py2ls 0.1.9.8__py3-none-any.whl → 0.1.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py2ls/batman.py +183 -0
- py2ls/data/styles/style10.json +213 -0
- py2ls/data/styles/style11.json +213 -0
- py2ls/data/styles/style12.json +192 -0
- py2ls/ich2ls.py +590 -0
- py2ls/ips.py +1 -0
- py2ls/netfinder.py +5 -2
- py2ls/plot.py +260 -72
- py2ls/stats.py +1 -3
- {py2ls-0.1.9.8.dist-info → py2ls-0.1.10.0.dist-info}/METADATA +1 -1
- {py2ls-0.1.9.8.dist-info → py2ls-0.1.10.0.dist-info}/RECORD +12 -7
- {py2ls-0.1.9.8.dist-info → py2ls-0.1.10.0.dist-info}/WHEEL +0 -0
py2ls/plot.py
CHANGED
@@ -349,7 +349,11 @@ def catplot(data, *args, **kwargs):
|
|
349
349
|
edgecolor=opt_v["EdgeColor"],
|
350
350
|
label=label[i],
|
351
351
|
lw=opt_v["LineWidth"],
|
352
|
-
hatch=
|
352
|
+
hatch=(
|
353
|
+
opt_v["hatch"][i % len(opt_v["FaceColor"])]
|
354
|
+
if opt_v["hatch"] is not None
|
355
|
+
else None
|
356
|
+
),
|
353
357
|
)
|
354
358
|
elif (
|
355
359
|
"l" in opt_v["loc"].lower()
|
@@ -364,7 +368,11 @@ def catplot(data, *args, **kwargs):
|
|
364
368
|
edgecolor=opt_v["EdgeColor"],
|
365
369
|
label=label[i],
|
366
370
|
lw=opt_v["LineWidth"],
|
367
|
-
hatch=
|
371
|
+
hatch=(
|
372
|
+
opt_v["hatch"][i % len(opt_v["FaceColor"])]
|
373
|
+
if opt_v["hatch"] is not None
|
374
|
+
else None
|
375
|
+
),
|
368
376
|
)
|
369
377
|
elif (
|
370
378
|
"o" in opt_v["loc"].lower()
|
@@ -379,7 +387,11 @@ def catplot(data, *args, **kwargs):
|
|
379
387
|
edgecolor=opt_v["EdgeColor"],
|
380
388
|
label=label[i],
|
381
389
|
lw=opt_v["LineWidth"],
|
382
|
-
hatch=
|
390
|
+
hatch=(
|
391
|
+
opt_v["hatch"][i % len(opt_v["FaceColor"])]
|
392
|
+
if opt_v["hatch"] is not None
|
393
|
+
else None
|
394
|
+
),
|
383
395
|
)
|
384
396
|
elif "i" in opt_v["loc"].lower():
|
385
397
|
if i % 2 == 1: # odd number
|
@@ -394,7 +406,11 @@ def catplot(data, *args, **kwargs):
|
|
394
406
|
edgecolor=opt_v["EdgeColor"],
|
395
407
|
label=label[i],
|
396
408
|
lw=opt_v["LineWidth"],
|
397
|
-
hatch=
|
409
|
+
hatch=(
|
410
|
+
opt_v["hatch"][i % len(opt_v["FaceColor"])]
|
411
|
+
if opt_v["hatch"] is not None
|
412
|
+
else None
|
413
|
+
),
|
398
414
|
)
|
399
415
|
else:
|
400
416
|
ax.fill_betweenx(
|
@@ -408,7 +424,11 @@ def catplot(data, *args, **kwargs):
|
|
408
424
|
edgecolor=opt_v["EdgeColor"],
|
409
425
|
label=label[i],
|
410
