py2ls 0.1.9.8__py3-none-any.whl → 0.1.10.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
py2ls/plot.py CHANGED
@@ -349,7 +349,11 @@ def catplot(data, *args, **kwargs):
349
349
  edgecolor=opt_v["EdgeColor"],
350
350
  label=label[i],
351
351
  lw=opt_v["LineWidth"],
352
- hatch=opt_v["hatch"][i % len(opt_v["FaceColor"])],
352
+ hatch=(
353
+ opt_v["hatch"][i % len(opt_v["FaceColor"])]
354
+ if opt_v["hatch"] is not None
355
+ else None
356
+ ),
353
357
  )
354
358
  elif (
355
359
  "l" in opt_v["loc"].lower()
@@ -364,7 +368,11 @@ def catplot(data, *args, **kwargs):
364
368
  edgecolor=opt_v["EdgeColor"],
365
369
  label=label[i],
366
370
  lw=opt_v["LineWidth"],
367
- hatch=opt_v["hatch"][i % len(opt_v["FaceColor"])],
371
+ hatch=(
372
+ opt_v["hatch"][i % len(opt_v["FaceColor"])]
373
+ if opt_v["hatch"] is not None
374
+ else None
375
+ ),
368
376
  )
369
377
  elif (
370
378
  "o" in opt_v["loc"].lower()
@@ -379,7 +387,11 @@ def catplot(data, *args, **kwargs):
379
387
  edgecolor=opt_v["EdgeColor"],
380
388
  label=label[i],
381
389
  lw=opt_v["LineWidth"],
382
- hatch=opt_v["hatch"][i % len(opt_v["FaceColor"])],
390
+ hatch=(
391
+ opt_v["hatch"][i % len(opt_v["FaceColor"])]
392
+ if opt_v["hatch"] is not None
393
+ else None
394
+ ),
383
395
  )
384
396
  elif "i" in opt_v["loc"].lower():
385
397
  if i % 2 == 1: # odd number
@@ -394,7 +406,11 @@ def catplot(data, *args, **kwargs):
394
406
  edgecolor=opt_v["EdgeColor"],
395
407
  label=label[i],
396
408
  lw=opt_v["LineWidth"],
397
- hatch=opt_v["hatch"][i % len(opt_v["FaceColor"])],
409
+ hatch=(
410
+ opt_v["hatch"][i % len(opt_v["FaceColor"])]
411
+ if opt_v["hatch"] is not None
412
+ else None
413
+ ),
398
414
  )
399
415
  else:
400
416
  ax.fill_betweenx(
@@ -408,7 +424,11 @@ def catplot(data, *args, **kwargs):
408
424
  edgecolor=opt_v["EdgeColor"],
409
425
  label=label[i],
410
426
  lw=opt_v["LineWidth"],
411
- hatch=opt_v["hatch"][i % len(opt_v["FaceColor"])],
427
+ hatch=(
428
+ opt_v["hatch"][i % len(opt_v["FaceColor"])]
429
+ if opt_v["hatch"] is not None
430
+ else None
431
+ ),
412
432
  )
413
433
  elif "f" in opt_v["loc"].lower():
414
434
  ax.fill_betweenx(
@@ -420,7 +440,11 @@ def catplot(data, *args, **kwargs):
420
440
  edgecolor=opt_v["EdgeColor"],
421
441
  label=label[i],
422
442
  lw=opt_v["LineWidth"],
423
- hatch=opt_v["hatch"][i % len(opt_v["FaceColor"])],
443
+ hatch=(
444
+ opt_v["hatch"][i % len(opt_v["FaceColor"])]
445
+ if opt_v["hatch"] is not None
446
+ else None
447
+ ),
424
448
  )
425
449
  else:
426
450
  if "r" in opt_v["loc"].lower():
@@ -432,7 +456,11 @@ def catplot(data, *args, **kwargs):
