py2ls 0.1.9.8__py3-none-any.whl → 0.1.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py2ls/batman.py +183 -0
- py2ls/data/styles/style10.json +213 -0
- py2ls/data/styles/style11.json +213 -0
- py2ls/data/styles/style12.json +192 -0
- py2ls/ich2ls.py +590 -0
- py2ls/ips.py +1 -0
- py2ls/netfinder.py +5 -2
- py2ls/plot.py +260 -72
- py2ls/stats.py +1 -3
- {py2ls-0.1.9.8.dist-info → py2ls-0.1.10.0.dist-info}/METADATA +1 -1
- {py2ls-0.1.9.8.dist-info → py2ls-0.1.10.0.dist-info}/RECORD +12 -7
- {py2ls-0.1.9.8.dist-info → py2ls-0.1.10.0.dist-info}/WHEEL +0 -0
py2ls/ich2ls.py
ADDED
@@ -0,0 +1,590 @@
|
|
1
|
+
import numpy as np
|
2
|
+
import pandas as pd
|
3
|
+
import matplotlib.pyplot as plt
|
4
|
+
from scipy.stats import pearsonr
|
5
|
+
from PIL import Image
|
6
|
+
from skimage import filters, morphology, measure, color
|
7
|
+
|
8
|
+
# 用来处理ich图像的初级工具包
|
9
|
+
|
10
|
+
|
11
|
+
def open_img(dir_img, convert="gray", plot=False):
|
12
|
+
# Step 1: Load the image
|
13
|
+
image = Image.open(dir_img)
|
14
|
+
|
15
|
+
if convert == "gray" or convert == "grey":
|
16
|
+
gray_image = image.convert("L")
|
17
|
+
image_array = np.array(gray_image)
|
18
|
+
else:
|
19
|
+
image_array = np.array(image)
|
20
|
+
if plot:
|
21
|
+
_, axs = plt.subplots(1, 2)
|
22
|
+
axs[0].imshow(image)
|
23
|
+
axs[1].imshow(image_array)
|
24
|
+
axs[0].set_title("img_raw")
|
25
|
+
axs[1].set_title(f"img_{convert}")
|
26
|
+
return image, image_array
|
27
|
+
|
28
|
+
|
29
|
+
from skimage import filters, morphology
|
30
|
+
|
31
|
+
|
32
|
+
def clean_img(
|
33
|
+
img,
|
34
|
+
method=["threshold_otsu", "objects", "holes"],
|
35
|
+
obj_min=50,
|
36
|
+
hole_min=50,
|
37
|
+
filter=None,
|
38
|
+
plot=False,
|
39
|
+
cmap="grey",
|
40
|
+
):
|
41
|
+
if isinstance(method, str):
|
42
|
+
if method == "all":
|
43
|
+
method = ["threshold_otsu", "objects", "holes"]
|
44
|
+
else:
|
45
|
+
method = [method]
|
46
|
+
if any("thr" in met or "ot" in met for met in method) and filter is None:
|
47
|
+
thr_otsu = filters.threshold_otsu(img)
|
48
|
+
img_update = img > thr_otsu
|
49
|
+
if any("obj" in met for met in method):
|
50
|
+
img_update = morphology.remove_small_objects(img_update, min_size=obj_min)
|
51
|
+
if any("hol" in met for met in method):
|
52
|
+
img_update = morphology.remove_small_holes(img_update, area_threshold=hole_min)
|
53
|
+
if ("thr" in met for met in method) and filter: # threshold
|
54
|
+
mask = (img >= filter[0]) & (img <= filter[1])
|
55
|
+
img_update = np.where(mask, img, 0)
|
56
|
+
|
57
|
+
if plot:
|
58
|
+
plt.imshow(img_update, cmap=cmap)
|
59
|
+
return img_update
|
60
|
+
|
61
|
+
|
62
|
+
from skimage import filters, segmentation
|
63
|
+
|
64
|
+
|
65
|
+
def segment_img(
|
66
|
+
img,
|
67
|
+
filter=[30, 150],
|
68
|
+
plot=False,
|
69
|
+
mode="reflect", # 'reflect' or 'constant'
|
70
|
+
method="region", # 'region' or 'edge', 'threshold'
|
71
|
+
area_min=50,
|
72
|
+
cmap="jet",
|
73
|
+
connectivity=1,
|
74
|
+
output="segmentation",
|
75
|
+
):
|
76
|
+
if "reg" in method: # region method
|
77
|
+
# 1. find an elevation map using the Sobel gradient of the image
|
78
|
+
elevation_map = filters.sobel(img, mode=mode)