426
|
lw=opt_v["LineWidth"],
|
411
|
-
hatch=
|
427
|
+
hatch=(
|
428
|
+
opt_v["hatch"][i % len(opt_v["FaceColor"])]
|
429
|
+
if opt_v["hatch"] is not None
|
430
|
+
else None
|
431
|
+
),
|
412
432
|
)
|
413
433
|
elif "f" in opt_v["loc"].lower():
|
414
434
|
ax.fill_betweenx(
|
@@ -420,7 +440,11 @@ def catplot(data, *args, **kwargs):
|
|
420
440
|
edgecolor=opt_v["EdgeColor"],
|
421
441
|
label=label[i],
|
422
442
|
lw=opt_v["LineWidth"],
|
423
|
-
hatch=
|
443
|
+
hatch=(
|
444
|
+
opt_v["hatch"][i % len(opt_v["FaceColor"])]
|
445
|
+
if opt_v["hatch"] is not None
|
446
|
+
else None
|
447
|
+
),
|
424
448
|
)
|
425
449
|
else:
|
426
450
|
if "r" in opt_v["loc"].lower():
|
@@ -432,7 +456,11 @@ def catplot(data, *args, **kwargs):
|
|
432
456
|
alpha=opt_v["FaceAlpha"],
|
433
457
|
edgecolor=opt_v["EdgeColor"],
|
434
458
|
lw=opt_v["LineWidth"],
|
435
|
-
hatch=
|
459
|
+
hatch=(
|
460
|
+
opt_v["hatch"][i % len(opt_v["FaceColor"])]
|
461
|
+
if opt_v["hatch"] is not None
|
462
|
+
else None
|
463
|
+
),
|
436
464
|
)
|
437
465
|
elif (
|
438
466
|
"l" in opt_v["loc"].lower() and not "f" in opt_v["loc"].lower()
|
@@ -445,7 +473,11 @@ def catplot(data, *args, **kwargs):
|
|
445
473
|
alpha=opt_v["FaceAlpha"],
|
446
474
|
edgecolor=opt_v["EdgeColor"],
|
447
475
|
lw=opt_v["LineWidth"],
|
448
|
-
hatch=
|
476
|
+
hatch=(
|
477
|
+
opt_v["hatch"][i % len(opt_v["FaceColor"])]
|
478
|
+
if opt_v["hatch"] is not None
|
479
|
+
else None
|
480
|
+
),
|
449
481
|
)
|
450
482
|
elif "o" in opt_v["loc"].lower() or "both" in opt_v["loc"].lower():
|
451
483
|
ax.fill_betweenx(
|
@@ -456,7 +488,11 @@ def catplot(data, *args, **kwargs):
|
|
456
488
|
alpha=opt_v["FaceAlpha"],
|
457
489
|
edgecolor=opt_v["EdgeColor"],
|
458
490
|
lw=opt_v["LineWidth"],
|
459
|
-
hatch=
|
491
|
+
hatch=(
|
492
|
+
opt_v["hatch"][i % len(opt_v["FaceColor"])]
|
493
|
+
if opt_v["hatch"] is not None
|
494
|
+
else None
|
495
|
+
),
|
460
496
|
)
|
461
497
|
elif "i" in opt_v["loc"].lower():
|
462
498
|
if i % 2 == 1: # odd number
|
@@ -468,7 +504,11 @@ def catplot(data, *args, **kwargs):
|
|
468
504
|
alpha=opt_v["FaceAlpha"],
|
469
505
|
edgecolor=opt_v["EdgeColor"],
|
470
506
|
lw=opt_v["LineWidth"],
|
471
|
-
hatch=
|
507
|
+
hatch=(
|
508
|
+
opt_v["hatch"][i % len(opt_v["FaceColor"])]
|
509
|
+
if opt_v["hatch"] is not None
|