432
456
  alpha=opt_v["FaceAlpha"],
433
457
  edgecolor=opt_v["EdgeColor"],
434
458
  lw=opt_v["LineWidth"],
435
- hatch=opt_v["hatch"][i % len(opt_v["FaceColor"])],
459
+ hatch=(
460
+ opt_v["hatch"][i % len(opt_v["FaceColor"])]
461
+ if opt_v["hatch"] is not None
462
+ else None
463
+ ),
436
464
  )
437
465
  elif (
438
466
  "l" in opt_v["loc"].lower() and not "f" in opt_v["loc"].lower()
@@ -445,7 +473,11 @@ def catplot(data, *args, **kwargs):
445
473
  alpha=opt_v["FaceAlpha"],
446
474
  edgecolor=opt_v["EdgeColor"],
447
475
  lw=opt_v["LineWidth"],
448
- hatch=opt_v["hatch"][i % len(opt_v["FaceColor"])],
476
+ hatch=(
477
+ opt_v["hatch"][i % len(opt_v["FaceColor"])]
478
+ if opt_v["hatch"] is not None
479
+ else None
480
+ ),
449
481
  )
450
482
  elif "o" in opt_v["loc"].lower() or "both" in opt_v["loc"].lower():
451
483
  ax.fill_betweenx(
@@ -456,7 +488,11 @@ def catplot(data, *args, **kwargs):
456
488
  alpha=opt_v["FaceAlpha"],
457
489
  edgecolor=opt_v["EdgeColor"],
458
490
  lw=opt_v["LineWidth"],
459
- hatch=opt_v["hatch"][i % len(opt_v["FaceColor"])],
491
+ hatch=(
492
+ opt_v["hatch"][i % len(opt_v["FaceColor"])]
493
+ if opt_v["hatch"] is not None
494
+ else None
495
+ ),
460
496
  )
461
497
  elif "i" in opt_v["loc"].lower():
462
498
  if i % 2 == 1: # odd number
@@ -468,7 +504,11 @@ def catplot(data, *args, **kwargs):
468
504
  alpha=opt_v["FaceAlpha"],
469
505
  edgecolor=opt_v["EdgeColor"],
470
506
  lw=opt_v["LineWidth"],
471
- hatch=opt_v["hatch"][i % len(opt_v["FaceColor"])],
507
+ hatch=(
508
+ opt_v["hatch"][i % len(opt_v["FaceColor"])]
509
+ if opt_v["hatch"] is not None
510
+ else None
511
+ ),
472
512
  )
473
513
  else:
474
514
  ax.fill_betweenx(
@@ -479,7 +519,11 @@ def catplot(data, *args, **kwargs):
479
519
  alpha=opt_v["FaceAlpha"],
480
520
  edgecolor=opt_v["EdgeColor"],
481
521
  lw=opt_v["LineWidth"],
482
- hatch=opt_v["hatch"][i % len(opt_v["FaceColor"])],
522
+ hatch=(
523
+ opt_v["hatch"][i % len(opt_v["FaceColor"])]
524
+ if opt_v["hatch"] is not None
525
+ else None
526
+ ),
483
527
  )
484
528
  elif "f" in opt_v["loc"].lower():
485
529
  ax.fill_betweenx(
@@ -490,7 +534,11 @@ def catplot(data, *args, **kwargs):
490
534
  alpha=opt_v["FaceAlpha"],
491
535
  edgecolor=opt_v["EdgeColor"],
492
536
  lw=opt_v["LineWidth"],
493
- hatch=opt_v["hatch"][i % len(opt_v["FaceColor"])],
537
+ hatch=(
538
+ opt_v["hatch"][i % len(opt_v["FaceColor"])]
539
+ if opt_v["hatch"] is not None
540
+ else None
541
+ ),
494
542
  )
495
543
 
496
544
  def plot_ridgeplot(data, x, y, opt_r, **kwargs_figsets):
@@ -723,6 +771,7 @@ def catplot(data, *args, **kwargs):