|
79
|
+
# 2. find markers of the background and the coins based on the extreme parts of the histogram of gray values.
|
80
|
+
markers = np.zeros_like(img)
|
81
|
+
# Apply filtering based on provided filter values
|
82
|
+
if filter is not None:
|
83
|
+
markers[img < filter[0]] = 1
|
84
|
+
markers[img > filter[1]] = 2
|
85
|
+
else:
|
86
|
+
# If no filter is provided, set markers across the whole range of the image
|
87
|
+
markers[img == img.min()] = 1
|
88
|
+
markers[img == img.max()] = 2
|
89
|
+
# 3. watershed transform to fill regions of the elevation map starting from the markers
|
90
|
+
img_segmentation = segmentation.watershed(
|
91
|
+
elevation_map, markers=markers, connectivity=connectivity
|
92
|
+
)
|
93
|
+
if plot:
|
94
|
+
_, axs = plt.subplots(2, 2)
|
95
|
+
for i, ax in enumerate(axs.flatten().tolist()):
|
96
|
+
if i == 0:
|
97
|
+
ax.imshow(img)
|
98
|
+
ax.set_title("image")
|
99
|
+
elif i == 1:
|
100
|
+
ax.imshow(elevation_map, cmap=cmap)
|
101
|
+
ax.set_title("elevation map")
|
102
|
+
elif i == 2:
|
103
|
+
ax.imshow(markers, cmap=cmap)
|
104
|
+
ax.set_title("markers")
|
105
|
+
elif i == 3:
|
106
|
+
ax.imshow(img_segmentation, cmap=cmap)
|
107
|
+
ax.set_title("segmentation")
|
108
|
+
ax.set_axis_off()
|
109
|
+
if "el" in output:
|
110
|
+
return elevation_map
|
111
|
+
elif "mar" in output:
|
112
|
+
return markers
|
113
|
+
elif "seg" in output:
|
114
|
+
return img_segmentation
|
115
|
+
else:
|
116
|
+
return img_segmentation
|
117
|
+
elif "ed" in method: # edge
|
118
|
+
edges = cal_edges(img)
|
119
|
+
fills = fill_holes(edges)
|
120
|
+
img_segmentation = remove_holes(fills, area_min)
|
121
|
+
if plot:
|
122
|
+
_, axs = plt.subplots(2, 2)
|
123
|
+
for i, ax in enumerate(axs.flatten().tolist()):
|
124
|
+
if i == 0:
|
125
|
+
ax.imshow(img)
|
126
|
+
ax.set_title("image")
|
127
|
+
elif i == 1:
|
128
|
+
ax.imshow(edges, cmap=cmap)
|
129
|
+
ax.set_title("edges map")
|
130
|
+
elif i == 2:
|
131
|
+
ax.imshow(fills, cmap=cmap)
|
132
|
+
ax.set_title("fills")
|
133
|
+
elif i == 3:
|
134
|
+
ax.imshow(img_segmentation, cmap=cmap)
|
135
|
+
ax.set_title("segmentation")
|
136
|
+
ax.set_axis_off()
|
137
|
+
if "seg" in output:
|
138
|
+
return img_segmentation
|
139
|
+
elif "ed" in output:
|
140
|
+
return edges
|
141
|
+
elif "fill" in output:
|
142
|
+
return fills
|
143
|
+
else:
|
144
|
+
return img_segmentation
|
145
|
+
elif "thr" in method: # threshold
|
146
|
+
if filter:
|
147
|
+
mask = (img >= filter[0]) & (img <= filter[1])
|
148
|
+
img_threshold = np.where(mask, img, 0)
|
149
|
+
if plot:
|
150
|
+
plt.imshow(img_threshold, cmap=cmap)
|
151
|
+
return img_threshold
|
152
|
+
else:
|
153
|
+
return None
|
154