510
|
+
else None
|
511
|
+
),
|
472
512
|
)
|
473
513
|
else:
|
474
514
|
ax.fill_betweenx(
|
@@ -479,7 +519,11 @@ def catplot(data, *args, **kwargs):
|
|
479
519
|
alpha=opt_v["FaceAlpha"],
|
480
520
|
edgecolor=opt_v["EdgeColor"],
|
481
521
|
lw=opt_v["LineWidth"],
|
482
|
-
hatch=
|
522
|
+
hatch=(
|
523
|
+
opt_v["hatch"][i % len(opt_v["FaceColor"])]
|
524
|
+
if opt_v["hatch"] is not None
|
525
|
+
else None
|
526
|
+
),
|
483
527
|
)
|
484
528
|
elif "f" in opt_v["loc"].lower():
|
485
529
|
ax.fill_betweenx(
|
@@ -490,7 +534,11 @@ def catplot(data, *args, **kwargs):
|
|
490
534
|
alpha=opt_v["FaceAlpha"],
|
491
535
|
edgecolor=opt_v["EdgeColor"],
|
492
536
|
lw=opt_v["LineWidth"],
|
493
|
-
hatch=
|
537
|
+
hatch=(
|
538
|
+
opt_v["hatch"][i % len(opt_v["FaceColor"])]
|
539
|
+
if opt_v["hatch"] is not None
|
540
|
+
else None
|
541
|
+
),
|
494
542
|
)
|
495
543
|
|
496
544
|
def plot_ridgeplot(data, x, y, opt_r, **kwargs_figsets):
|
@@ -723,6 +771,7 @@ def catplot(data, *args, **kwargs):
|
|
723
771
|
col = kwargs.get("col", None)
|
724
772
|
report = kwargs.get("report", True)
|
725
773
|
vertical = kwargs.get("vertical", True)
|
774
|
+
stats_subgroup = kwargs.get("stats_subgroup", True)
|
726
775
|
if not col:
|
727
776
|
kw_figsets = kwargs.get("figsets", None)
|
728
777
|
# check the data type
|
@@ -755,23 +804,100 @@ def catplot(data, *args, **kwargs):
|
|
755
804
|
for i in df[x].unique().tolist():
|
756
805
|
print(i) # to indicate which 'x'
|
757
806
|
if hue and stats_param:
|
758
|
-
if
|
759
|
-
|
760
|
-
|
807
|
+
if stats_subgroup:
|
808
|
+
data_temp = df[df[x] == i]
|
809
|
+
hue_labels = data_temp[hue].unique().tolist()
|
810
|
+
if isinstance(stats_param, dict):
|
811
|
+
if len(hue_labels) > 2:
|
812
|
+
if "factor" in stats_param.keys():
|
813
|
+
res_tmp = FuncMultiCmpt(
|
814
|
+
data=data_temp, dv=y, **stats_param
|
815
|
+
)
|
816
|
+
else:
|
817
|
+
res_tmp = FuncMultiCmpt(
|
818
|
+
data=data_temp,
|
819
|
+
dv=y,
|
820
|
+
factor=hue,
|
821
|
+
**stats_param,
|
822
|
+
)
|
823
|
+
elif bool(stats_param):
|
824
|
+
res_tmp = FuncMultiCmpt(
|
825
|
+
data=data_temp, dv=y, factor=hue
|
826
|
+
)
|
827
|
+
else:
|
828
|
+
res_tmp = "did not work properly"
|
829
|
+
display_output(res_tmp)
|
830
|
+
res = pd.concat(
|
831
|
+
[res, pd.DataFrame([res_tmp])],
|
832
|
+