723
771
  col = kwargs.get("col", None)
724
772
  report = kwargs.get("report", True)
725
773
  vertical = kwargs.get("vertical", True)
774
+ stats_subgroup = kwargs.get("stats_subgroup", True)
726
775
  if not col:
727
776
  kw_figsets = kwargs.get("figsets", None)
728
777
  # check the data type
@@ -755,23 +804,100 @@ def catplot(data, *args, **kwargs):
755
804
  for i in df[x].unique().tolist():
756
805
  print(i) # to indicate which 'x'
757
806
  if hue and stats_param:
758
- if isinstance(stats_param, dict):
759
- if "factor" in stats_param.keys():
760
- res_tmp = FuncMultiCmpt(data=df, dv=y, **stats_param)
807
+ if stats_subgroup:
808
+ data_temp = df[df[x] == i]
809
+ hue_labels = data_temp[hue].unique().tolist()
810
+ if isinstance(stats_param, dict):
811
+ if len(hue_labels) > 2:
812
+ if "factor" in stats_param.keys():
813
+ res_tmp = FuncMultiCmpt(
814
+ data=data_temp, dv=y, **stats_param
815
+ )
816
+ else:
817
+ res_tmp = FuncMultiCmpt(
818
+ data=data_temp,
819
+ dv=y,
820
+ factor=hue,
821
+ **stats_param,
822
+ )
823
+ elif bool(stats_param):
824
+ res_tmp = FuncMultiCmpt(
825
+ data=data_temp, dv=y, factor=hue
826
+ )
827
+ else:
828
+ res_tmp = "did not work properly"
829
+ display_output(res_tmp)
830
+ res = pd.concat(
831
+ [res, pd.DataFrame([res_tmp])],
832
+ ignore_index=True,
833
+ axis=0,
834
+ )
761
835
  else:
762
- res_tmp = FuncMultiCmpt(
763
- data=df[df[x] == i], dv=y, factor=hue, **stats_param
836
+ if isinstance(stats_param, dict):
837
+ pmc = stats_param.get("pmc", "pmc")
838
+ pair = stats_param.get("pair", "unpaired")
839
+ else:
840
+ pmc = "pmc"
841
+ pair = "unpair"
842
+
843
+ res_tmp = FuncCmpt(
844
+ x1=data_temp.loc[
845
+ data_temp[hue] == hue_labels[0], y
846
+ ].tolist(),
847
+ x2=data_temp.loc[
848
+ data_temp[hue] == hue_labels[1], y
849
+ ].tolist(),
850
+ pmc=pmc,
851
+ pair=pair,
764
852
  )
765
- elif bool(stats_param):
766
- res_tmp = FuncMultiCmpt(
767
- data=df[df[x] == i], dv=y, factor=hue
768
- )
853
+ display_output(res_tmp)
769
854
  else:
770
- res_tmp = "did not work properly"
771
- display_output(res_tmp)
772
- res = pd.concat(
773
- [res, pd.DataFrame([res_tmp])], ignore_index=True, axis=0
774
- )
855
+ if isinstance(stats_param, dict):
856
+ if len(xticklabels) > 2:
857
+ if "factor" in stats_param.keys():
858
+ res_tmp = FuncMultiCmpt(
859
+ data=df, dv=y, **stats_param
860
+ )
861
+ else:
862
+ res_tmp = FuncMultiCmpt(
863
+ data=df[df[x] == i],
864
+ dv=y,
865
+ factor=hue,
866
+ **stats_param,
867
+ )
868
+ elif bool(stats_param):
869
+ res_tmp = FuncMultiCmpt(
870
+ data=df[df[x] == i], dv=y, factor=hue
871
+ )
872