|
+
|
155
|
+
|
156
|
+
from skimage import measure
|
157
|
+
|
158
|
+
|
159
|
+
def label_img(img, plot=False):
|
160
|
+
img_label = measure.label(img)
|
161
|
+
if plot:
|
162
|
+
plt.imshow(img_label)
|
163
|
+
return img_label
|
164
|
+
|
165
|
+
|
166
|
+
def img_process(img, **kwargs):
|
167
|
+
convert = "gray"
|
168
|
+
method_clean_img = ["threshold_otsu", "objects", "holes"]
|
169
|
+
obj_min_clean_img = 50
|
170
|
+
hole_min_clean_img = 50
|
171
|
+
plot = True
|
172
|
+
for k, v in kwargs.items():
|
173
|
+
if "convert" in k.lower():
|
174
|
+
convert = v
|
175
|
+
if "met" in k.lower() and any(
|
176
|
+
["clean" in k.lower(), "rem" in k.lower(), "rm" in k.lower()]
|
177
|
+
):
|
178
|
+
method_clean_img = v
|
179
|
+
if "obj" in k.lower() and any(
|
180
|
+
["clean" in k.lower(), "rem" in k.lower(), "rm" in k.lower()]
|
181
|
+
):
|
182
|
+
obj_min_clean_img = v
|
183
|
+
if "hol" in k.lower() and any(
|
184
|
+
["clean" in k.lower(), "rem" in k.lower(), "rm" in k.lower()]
|
185
|
+
):
|
186
|
+
hole_min_clean_img = v
|
187
|
+
if "plot" in k.lower():
|
188
|
+
plot = v
|
189
|
+
|
190
|
+
if isinstance(img, str):
|
191
|
+
image, image_array = open_img(img, convert=convert)
|
192
|
+
normalized_image = image_array / 255.0
|
193
|
+
else:
|
194
|
+
cleaned_image = img
|
195
|
+
image_array = cleaned_image
|
196
|
+
normalized_image = cleaned_image
|
197
|
+
image = cleaned_image
|
198
|
+
|
199
|
+
# Remove small objects and fill small holes
|
200
|
+
cleaned_image = clean_img(
|
201
|
+
img=image_array,
|
202
|
+
method=method_clean_img,
|
203
|
+
obj_min=obj_min_clean_img,
|
204
|
+
hole_min=hole_min_clean_img,
|
205
|
+
plot=False,
|
206
|
+
)
|
207
|
+
# Label the regions
|
208
|
+
label_image = label_img(cleaned_image)
|
209
|
+
overlay_image = overlay_imgs(label_image, image=image_array)
|
210
|
+
regions = measure.regionprops(label_image, intensity_image=image_array)
|
211
|
+
region_props = measure.regionprops_table(
|
212
|
+
label_image, intensity_image=image_array, properties=props_list
|
213
|
+
)
|
214
|
+
df_regions = pd.DataFrame(region_props)
|
215
|
+
# Pack the results into a single output variable (dictionary)
|
216
|
+
output = {
|
217
|
+
"img": image,
|
218
|
+
"img_array": image_array,
|
219
|
+
"img_scale": normalized_image,
|
220
|
+
"img_clean": cleaned_image,
|
221
|
+
"img_label": label_image,
|
222
|
+
"img_overlay": overlay_image,
|
223
|
+
"regions": regions,
|
224
|
+
"df_regions": df_regions,
|
225
|
+
}
|
226
|
+
if plot:
|
227
|
+
imgs = []
|
228
|
+
[imgs.append(i) for i in list(output.keys()) if "img" in i]
|
229
|
+
for img_ in imgs:
|
230
|
+
plt.figure()
|
231
|
+
plt.imshow(output[img_])
|
232
|
+
plt.title(img_)