ignore_index=True,
|
833
|
+
axis=0,
|
834
|
+
)
|
761
835
|
else:
|
762
|
-
|
763
|
-
|
836
|
+
if isinstance(stats_param, dict):
|
837
|
+
pmc = stats_param.get("pmc", "pmc")
|
838
|
+
pair = stats_param.get("pair", "unpaired")
|
839
|
+
else:
|
840
|
+
pmc = "pmc"
|
841
|
+
pair = "unpair"
|
842
|
+
|
843
|
+
res_tmp = FuncCmpt(
|
844
|
+
x1=data_temp.loc[
|
845
|
+
data_temp[hue] == hue_labels[0], y
|
846
|
+
].tolist(),
|
847
|
+
x2=data_temp.loc[
|
848
|
+
data_temp[hue] == hue_labels[1], y
|
849
|
+
].tolist(),
|
850
|
+
pmc=pmc,
|
851
|
+
pair=pair,
|
764
852
|
)
|
765
|
-
|
766
|
-
res_tmp = FuncMultiCmpt(
|
767
|
-
data=df[df[x] == i], dv=y, factor=hue
|
768
|
-
)
|
853
|
+
display_output(res_tmp)
|
769
854
|
else:
|
770
|
-
|
771
|
-
|
772
|
-
|
773
|
-
|
774
|
-
|
855
|
+
if isinstance(stats_param, dict):
|
856
|
+
if len(xticklabels) > 2:
|
857
|
+
if "factor" in stats_param.keys():
|
858
|
+
res_tmp = FuncMultiCmpt(
|
859
|
+
data=df, dv=y, **stats_param
|
860
|
+
)
|
861
|
+
else:
|
862
|
+
res_tmp = FuncMultiCmpt(
|
863
|
+
data=df[df[x] == i],
|
864
|
+
dv=y,
|
865
|
+
factor=hue,
|
866
|
+
**stats_param,
|
867
|
+
)
|
868
|
+
elif bool(stats_param):
|
869
|
+
res_tmp = FuncMultiCmpt(
|
870
|
+
data=df[df[x] == i], dv=y, factor=hue
|
871
|
+
)
|
872
|
+
else:
|
873
|
+
res_tmp = "did not work properly"
|
874
|
+
display_output(res_tmp)
|
875
|
+
res = pd.concat(
|
876
|
+
[res, pd.DataFrame([res_tmp])],
|
877
|
+
ignore_index=True,
|
878
|
+
axis=0,
|
879
|
+
)
|
880
|
+
else:
|
881
|
+
if isinstance(stats_param, dict):
|
882
|
+
pmc = stats_param.get("pmc", "pmc")
|
883
|
+
pair = stats_param.get("pair", "unpaired")
|
884
|
+
else:
|
885
|
+
pmc = "pmc"
|
886
|
+
pair = "unpair"
|
887
|
+
|
888
|
+
data_temp = df[df[x] == i]
|
889
|
+
hue_labels = data_temp[hue].unique().tolist()
|
890
|
+
res_tmp = FuncCmpt(
|
891
|
+
x1=data_temp.loc[
|
892
|
+
data_temp[hue] == hue_labels[0], y
|
893
|
+
].tolist(),
|
894
|
+
x2=data_temp.loc[
|
895
|
+
data_temp[hue] == hue_labels[1], y
|
896
|
+
].tolist(),
|
897
|
+
pmc=pmc,
|
898
|
+
pair=pair,
|
899
|
+
)
|
900
|
+
display_output(res_tmp)
|
775
901
|
ihue += 1
|
776
902
|
|
777
903
|
else:
|
@@ -1115,41 +1241,70 @@ def catplot(data, *args, **kwargs):
|
|
1115
1241
|
res,
|
1116
1242
|
xticks_x_loc,
|
1117
1243
|
xticklabels,
|
1118
|
-
y_loc=np.