+ else:
873
+ res_tmp = "did not work properly"
874
+ display_output(res_tmp)
875
+ res = pd.concat(
876
+ [res, pd.DataFrame([res_tmp])],
877
+ ignore_index=True,
878
+ axis=0,
879
+ )
880
+ else:
881
+ if isinstance(stats_param, dict):
882
+ pmc = stats_param.get("pmc", "pmc")
883
+ pair = stats_param.get("pair", "unpaired")
884
+ else:
885
+ pmc = "pmc"
886
+ pair = "unpair"
887
+
888
+ data_temp = df[df[x] == i]
889
+ hue_labels = data_temp[hue].unique().tolist()
890
+ res_tmp = FuncCmpt(
891
+ x1=data_temp.loc[
892
+ data_temp[hue] == hue_labels[0], y
893
+ ].tolist(),
894
+ x2=data_temp.loc[
895
+ data_temp[hue] == hue_labels[1], y
896
+ ].tolist(),
897
+ pmc=pmc,
898
+ pair=pair,
899
+ )
900
+ display_output(res_tmp)
775
901
  ihue += 1
776
902
 
777
903
  else:
@@ -1115,41 +1241,70 @@ def catplot(data, *args, **kwargs):
1115
1241
  res,
1116
1242
  xticks_x_loc,
1117
1243
  xticklabels,
1118
- y_loc=np.max(data),
1244
+ y_loc=np.nanmax(data),
1119
1245
  report_go=report,
1120
1246
  )
1121
1247
  else: # hue is not None
1122
1248
  ihue = 1
1123
1249
  for i in df[x].unique().tolist():
1250
+ data_temp = df[df[x] == i]
1251
+ hue_labels = data_temp[hue].unique().tolist()
1124
1252
  if stats_param:
1125
- if isinstance(stats_param, dict):
1126
- if "factor" in stats_param.keys():
1253
+ if len(hue_labels) > 2:
1254
+ if isinstance(stats_param, dict):
1255
+ if "factor" in stats_param.keys():
1256
+ res_tmp = FuncMultiCmpt(
1257
+ data=df, dv=y, **stats_param
1258
+ )
1259
+ else:
1260
+ res_tmp = FuncMultiCmpt(
1261
+ data=df[df[x] == i],
1262
+ dv=y,
1263
+ factor=hue,
1264
+ **stats_param,
1265
+ )
1266
+ elif bool(stats_param):
1127
1267
  res_tmp = FuncMultiCmpt(
1128
- data=df, dv=y, **stats_param
1268
+ data=df[df[x] == i], dv=y, factor=hue
1129
1269
  )
1130
1270
  else:
1131
- res_tmp = FuncMultiCmpt(
1132
- data=df[df[x] == i],
1133
- dv=y,
1134
- factor=hue,
1135
- **stats_param,
1136
- )
1137
- elif bool(stats_param):
1138
- res_tmp = FuncMultiCmpt(
1139
- data=df[df[x] == i], dv=y, factor=hue
1271
+ res_tmp = "did not work properly"
1272
+ xloc_curr = hue_len * (ihue - 1)
1273
+
1274
+ add_asterisks(
1275
+ ax,
1276
+ res_tmp,
1277
+ xticks[xloc_curr : xloc_curr + hue_len],
1278
+ legend_hue,
1279
+ y_loc=np.nanmax(data),
1280
+ report_go=report,
1140
1281
  )
1141
1282
  else:
1142
- res_tmp = "did not work properly"
1143
- xloc_curr = hue_len * (ihue - 1)
1144
-
1145
- add_asterisks(
1146
- ax,
1147
- res_tmp,
1148
- xticks[xloc_curr : xloc_curr + hue_len],
1149
- legend_hue,
1150
- y_loc=np.max(data),
1151
- report_go=report,
1152
- )
1283
+ if isinstance(stats_param, dict):