|
233
|
+
return output
|
234
|
+
|
235
|
+
|
236
|
+
# def img_preprocess(dir_img, subtract_background=True, size_obj=50, size_hole=50,**kwargs):
|
237
|
+
# """
|
238
|
+
# Processes an image by performing thresholding, morphological operations,
|
239
|
+
# and region labeling.
|
240
|
+
|
241
|
+
# Parameters:
|
242
|
+
# - dir_img: Path to the image file.
|
243
|
+
# - size_obj: Minimum size of objects to keep (default: 50).
|
244
|
+
# - size_hole: Maximum size of holes to fill (default: 50).
|
245
|
+
|
246
|
+
# Returns:
|
247
|
+
# - output: Dictionary containing the overlay image, threshold value, and regions.
|
248
|
+
# """
|
249
|
+
# props_list = [
|
250
|
+
# "area", # Number of pixels in the region. Useful for determining the size of regions.
|
251
|
+
# "area_bbox",
|
252
|
+
# "area_convex",
|
253
|
+
# "area_filled",
|
254
|
+
# "axis_major_length", # Lengths of the major and minor axes of the ellipse that fits the region. Useful for understanding the shape's elongation and orientation.
|
255
|
+
# "axis_minor_length",
|
256
|
+
# "bbox", # Bounding box coordinates (min_row, min_col, max_row, max_col). Useful for spatial localization of regions.
|
257
|
+
# "centroid", # Center of mass coordinates (centroid-0, centroid-1). Helps locate the center of each region.
|
258
|
+
# "centroid_local",
|
259
|
+
# "centroid_weighted",
|
260
|
+
# "centroid_weighted_local",
|
261
|
+
# "coords",
|
262
|
+
# "eccentricity", # Measure of how elongated the region is. Values range from 0 (circular) to 1 (line). Useful for assessing the shape of regions.
|
263
|
+
# "equivalent_diameter_area", # Diameter of a circle with the same area as the region. Provides a simple measure of size.
|
264
|
+
# "euler_number",
|
265
|
+
# "extent", # Ratio of the region's area to the area of its bounding box. Indicates how much of the bounding box is filled by the region.
|
266
|
+
# "feret_diameter_max", # Maximum diameter of the region, providing another measure of size.
|
267
|
+
# "image",
|
268
|
+
# "image_convex",
|
269
|
+
# "image_filled",
|
270
|
+
# "image_intensity",
|
271
|
+
# "inertia_tensor", # ensor describing the distribution of mass in the region, useful for more advanced shape analysis.
|
272
|
+
# "inertia_tensor_eigvals",
|
273
|
+
# "intensity_max", # Maximum intensity value within the region. Helps identify regions with high-intensity features.
|
274
|
+
# "intensity_mean", # Average intensity value within the region. Useful for distinguishing between regions based on their brightness.
|
275
|
+
# "intensity_min", # Minimum intensity value within the region. Useful for regions with varying intensity.
|
276
|
+
# "intensity_std",
|
277
|
+
# "label", # Unique identifier for each region.
|
278
|
+
# "moments",
|
279
|
+
# "moments_central",
|
280
|
+
# "moments_hu", # Hu moments are a set of seven invariant features that describe the shape of the region. Useful for shape recognition and classification.
|
281
|
+
# "moments_normalized",
|
282
|
+
# "moments_weighted",
|
283
|
+
# "moments_weighted_central",
|
284
|
+
# "moments_weighted_hu",
|
285
|
+
# "moments_weighted_normalized",
|
286
|
+
# "orientation", # ngle of the major axis of the ellipse that fits the region. Useful for determining the orientation of elongated regions.
|
287
|
+
# "perimeter", # Length of the boundary of the region. Useful for shape analysis.
|
288
|
+
# "perimeter_crofton",
|
289
|
+
# "slice",
|
290
|
+
# "solidity", # Ratio of the area of the region to the area of its convex hull. Indicates how solid or compact a region is.