|
1244
|
+
y_loc=np.nanmax(data),
|
1119
1245
|
report_go=report,
|
1120
1246
|
)
|
1121
1247
|
else: # hue is not None
|
1122
1248
|
ihue = 1
|
1123
1249
|
for i in df[x].unique().tolist():
|
1250
|
+
data_temp = df[df[x] == i]
|
1251
|
+
hue_labels = data_temp[hue].unique().tolist()
|
1124
1252
|
if stats_param:
|
1125
|
-
if
|
1126
|
-
if
|
1253
|
+
if len(hue_labels) > 2:
|
1254
|
+
if isinstance(stats_param, dict):
|
1255
|
+
if "factor" in stats_param.keys():
|
1256
|
+
res_tmp = FuncMultiCmpt(
|
1257
|
+
data=df, dv=y, **stats_param
|
1258
|
+
)
|
1259
|
+
else:
|
1260
|
+
res_tmp = FuncMultiCmpt(
|
1261
|
+
data=df[df[x] == i],
|
1262
|
+
dv=y,
|
1263
|
+
factor=hue,
|
1264
|
+
**stats_param,
|
1265
|
+
)
|
1266
|
+
elif bool(stats_param):
|
1127
1267
|
res_tmp = FuncMultiCmpt(
|
1128
|
-
data=df, dv=y,
|
1268
|
+
data=df[df[x] == i], dv=y, factor=hue
|
1129
1269
|
)
|
1130
1270
|
else:
|
1131
|
-
res_tmp =
|
1132
|
-
|
1133
|
-
|
1134
|
-
|
1135
|
-
|
1136
|
-
|
1137
|
-
|
1138
|
-
|
1139
|
-
data
|
1271
|
+
res_tmp = "did not work properly"
|
1272
|
+
xloc_curr = hue_len * (ihue - 1)
|
1273
|
+
|
1274
|
+
add_asterisks(
|
1275
|
+
ax,
|
1276
|
+
res_tmp,
|
1277
|
+
xticks[xloc_curr : xloc_curr + hue_len],
|
1278
|
+
legend_hue,
|
1279
|
+
y_loc=np.nanmax(data),
|
1280
|
+
report_go=report,
|
1140
1281
|
)
|
1141
1282
|
else:
|
1142
|
-
|
1143
|
-
|
1144
|
-
|
1145
|
-
|
1146
|
-
|
1147
|
-
|
1148
|
-
|
1149
|
-
|
1150
|
-
|
1151
|
-
|
1152
|
-
|
1283
|
+
if isinstance(stats_param, dict):
|
1284
|
+
pmc = stats_param.get("pmc", "pmc")
|
1285
|
+
pair = stats_param.get("pair", "unpaired")
|
1286
|
+
else:
|
1287
|
+
pmc = "pmc"
|
1288
|
+
pair = "unpair"
|
1289
|
+
res_tmp = FuncCmpt(
|
1290
|
+
x1=data_temp.loc[
|
1291
|
+
data_temp[hue] == hue_labels[0], y
|
1292
|
+
].tolist(),
|
1293
|
+
x2=data_temp.loc[
|
1294
|
+
data_temp[hue] == hue_labels[1], y
|
1295
|
+
].tolist(),
|
1296
|
+
pmc=pmc,
|
1297
|
+
pair=pair,
|
1298
|
+
)
|
1299
|
+
xloc_curr = hue_len * (ihue - 1)
|
1300
|
+
add_asterisks(
|
1301
|
+
ax,
|
1302
|
+
res_tmp,
|
1303
|
+
xticks[xloc_curr : xloc_curr + hue_len],
|
1304
|
+
legend_hue,
|
1305
|
+
y_loc=np.nanmax(data),
|
1306
|
+
report_go=report,
|
1307
|
+
)
|
1153
1308
|
ihue += 1
|
1154
1309
|
else: # 240814: still has some bugs
|
1155
1310
|
if isinstance(res, dict):