1284
+ pmc = stats_param.get("pmc", "pmc")
1285
+ pair = stats_param.get("pair", "unpaired")
1286
+ else:
1287
+ pmc = "pmc"
1288
+ pair = "unpair"
1289
+ res_tmp = FuncCmpt(
1290
+ x1=data_temp.loc[
1291
+ data_temp[hue] == hue_labels[0], y
1292
+ ].tolist(),
1293
+ x2=data_temp.loc[
1294
+ data_temp[hue] == hue_labels[1], y
1295
+ ].tolist(),
1296
+ pmc=pmc,
1297
+ pair=pair,
1298
+ )
1299
+ xloc_curr = hue_len * (ihue - 1)
1300
+ add_asterisks(
1301
+ ax,
1302
+ res_tmp,
1303
+ xticks[xloc_curr : xloc_curr + hue_len],
1304
+ legend_hue,
1305
+ y_loc=np.nanmax(data),
1306
+ report_go=report,
1307
+ )
1153
1308
  ihue += 1
1154
1309
  else: # 240814: still has some bugs
1155
1310
  if isinstance(res, dict):
@@ -1668,15 +1823,43 @@ def get_color(
1668
1823
  cmap = "grey"
1669
1824
  # Determine color list based on cmap parameter
1670
1825
  if "aut" in cmap:
1671
- colorlist = [
1672
- "#474747",
1673
- "#FF2C00",
1674
- "#0C5DA5",
1675
- "#845B97",
1676
- "#58BBCC",
1677
- "#FF9500",
1678
- "#D57DBE",
1679
- ]
1826
+ if n == 1:
1827
+ colorlist = ["#3A4453"]
1828
+ elif n == 2:
1829
+ colorlist = ["#3A4453", "#DF5932"]
1830
+ elif n == 3:
1831
+ colorlist = ["#3A4453", "#DF5932", "#299D8F"]
1832
+ elif n == 4:
1833
+ # colorlist = ["#3A4453", "#DF5932", "#EBAA00", "#0B4083"]
1834
+ colorlist = ["#81C6BD", "#FBAF63", "#F2675B", "#72A1C9"]
1835
+ elif n == 5:
1836
+ colorlist = [
1837
+ "#3A4453",
1838
+ "#427AB2",
1839
+ "#F09148",
1840
+ "#DBDB8D",
1841
+ "#C59D94",
1842
+ "#AFC7E8",
1843
+ ]
1844
+ elif n == 6:
1845
+ colorlist = [
1846
+ "#3A4453",
1847
+ "#427AB2",
1848
+ "#F09148",
1849
+ "#DBDB8D",
1850
+ "#C59D94",
1851
+ "#E53528",
1852
+ ]
1853
+ else:
1854
+ colorlist = [
1855
+ "#474747",
1856
+ "#FF2C00",
1857
+ "#0C5DA5",
1858
+ "#845B97",
1859
+ "#58BBCC",
1860
+ "#FF9500",
1861
+ "#D57DBE",
1862
+ ]
1680
1863
  by = "start"
1681
1864
  elif any(["cub" in cmap.lower(), "sns" in cmap.lower()]):
1682
1865
  if kwargs:
@@ -1754,6 +1937,10 @@ import matplotlib.pyplot as plt
1754
1937
 
1755
1938
 
1756
1939
  def stdshade(ax=None, *args, **kwargs):
1940
+ """
1941
+ usage:
1942
+ plot.stdshade(data_array, c=clist[1], lw=2, ls="-.", alpha=0.2)
1943
+ """
1757
1944
  # Separate kws_line and kws_fill if necessary
1758
1945
  kws_line = kwargs.pop("kws_line", {})
1759
1946
  kws_fill = kwargs.pop("kws_fill", {})
@@ -1791,8 +1978,9 @@ def stdshade(ax=None, *args, **kwargs):
1791
1978
  ax = plt.gca()
1792
1979
  if ax is None:
1793
1980
  ax = plt.gca()
1794
- alpha = 0.5
1795
- acolor = "k"
1981
+ alpha = kwargs.get("alpha", 0.2)
1982
+ acolor = kwargs.get("color", "k")