|
291
|
+
# ]
|
292
|
+
# if isinstance(dir_img, str):
|
293
|
+
# # Step 1: Load the image
|
294
|
+
# image = Image.open(dir_img)
|
295
|
+
|
296
|
+
# # Step 2: Convert the image to grayscale and normalize
|
297
|
+
# gray_image = image.convert("L")
|
298
|
+
# image_array = np.array(gray_image)
|
299
|
+
# normalized_image = image_array / 255.0
|
300
|
+
# else:
|
301
|
+
# cleaned_image = dir_img
|
302
|
+
# image_array = cleaned_image
|
303
|
+
# normalized_image = cleaned_image
|
304
|
+
# image = cleaned_image
|
305
|
+
# binary_image = cleaned_image
|
306
|
+
# thr_val = None
|
307
|
+
# if subtract_background:
|
308
|
+
# # Step 3: Apply thresholding to segment the image
|
309
|
+
# thr_val = filters.threshold_otsu(image_array)
|
310
|
+
# print(f"Threshold value is: {thr_val}")
|
311
|
+
|
312
|
+
# # Apply thresholds and generate binary images
|
313
|
+
# binary_image = image_array > thr_val
|
314
|
+
|
315
|
+
# # Step 4: Perform morphological operations to clean the image
|
316
|
+
# # Remove small objects and fill small holes
|
317
|
+
# cleaned_image_rm_min_obj = morphology.remove_small_objects(
|
318
|
+
# binary_image, min_size=size_obj
|
319
|
+
# )
|
320
|
+
# cleaned_image = morphology.remove_small_holes(
|
321
|
+
# cleaned_image_rm_min_obj, area_threshold=size_hole
|
322
|
+
# )
|
323
|
+
|
324
|
+
# # Label the regions
|
325
|
+
# label_image = label_img(cleaned_image)
|
326
|
+
|
327
|
+
# # Optional: Overlay labels on the original image
|
328
|
+
# overlay_image = color.label2rgb(label_image, image_array)
|
329
|
+
# regions = measure.regionprops(label_image, intensity_image=image_array)
|
330
|
+
# region_props = measure.regionprops_table(
|
331
|
+
# label_image, intensity_image=image_array, properties=props_list
|
332
|
+
# )
|
333
|
+
# df_regions = pd.DataFrame(region_props)
|
334
|
+
# # Pack the results into a single output variable (dictionary)
|
335
|
+
# output = {
|
336
|
+
# "img": image,
|
337
|
+
# "img_array": image_array,
|
338
|
+
# "img_scale": normalized_image,
|
339
|
+
# "img_binary": binary_image,
|
340
|
+
# "img_clean": cleaned_image,
|
341
|
+
# "img_label": label_image,
|
342
|
+
# "img_overlay": overlay_image,
|
343
|
+
# "thr_val": thr_val,
|
344
|
+
# "regions": regions,
|
345
|
+
# "df_regions": df_regions,
|
346
|
+
# }
|
347
|
+
|
348
|
+
# return output
|
349
|
+
|
350
|
+
|
351
|
+
def cal_pearson(img1, img2):
|
352
|
+
"""Compute Pearson correlation coefficient between two images."""
|
353
|
+
img1_flat = img1.flatten()
|
354
|
+
img2_flat = img2.flatten()
|
355
|
+
r, p = pearsonr(img1_flat, img2_flat)
|
356
|
+
return r, p
|
357
|
+
|
358
|
+
|
359
|
+
def cal_manders(img1, img2):
|
360
|
+
"""Compute Manders' overlap coefficient between two binary images."""