|
@@ -1668,15 +1823,43 @@ def get_color(
|
|
1668
1823
|
cmap = "grey"
|
1669
1824
|
# Determine color list based on cmap parameter
|
1670
1825
|
if "aut" in cmap:
|
1671
|
-
|
1672
|
-
"#
|
1673
|
-
|
1674
|
-
"#
|
1675
|
-
|
1676
|
-
"#
|
1677
|
-
|
1678
|
-
"#
|
1679
|
-
|
1826
|
+
if n == 1:
|
1827
|
+
colorlist = ["#3A4453"]
|
1828
|
+
elif n == 2:
|
1829
|
+
colorlist = ["#3A4453", "#DF5932"]
|
1830
|
+
elif n == 3:
|
1831
|
+
colorlist = ["#3A4453", "#DF5932", "#299D8F"]
|
1832
|
+
elif n == 4:
|
1833
|
+
# colorlist = ["#3A4453", "#DF5932", "#EBAA00", "#0B4083"]
|
1834
|
+
colorlist = ["#81C6BD", "#FBAF63", "#F2675B", "#72A1C9"]
|
1835
|
+
elif n == 5:
|
1836
|
+
colorlist = [
|
1837
|
+
"#3A4453",
|
1838
|
+
"#427AB2",
|
1839
|
+
"#F09148",
|
1840
|
+
"#DBDB8D",
|
1841
|
+
"#C59D94",
|
1842
|
+
"#AFC7E8",
|
1843
|
+
]
|
1844
|
+
elif n == 6:
|
1845
|
+
colorlist = [
|
1846
|
+
"#3A4453",
|
1847
|
+
"#427AB2",
|
1848
|
+
"#F09148",
|
1849
|
+
"#DBDB8D",
|
1850
|
+
"#C59D94",
|
1851
|
+
"#E53528",
|
1852
|
+
]
|
1853
|
+
else:
|
1854
|
+
colorlist = [
|
1855
|
+
"#474747",
|
1856
|
+
"#FF2C00",
|
1857
|
+
"#0C5DA5",
|
1858
|
+
"#845B97",
|
1859
|
+
"#58BBCC",
|
1860
|
+
"#FF9500",
|
1861
|
+
"#D57DBE",
|
1862
|
+
]
|
1680
1863
|
by = "start"
|
1681
1864
|
elif any(["cub" in cmap.lower(), "sns" in cmap.lower()]):
|
1682
1865
|
if kwargs:
|
@@ -1754,6 +1937,10 @@ import matplotlib.pyplot as plt
|
|
1754
1937
|
|
1755
1938
|
|
1756
1939
|
def stdshade(ax=None, *args, **kwargs):
|
1940
|
+
"""
|
1941
|
+
usage:
|
1942
|
+
plot.stdshade(data_array, c=clist[1], lw=2, ls="-.", alpha=0.2)
|
1943
|
+
"""
|
1757
1944
|
# Separate kws_line and kws_fill if necessary
|
1758
1945
|
kws_line = kwargs.pop("kws_line", {})
|
1759
1946
|
kws_fill = kwargs.pop("kws_fill", {})
|
@@ -1791,8 +1978,9 @@ def stdshade(ax=None, *args, **kwargs):
|
|
1791
1978
|
ax = plt.gca()
|
1792
1979
|
if ax is None:
|
1793
1980
|
ax = plt.gca()
|
1794
|
-
alpha = 0.
|
1795
|
-
acolor = "k"
|
1981
|
+
alpha = kwargs.get("alpha", 0.2)
|
1982
|
+
acolor = kwargs.get("color", "k")
|
1983
|
+
acolor = kwargs.get("c", "k")
|
1796
1984
|
paraStdSem = "sem"
|
1797
1985
|
plotStyle = "-"
|
1798
1986
|
plotMarker = "none"
|
@@ -2130,20 +2318,20 @@ def add_asterisks(ax, res, xticks_x_loc, xticklabels, **kwargs_funcstars):
|
|
2130
2318
|