1983
+ acolor = kwargs.get("c", "k")
1796
1984
  paraStdSem = "sem"
1797
1985
  plotStyle = "-"
1798
1986
  plotMarker = "none"
@@ -2130,20 +2318,20 @@ def add_asterisks(ax, res, xticks_x_loc, xticklabels, **kwargs_funcstars):
2130
2318
  pval_groups = res["pval"]
2131
2319
  FuncStars(
2132
2320
  ax=ax,
2133
- x1=1,
2134
- x2=2,
2135
- pval=pval_groups,
2136
- **kwargs_funcstars,
2137
- )
2138
- else:
2139
- pval_groups = res["pval"]
2140
- FuncStars(
2141
- ax=ax,
2142
- x1=1,
2143
- x2=2,
2321
+ x1=xticks_x_loc[0],
2322
+ x2=xticks_x_loc[1],
2144
2323
  pval=pval_groups,
2145
2324
  **kwargs_funcstars,
2146
2325
  )
2326
+ # else:
2327
+ # pval_groups = res["pval"]
2328
+ # FuncStars(
2329
+ # ax=ax,
2330
+ # x1=1,
2331
+ # x2=2,
2332
+ # pval=pval_groups,
2333
+ # **kwargs_funcstars,
2334
+ # )
2147
2335
 
2148
2336
 
2149
2337
  def style_examples(
py2ls/stats.py CHANGED
@@ -705,9 +705,7 @@ def extract_apa(res_tab):
705
705
  for irow in range(res_tab.shape[0]):
706
706
  note_tmp = f'{res_tab.Source[irow]}:F{round(res_tab.ddof1[irow]),round(res_tab.ddof2[irow])}={round(res_tab.F[irow],3)},p={round(res_tab["p-unc"][irow],3)}'
707
707
  notes_APA.append(note_tmp)
708
- elif "DF" in res_tab:
709
- print("here")
710
- display(res_tab)
708
+ elif "DF" in res_tab:
711
709
  for irow in range(res_tab.shape[0] - 1):
712
710
  note_tmp = f'{res_tab.Source[irow]}:F{round(res_tab.DF[irow]),round(res_tab.DF[res_tab.shape[0]-1])}={round(res_tab.F[irow],3)},p={round(res_tab["p-unc"][irow],3)}'
713
711
  notes_APA.append(note_tmp)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: py2ls
3
- Version: 0.1.9.8
3
+ Version: 0.1.10.0
4
4
  Summary: py(thon)2(too)ls
5
5
  Author: Jianfeng
6
6
  Author-email: Jianfeng.Liu0413@gmail.com
@@ -144,6 +144,7 @@ py2ls/.gitignore,sha256=y7GvbD_zZkjPVVIue8AyiuFkDMuUbvMaV65Lgu89To8,2763
144
144
  py2ls/LICENSE,sha256=UOZ1F5fFDe3XXvG4oNnkL1-Ecun7zpHzRxjp-XsMeAo,11324
145
145
  py2ls/README.md,sha256=CwvJWAnSXnCnrVHlnEbrxxi6MbjbE_MT6DH2D53S818,11572
146
146
  py2ls/__init__.py,sha256=Nn8jTIvySX7t7DMJ8VNRVctTStgXGjHldOIdZ35PdW8,165
147
+ py2ls/batman.py,sha256=CSM3PxXE4Qpt_yVfaAgMUAGZuJCG_PGkENjG_Mjev4k,5717
147
148
  py2ls/brain_atlas.py,sha256=w1o5EelRjq89zuFJUNSz4Da8HnTCwAwDAZ4NU4a-bAY,5486
148
149
  py2ls/chat.py,sha256=Yr22GoIvoWhpV3m4fdwV_I0Mn77La346_ymSinR-ORA,3793
149
150
  py2ls/correlators.py,sha256=RbOaJIPLCHJtUm5SFi_4dCJ7VFUPWR0PErfK3K26ad4,18243
@@ -161,6 +162,9 @@ py2ls/data/styles/example/style7.pdf,sha256=Sz54Qzvt6k6fCkvvZd6S4RSZjVZvxPxIx_uv
161
162
  py2ls/data/styles/example/style8.pdf,sha256=8As6rsajoqQEU9hUy4YDHOsXYpD4PJcbWMz-4iV77gI,62296