|
361
|
+
img1_binary = img1 > filters.threshold_otsu(img1)
|
362
|
+
img2_binary = img2 > filters.threshold_otsu(img2)
|
363
|
+
overlap_coef = np.sum(img1_binary & img2_binary) / np.sum(img1_binary)
|
364
|
+
return overlap_coef
|
365
|
+
|
366
|
+
|
367
|
+
def overlay_imgs(
|
368
|
+
*imgs,
|
369
|
+
image=None,
|
370
|
+
colors=None,
|
371
|
+
alpha=0.3,
|
372
|
+
bg_label=0,
|
373
|
+
bg_color=(0, 0, 0),
|
374
|
+
image_alpha=1,
|
375
|
+
kind="overlay",
|
376
|
+
saturation=0,
|
377
|
+
channel_axis=-1,
|
378
|
+
):
|
379
|
+
# Ensure all input images have the same shape
|
380
|
+
print(
|
381
|
+
f'\nusage:\nich2ls.overlay_imgs(res_b["img_binary"], res_r["img_binary"], bg_label=0)'
|
382
|
+
)
|
383
|
+
shapes = [img.shape for img in imgs]
|
384
|
+
if not all(shape == shapes[0] for shape in shapes):
|
385
|
+
raise ValueError("All input images must have the same shape")
|
386
|
+
|
387
|
+
# If no image is provided, use the first input image as the base
|
388
|
+
if image is None:
|
389
|
+
image = imgs[0]
|
390
|
+
|
391
|
+
# Combine the images into a label, with unique multipliers for each image
|
392
|
+
label = sum((img.astype(np.uint) * (i + 1) for i, img in enumerate(imgs)))
|
393
|
+
|
394
|
+
# Create the overlay image
|
395
|
+
overlay_image = color.label2rgb(
|
396
|
+
label,
|
397
|
+
image=image,
|
398
|
+
bg_label=bg_label,
|
399
|
+
colors=colors,
|
400
|
+
alpha=alpha,
|
401
|
+
bg_color=bg_color,
|
402
|
+
image_alpha=image_alpha,
|
403
|
+
saturation=saturation,
|
404
|
+
kind=kind,
|
405
|
+
channel_axis=channel_axis, # Corrected from saturation to channel_axis
|
406
|
+
)
|
407
|
+
|
408
|
+
return overlay_image
|
409
|
+
|
410
|
+
|
411
|
+
from skimage import exposure
|
412
|
+
|
413
|
+
|
414
|
+
# Comparing edge-based and region-based segmentation
|
415
|
+
def draw_hist(img, ax=None, **kwargs):
|
416
|
+
"""
|
417
|
+
_, axs = plt.subplots(1, 2)
|
418
|
+
draw_hist(image, c="r", ax=axs[1], lw=2, ls=":")
|
419
|
+
"""
|
420
|
+
print(f"img type: {type(img)}")
|
421
|
+
if not isinstance(img, np.ndarray):
|
422
|
+
img = np.array(img)
|
423
|
+
hist, hist_centers = exposure.histogram(img)
|
424
|
+
if ax is None:
|
425
|
+
ax = plt.gca()
|
426
|
+
ax.plot(hist_centers, hist, **kwargs)
|
427
|
+
|
428
|
+
|
429
|
+
from skimage import feature
|
430
|
+
|
431
|
+
|
432
|
+
# delineate the contours of the coins using edge-based segmentation
|
433
|
+
def cal_edges(img, plot=False, cmap=plt.cm.gray):
|
434
|
+
edges = feature.canny(img)
|
435
|
+
if plot:
|
436
|
+
plt.imshow(edges, cmap=cmap)