pval_groups = res["pval"]
|
2131
2319
|
FuncStars(
|
2132
2320
|
ax=ax,
|
2133
|
-
x1=
|
2134
|
-
x2=
|
2135
|
-
pval=pval_groups,
|
2136
|
-
**kwargs_funcstars,
|
2137
|
-
)
|
2138
|
-
else:
|
2139
|
-
pval_groups = res["pval"]
|
2140
|
-
FuncStars(
|
2141
|
-
ax=ax,
|
2142
|
-
x1=1,
|
2143
|
-
x2=2,
|
2321
|
+
x1=xticks_x_loc[0],
|
2322
|
+
x2=xticks_x_loc[1],
|
2144
2323
|
pval=pval_groups,
|
2145
2324
|
**kwargs_funcstars,
|
2146
2325
|
)
|
2326
|
+
# else:
|
2327
|
+
# pval_groups = res["pval"]
|
2328
|
+
# FuncStars(
|
2329
|
+
# ax=ax,
|
2330
|
+
# x1=1,
|
2331
|
+
# x2=2,
|
2332
|
+
# pval=pval_groups,
|
2333
|
+
# **kwargs_funcstars,
|
2334
|
+
# )
|
2147
2335
|
|
2148
2336
|
|
2149
2337
|
def style_examples(
|
py2ls/stats.py
CHANGED
@@ -705,9 +705,7 @@ def extract_apa(res_tab):
|
|
705
705
|
for irow in range(res_tab.shape[0]):
|
706
706
|
note_tmp = f'{res_tab.Source[irow]}:F{round(res_tab.ddof1[irow]),round(res_tab.ddof2[irow])}={round(res_tab.F[irow],3)},p={round(res_tab["p-unc"][irow],3)}'
|
707
707
|
notes_APA.append(note_tmp)
|
708
|
-
elif "DF" in res_tab:
|
709
|
-
print("here")
|
710
|
-
display(res_tab)
|
708
|
+
elif "DF" in res_tab:
|
711
709
|
for irow in range(res_tab.shape[0] - 1):
|
712
710
|
note_tmp = f'{res_tab.Source[irow]}:F{round(res_tab.DF[irow]),round(res_tab.DF[res_tab.shape[0]-1])}={round(res_tab.F[irow],3)},p={round(res_tab["p-unc"][irow],3)}'
|
713
711
|
notes_APA.append(note_tmp)
|
@@ -144,6 +144,7 @@ py2ls/.gitignore,sha256=y7GvbD_zZkjPVVIue8AyiuFkDMuUbvMaV65Lgu89To8,2763
|
|
144
144
|
py2ls/LICENSE,sha256=UOZ1F5fFDe3XXvG4oNnkL1-Ecun7zpHzRxjp-XsMeAo,11324
|
145
145
|
py2ls/README.md,sha256=CwvJWAnSXnCnrVHlnEbrxxi6MbjbE_MT6DH2D53S818,11572
|
146
146
|
py2ls/__init__.py,sha256=Nn8jTIvySX7t7DMJ8VNRVctTStgXGjHldOIdZ35PdW8,165
|
147
|
+
py2ls/batman.py,sha256=CSM3PxXE4Qpt_yVfaAgMUAGZuJCG_PGkENjG_Mjev4k,5717
|
147
148
|
py2ls/brain_atlas.py,sha256=w1o5EelRjq89zuFJUNSz4Da8HnTCwAwDAZ4NU4a-bAY,5486
|
148
149
|
py2ls/chat.py,sha256=Yr22GoIvoWhpV3m4fdwV_I0Mn77La346_ymSinR-ORA,3793
|
149
150
|
py2ls/correlators.py,sha256=RbOaJIPLCHJtUm5SFi_4dCJ7VFUPWR0PErfK3K26ad4,18243
|
@@ -161,6 +162,9 @@ py2ls/data/styles/example/style7.pdf,sha256=Sz54Qzvt6k6fCkvvZd6S4RSZjVZvxPxIx_uv
|
|
161
162
|
py2ls/data/styles/example/style8.pdf,sha256=8As6rsajoqQEU9hUy4YDHOsXYpD4PJcbWMz-4iV77gI,62296
|
162