162
163
  py2ls/data/styles/example/style9.pdf,sha256=uT4_9bZaoBB7aXoobIY8-k_OX7TNxJ_Zwqvr7o9deO0,65828
163
164
  py2ls/data/styles/style1.json,sha256=Q3tdH0Sf08FjNUZE5mELA45JEw3BXjSAL2nLfFDn1bU,3101
165
+ py2ls/data/styles/style10.json,sha256=NMKlzsvpQcfSAWRRRRPnU9QvP7AfggamYHFeihnicJo,4830
166
+ py2ls/data/styles/style11.json,sha256=08kqry14T40KriRiS2FQBHkL4v_b7cn8BecQt9JYi50,4830
167
+ py2ls/data/styles/style12.json,sha256=GwEb2k116q9uvFEgVn9PMFTeUM-GYR2PD6ZzABCOMJo,4311
164
168
  py2ls/data/styles/style2.json,sha256=2xhDv-_qQOKaODy8fWRoaQk_W5-I3EdA6uh4JNnINGg,3124
165
169
  py2ls/data/styles/style3.json,sha256=0lHmjFGqlf1c7HLllsgGVNFkuEsqSCicBv-iOTB9hRk,3126
166
170
  py2ls/data/styles/style4.json,sha256=G8thPHwmJyS3kDletrh3NkapZ03bNfey2-zpG4erBfk,3072
@@ -173,14 +177,15 @@ py2ls/db2ls.py,sha256=MMfFX47aIPIyu7fU9aPvX9lbPRPYOpJ_VXwlnWk-8qo,13615
173
177
  py2ls/doc.py,sha256=xN3g1OWfoaGUhikbJ0NqbN5eKy1VZVvWwRlhHMgyVEc,4243
174
178
  py2ls/export_requirements.py,sha256=x2WgUF0jYKz9GfA1MVKN-MdsM-oQ8yUeC6Ua8oCymio,2325
175
179
  py2ls/freqanalysis.py,sha256=F4218VSPbgL5tnngh6xNCYuNnfR-F_QjECUUxrPYZss,32594
176
- py2ls/ips.py,sha256=gVHch6c3-FAv-vT6LlBI9gxS-SdHTDpIP4z2JH3EqGg,105424
177
- py2ls/netfinder.py,sha256=oo8Nyqe9Oi3TON7YS9TCs2RBUjPY3KY7772DrsNPkyU,50679
178
- py2ls/plot.py,sha256=Cpx0cZoU-TN-q3Awmk75DYZsN4nGpnB_dHh262l_-Is,86130
180
+ py2ls/ich2ls.py,sha256=3E9R8oVpyYZXH5PiIQgT3CN5NxLe4Dwtm2LwaeacE6I,21381
181
+ py2ls/ips.py,sha256=HbktFzKIszBHtB3DtyUCCM6xj9NJZAz38ZCcIomjBFs,105439
182
+ py2ls/netfinder.py,sha256=xma9YoBxY4GcgoyG4YXEOU8oKPYByIt0uWqPyshHt8s,50812
183
+ py2ls/plot.py,sha256=9z0VPvMTFsuYKakuHjTGKK6UtiQylM3-WCxbNEKxTos,95283
179
184
  py2ls/setuptools-70.1.0-py3-none-any.whl,sha256=2bi3cUVal8ip86s0SOvgspteEF8SKLukECi-EWmFomc,882588
180
185
  py2ls/sleep_events_detectors.py,sha256=bQA3HJqv5qnYKJJEIhCyhlDtkXQfIzqksnD0YRXso68,52145
181
- py2ls/stats.py,sha256=U2yeTYUkInI4JXtfhdSbSAzna_h8rh8MZmY31o51_EU,38169
186
+ py2ls/stats.py,sha256=fJmXQ9Lq460StOn-kfEljE97cySq7876HUPTnpB5hLs,38123
182
187
  py2ls/translator.py,sha256=bc5FB-wqC4TtQz9gyCP1mE38HqNRJ_pmuRIgKnAlMzM,30581
183
188
  py2ls/wb_detector.py,sha256=7y6TmBUj9exCZeIgBAJ_9hwuhkDh1x_-yg4dvNY1_GQ,6284
184
- py2ls-0.1.9.8.dist-info/METADATA,sha256=j6jzJhMF2pbmdLbqxP9p4GmvKXQvem6N_lhat4EalxE,20017
185
- py2ls-0.1.9.8.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
186
- py2ls-0.1.9.8.dist-info/RECORD,,
189
+ py2ls-0.1.10.0.dist-info/METADATA,sha256=76w1Clumy3D_fhABBpVwMaJV_49n-MJnOVRHW3wiaJY,20018
190
+ py2ls-0.1.10.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
191
+ py2ls-0.1.10.0.dist-info/RECORD,,