|
437
|
+
return edges
|
438
|
+
|
439
|
+
|
440
|
+
from scipy import ndimage as ndi
|
441
|
+
|
442
|
+
|
443
|
+
# These contours are then filled using mathematical morphology.
|
444
|
+
def fill_holes(img, plot=False):
|
445
|
+
img_fill_holes = ndi.binary_fill_holes(img)
|
446
|
+
if plot:
|
447
|
+
plt.imshow(img_fill_holes, cmap=plt.cm.gray)
|
448
|
+
return img_fill_holes
|
449
|
+
|
450
|
+
|
451
|
+
from skimage import morphology
|
452
|
+
|
453
|
+
|
454
|
+
def remove_holes(img, size=50, plot=False):
|
455
|
+
img_rm_holes = morphology.remove_small_objects(img, size)
|
456
|
+
if plot:
|
457
|
+
plt.imshow(img_rm_holes, cmap=plt.cm.gray)
|
458
|
+
return img_rm_holes
|
459
|
+
|
460
|
+
|
461
|
+
import matplotlib.patches as mpatches
|
462
|
+
from skimage import measure, color
|
463
|
+
|
464
|
+
|
465
|
+
def draw_bbox(
|
466
|
+
img,
|
467
|
+
df=None,
|
468
|
+
img_label=None,
|
469
|
+
img_label2rgb=None,
|
470
|
+
show=True, # plot the image
|
471
|
+
bg_alpha=1, # the alpha of the bg image
|
472
|
+
area_min=1,
|
473
|
+
area_max=None,
|
474
|
+
fill=False,
|
475
|
+
edgecolor="red",
|
476
|
+
linewidth=2,
|
477
|
+
ax=None,
|
478
|
+
**kwargs,
|
479
|
+
):
|
480
|
+
"""
|
481
|
+
ich2ls.draw_bbox(
|
482
|
+
res["img_label"], fill=False, color="r", lw=1, edgecolor="w", alpha=0.4)
|
483
|
+
"""
|
484
|
+
if ax is None:
|
485
|
+
ax = plt.gca()
|
486
|
+
if img_label is None:
|
487
|
+
img_label = measure.label(img)
|
488
|
+
if isinstance(show, bool):
|
489
|
+
if show:
|
490
|
+
if img_label2rgb is None:
|
491
|
+
img_label2rgb = color.label2rgb(img_label, image=img, bg_label=0)
|
492
|
+
ax.imshow(img_label2rgb, alpha=bg_alpha)
|
493
|
+
elif isinstance(show, str):
|
494
|
+
if "raw" in show:
|
495
|
+
ax.imshow(img, alpha=bg_alpha)
|
496
|
+
elif "label" in show:
|
497
|
+
ax.imshow(img_label, alpha=bg_alpha)
|
498
|
+
elif "rgb" in show:
|
499
|
+
if img_label2rgb is None:
|
500
|
+
img_label2rgb = color.label2rgb(img_label, image=img, bg_label=0)
|
501
|
+
ax.imshow(img_label2rgb, alpha=bg_alpha)
|
502
|
+
elif "no" in show.lower():
|
503
|
+
pass
|
504
|
+
num = 0
|
505
|
+
if df is None:
|
506
|
+
for region in measure.regionprops(img_label):
|
507
|
+
# take regions with large enough areas
|
508
|
+
if area_max is None:
|
509
|
+
area_max = np.inf
|
510
|
+
if area_min <= region.area <= area_max:
|
511
|
+
minr, minc, maxr, maxc = region.bbox
|
512
|
+
rect = mpatches.Rectangle(
|
513
|
+
(minc, minr),
|
514
|
+
maxc - minc,
|
515
|
+
maxr - minr,
|
516
|
+
fill=fill,
|
517
|
+
edgecolor=edgecolor,
|
518
|
+
linewidth=linewidth,
|
519
|
+
**kwargs,
|
520
|
+
)
|
521
|
+
ax.add_patch(rect)
|
522
|
+
num += 1
|
523
|
+
else:
|
524
|
+
# Iterate over each row in the DataFrame and draw the bounding boxes
|
525
|
+
for _, row in df.iterrows():
|
526
|
+
minr = row["bbox-0"]
|
527
|
+
minc = row["bbox-1"]
|
528
|
+
maxr = row["bbox-2"]
|
529
|
+
maxc = row["bbox-3"]
|
530
|
+
|
531
|
+
# Optionally filter by area if needed
|
532
|
+
area = (maxr - minr) * (maxc - minc)
|
533
|
+
if area >= area_min:
|
534
|
+
rect = mpatches.Rectangle(
|
535
|
+
(minc, minr),
|
536
|
+
maxc - minc,
|
537
|
+
maxr - minr,
|
538
|
+
fill=fill,
|
539
|
+
edgecolor=edgecolor,
|
540
|
+
linewidth=linewidth,
|
541
|
+
**kwargs,
|
542
|
+
)
|
543
|
+
ax.add_patch(rect)
|
544
|
+
num += 1
|
545
|
+
return num
|
546
|
+
|
547
|
+
|
548
|
+
props_list = [
|
549
|
+
"area", # Number of pixels in the region. Useful for determining the size of regions.