163
|
py2ls/data/styles/example/style9.pdf,sha256=uT4_9bZaoBB7aXoobIY8-k_OX7TNxJ_Zwqvr7o9deO0,65828
|
163
164
|
py2ls/data/styles/style1.json,sha256=Q3tdH0Sf08FjNUZE5mELA45JEw3BXjSAL2nLfFDn1bU,3101
|
165
|
+
py2ls/data/styles/style10.json,sha256=NMKlzsvpQcfSAWRRRRPnU9QvP7AfggamYHFeihnicJo,4830
|
166
|
+
py2ls/data/styles/style11.json,sha256=08kqry14T40KriRiS2FQBHkL4v_b7cn8BecQt9JYi50,4830
|
167
|
+
py2ls/data/styles/style12.json,sha256=GwEb2k116q9uvFEgVn9PMFTeUM-GYR2PD6ZzABCOMJo,4311
|
164
168
|
py2ls/data/styles/style2.json,sha256=2xhDv-_qQOKaODy8fWRoaQk_W5-I3EdA6uh4JNnINGg,3124
|
165
169
|
py2ls/data/styles/style3.json,sha256=0lHmjFGqlf1c7HLllsgGVNFkuEsqSCicBv-iOTB9hRk,3126
|
166
170
|
py2ls/data/styles/style4.json,sha256=G8thPHwmJyS3kDletrh3NkapZ03bNfey2-zpG4erBfk,3072
|
@@ -173,14 +177,15 @@ py2ls/db2ls.py,sha256=MMfFX47aIPIyu7fU9aPvX9lbPRPYOpJ_VXwlnWk-8qo,13615
|
|
173
177
|
py2ls/doc.py,sha256=xN3g1OWfoaGUhikbJ0NqbN5eKy1VZVvWwRlhHMgyVEc,4243
|
174
178
|
py2ls/export_requirements.py,sha256=x2WgUF0jYKz9GfA1MVKN-MdsM-oQ8yUeC6Ua8oCymio,2325
|
175
179
|
py2ls/freqanalysis.py,sha256=F4218VSPbgL5tnngh6xNCYuNnfR-F_QjECUUxrPYZss,32594
|
176
|
-
py2ls/
|
177
|
-
py2ls/
|
178
|
-
py2ls/
|
180
|
+
py2ls/ich2ls.py,sha256=3E9R8oVpyYZXH5PiIQgT3CN5NxLe4Dwtm2LwaeacE6I,21381
|
181
|
+
py2ls/ips.py,sha256=HbktFzKIszBHtB3DtyUCCM6xj9NJZAz38ZCcIomjBFs,105439
|
182
|
+
py2ls/netfinder.py,sha256=xma9YoBxY4GcgoyG4YXEOU8oKPYByIt0uWqPyshHt8s,50812
|
183
|
+
py2ls/plot.py,sha256=9z0VPvMTFsuYKakuHjTGKK6UtiQylM3-WCxbNEKxTos,95283
|
179
184
|
py2ls/setuptools-70.1.0-py3-none-any.whl,sha256=2bi3cUVal8ip86s0SOvgspteEF8SKLukECi-EWmFomc,882588
|
180
185
|
py2ls/sleep_events_detectors.py,sha256=bQA3HJqv5qnYKJJEIhCyhlDtkXQfIzqksnD0YRXso68,52145
|
181
|
-
py2ls/stats.py,sha256=
|
186
|
+
py2ls/stats.py,sha256=fJmXQ9Lq460StOn-kfEljE97cySq7876HUPTnpB5hLs,38123
|
182
187
|
py2ls/translator.py,sha256=bc5FB-wqC4TtQz9gyCP1mE38HqNRJ_pmuRIgKnAlMzM,30581
|
183
188
|
py2ls/wb_detector.py,sha256=7y6TmBUj9exCZeIgBAJ_9hwuhkDh1x_-yg4dvNY1_GQ,6284
|
184
|
-
py2ls-0.1.
|
185
|
-
py2ls-0.1.
|
186
|
-
py2ls-0.1.
|
189
|
+
py2ls-0.1.10.0.dist-info/METADATA,sha256=76w1Clumy3D_fhABBpVwMaJV_49n-MJnOVRHW3wiaJY,20018
|
190
|
+
py2ls-0.1.10.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
191
|
+
py2ls-0.1.10.0.dist-info/RECORD,,
|
File without changes
|