast(cls, obj, default_prefer_dense_reps=None, state_space=None):
|
55
|
+
"""
|
56
|
+
Cast the specified object to an Evotype with options for default Evotype
|
57
|
+
handling.
|
58
|
+
|
59
|
+
Parameters
|
60
|
+
----------
|
61
|
+
obj : Evotype or str
|
62
|
+
Object to cast to an Evotype. If already an Evotype the object is simply
|
63
|
+
returned. Otherwise if a string we attempt to cast it to a recognized
|
64
|
+
evotype option. If the string "default" is passed in then we determine
|
65
|
+
the type of evotype used in conjunction with the two optional kwargs below.
|
66
|
+
|
67
|
+
default_prefer_dense_reps : None or bool, optional (default None)
|
68
|
+
Flag to indicate preference for dense representation types when casting
|
69
|
+
a string. If None then there is no preference and this will be determined
|
70
|
+
by the optional state_space kwarg, if present. Otherwise if a boolean value
|
71
|
+
this selection overrides any logic based on the state space.
|
72
|
+
|
73
|
+
state_space : StateSpace, optional (default None)
|
74
|
+
If not None then the dimension of the state space is used to determine whether
|
75
|
+
or not to prefer the use of dense representation types when not already specified
|
76
|
+
by the default_prefer_dense_reps kwarg.
|
77
|
+
|
78
|
+
Returns
|
79
|
+
-------
|
80
|
+
Evotype
|
81
|
+
"""
|
54
82
|
if isinstance(obj, Evotype):
|
55
83
|
return obj
|
56
|
-
|
84
|
+
|
85
|
+
if default_prefer_dense_reps is None:
|
86
|
+
if state_space is None:
|
87
|
+
default_prefer_dense_reps = False #reproduces legacy behavior.
|
88
|
+
else:
|
89
|
+
if not isinstance(state_space, _StateSpace):
|
90
|
+
raise ValueError('state_space must be a StateSpace object.')
|
91
|
+
default_prefer_dense_reps = False if state_space.dim > 64 else True #HARDCODED
|
92
|
+
|
93
|
+
if obj == "default":
|
57
94
|
return Evotype(cls.default_evotype, default_prefer_dense_reps)
|
58
95
|
else: # assume obj is a string naming an evotype
|
59
96
|
return Evotype(str(obj), default_prefer_dense_reps)
|
Binary file
|
@@ -39,10 +39,6 @@ cdef class EffectRep(_basereps_cython.EffectRep):
|
|
39
39
|
def nqubits(self):
|
40
40
|
return self.state_space.num_qubits
|
41
41
|
|
42
|
-
#@property
|
43
|
-
#def dim(self):
|
44
|
-
# return 2**(self.c_effect._n) # assume "unitary evolution"-type mode
|
45
|
-
|
46
42
|
def probability(self, StateRep state not None):
|
47
43
|
#unnecessary (just put in signature): cdef StateRep st = <StateRep?>state
|
48
44
|
return self.c_effect.probability(state.c_state)
|
Binary file
|
@@ -40,10 +40,6 @@ cdef class OpRep(_basereps_cython.OpRep):
|
|
40
40
|
def nqubits(self):
|
41
41
|
return self.state_space.num_qubits
|
42
42
|
|
43
|
-
#@property
|
44
|
-
#def dim(self):
|
45
|
-
# return 2**(self.nqubits) # assume "unitary evolution"-type mode
|
46
|
-
|
47
43
|
def acton(self, StateRep state not None):
|
48
44
|
cdef INT n = self.c_rep._n
|
49
45
|
cdef INT namps = state.c_state._namps
|
Binary file
|
@@ -49,10 +49,6 @@ cdef class StateRep(_basereps_cython.StateRep):
|
|
49
49
|
def nqubits(self):
|
50
50
|
return self.state_space.num_qubits
|
51
51
|
|
52
|
-
#@property
|
53
|
-
#def dim(self):
|
54
|
-
# return 2**(self.c_state._n) # assume "unitary evolution"-type mode
|
55
|
-
|
56
52
|
def actionable_staterep(self):
|
57
53
|
# return a state rep that can be acted on by op reps or mapped to
|
58
54
|
# a probability/amplitude by POVM effect reps.
|
@@ -129,7 +125,7 @@ cdef class StateRepTensorProduct(StateRep):
|
|
129
125
|
def __cinit__(self, factor_state_reps, state_space):
|
130
126
|
self.factor_reps = factor_state_reps
|
131
127
|
n = sum([sf.nqubits for sf in self.factor_reps]) # total number of qubits
|
132
|
-
np = int(_np.
|
128
|
+
np = int(_np.prod([len(sf.pvectors) for sf in self.factor_reps]))
|
133
129
|
self._cinit_base(_np.zeros((2 * n, 2 * n), _np.int64),
|
134
130
|
_np.zeros((np, 2 * n), _np.int64),
|
135
131
|
_np.ones(np, complex),
|