|
550
|
+
"area_bbox",
|
551
|
+
"area_convex",
|
552
|
+
"area_filled",
|
553
|
+
"axis_major_length", # Lengths of the major and minor axes of the ellipse that fits the region. Useful for understanding the shape's elongation and orientation.
|
554
|
+
"axis_minor_length",
|
555
|
+
"bbox", # Bounding box coordinates (min_row, min_col, max_row, max_col). Useful for spatial localization of regions.
|
556
|
+
"centroid", # Center of mass coordinates (centroid-0, centroid-1). Helps locate the center of each region.
|
557
|
+
"centroid_local",
|
558
|
+
"centroid_weighted",
|
559
|
+
"centroid_weighted_local",
|
560
|
+
"coords",
|
561
|
+
"eccentricity", # Measure of how elongated the region is. Values range from 0 (circular) to 1 (line). Useful for assessing the shape of regions.
|
562
|
+
"equivalent_diameter_area", # Diameter of a circle with the same area as the region. Provides a simple measure of size.
|
563
|
+
"euler_number",
|
564
|
+
"extent", # Ratio of the region's area to the area of its bounding box. Indicates how much of the bounding box is filled by the region.
|
565
|
+
"feret_diameter_max", # Maximum diameter of the region, providing another measure of size.
|
566
|
+
"image",
|
567
|
+
"image_convex",
|
568
|
+
"image_filled",
|
569
|
+
"image_intensity",
|
570
|
+
"inertia_tensor", # ensor describing the distribution of mass in the region, useful for more advanced shape analysis.
|
571
|
+
"inertia_tensor_eigvals",
|
572
|
+
"intensity_max", # Maximum intensity value within the region. Helps identify regions with high-intensity features.
|
573
|
+
"intensity_mean", # Average intensity value within the region. Useful for distinguishing between regions based on their brightness.
|
574
|
+
"intensity_min", # Minimum intensity value within the region. Useful for regions with varying intensity.
|
575
|
+
"intensity_std",
|
576
|
+
"label", # Unique identifier for each region.
|
577
|
+
"moments",
|
578
|
+
"moments_central",
|
579
|
+
"moments_hu", # Hu moments are a set of seven invariant features that describe the shape of the region. Useful for shape recognition and classification.
|
580
|
+
"moments_normalized",
|
581
|
+
"moments_weighted",
|
582
|
+
"moments_weighted_central",
|
583
|
+
"moments_weighted_hu",
|
584
|
+
"moments_weighted_normalized",
|
585
|
+
"orientation", # ngle of the major axis of the ellipse that fits the region. Useful for determining the orientation of elongated regions.
|
586
|
+
"perimeter", # Length of the boundary of the region. Useful for shape analysis.
|
587
|
+
"perimeter_crofton",
|
588
|
+
"slice",
|
589
|
+
"solidity", # Ratio of the area of the region to the area of its convex hull. Indicates how solid or compact a region is.
|
590
|
+
]
|
py2ls/ips.py
CHANGED
py2ls/netfinder.py
CHANGED
@@ -671,8 +671,8 @@ def downloader(
|
|
671
671
|
if dir_save:
|
672
672
|
if rm_folder:
|
673
673
|
ips.rm_folder(dir_save)
|
674
|
-
if verbose:
|
675
|
-
|
674
|
+
# if verbose:
|
675
|
+
# print(f"\n... attempting to download to local\n")
|
676
676
|
fnames = [file_link.split("/")[-1] for file_link in file_links_all]
|
677
677
|
|
678
678
|
for idx, file_link in enumerate(file_links_all):
|
@@ -688,6 +688,9 @@ def downloader(
|
|
688
688
|
ext = next(
|
689
689
|
(ftype for ftype in kind if ftype in file_link), None
|
690
690
|
)
|
691
|
+
if ext is None:
|
692
|
+
ext = kind_
|
693
|
+
print("ehereerere", ext)
|
691
694
|
if ext:
|
692
695
|
corrected_fname = fname_corrector(fnames[idx], ext)
|
693
696
|
corrected_fname = check_and_modify_filename(
|