py-neuromodulation 0.0.2__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (204) hide show
  1. docs/build/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +68 -0
  2. docs/build/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +233 -0
  3. docs/build/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +219 -0
  4. docs/build/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +97 -0
  5. docs/build/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +64 -0
  6. docs/build/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +192 -0
  7. docs/build/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +210 -0
  8. docs/build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +68 -0
  9. docs/build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +239 -0
  10. docs/build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +219 -0
  11. docs/build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +97 -0
  12. docs/build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +64 -0
  13. docs/build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +192 -0
  14. docs/build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +210 -0
  15. docs/source/_build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +76 -0
  16. docs/source/_build/html/_downloads/0d0d0a76e8f648d5d3cbc47da6351932/plot_real_time_demo.py +97 -0
  17. docs/source/_build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +240 -0
  18. docs/source/_build/html/_downloads/5d73cadc59a8805c47e3b84063afc157/plot_example_BIDS.py +233 -0
  19. docs/source/_build/html/_downloads/7660317fa5a6bfbd12fcca9961457fc4/plot_example_rmap_computing.py +63 -0
  20. docs/source/_build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +219 -0
  21. docs/source/_build/html/_downloads/839e5b319379f7fd9e867deb00fd797f/plot_example_gridPointProjection.py +210 -0
  22. docs/source/_build/html/_downloads/ae8be19afe5e559f011fc9b138968ba0/plot_first_demo.py +192 -0
  23. docs/source/_build/html/_downloads/b8b06cacc17969d3725a0b6f1d7741c5/plot_example_sharpwave_analysis.py +219 -0
  24. docs/source/_build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +121 -0
  25. docs/source/_build/html/_downloads/c31a86c0b68cb4167d968091ace8080d/plot_example_add_feature.py +68 -0
  26. docs/source/_build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +64 -0
  27. docs/source/_build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +189 -0
  28. docs/source/_build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +210 -0
  29. docs/source/auto_examples/plot_0_first_demo.py +189 -0
  30. docs/source/auto_examples/plot_1_example_BIDS.py +240 -0
  31. docs/source/auto_examples/plot_2_example_add_feature.py +76 -0
  32. docs/source/auto_examples/plot_3_example_sharpwave_analysis.py +219 -0
  33. docs/source/auto_examples/plot_4_example_gridPointProjection.py +210 -0
  34. docs/source/auto_examples/plot_5_example_rmap_computing.py +64 -0
  35. docs/source/auto_examples/plot_6_real_time_demo.py +121 -0
  36. docs/source/conf.py +105 -0
  37. examples/plot_0_first_demo.py +189 -0
  38. examples/plot_1_example_BIDS.py +240 -0
  39. examples/plot_2_example_add_feature.py +76 -0
  40. examples/plot_3_example_sharpwave_analysis.py +219 -0
  41. examples/plot_4_example_gridPointProjection.py +210 -0
  42. examples/plot_5_example_rmap_computing.py +64 -0
  43. examples/plot_6_real_time_demo.py +121 -0
  44. packages/realtime_decoding/build/lib/realtime_decoding/__init__.py +4 -0
  45. packages/realtime_decoding/build/lib/realtime_decoding/decoder.py +104 -0
  46. packages/realtime_decoding/build/lib/realtime_decoding/features.py +163 -0
  47. packages/realtime_decoding/build/lib/realtime_decoding/helpers.py +15 -0
  48. packages/realtime_decoding/build/lib/realtime_decoding/run_decoding.py +345 -0
  49. packages/realtime_decoding/build/lib/realtime_decoding/trainer.py +54 -0
  50. packages/tmsi/build/lib/TMSiFileFormats/__init__.py +37 -0
  51. packages/tmsi/build/lib/TMSiFileFormats/file_formats/__init__.py +36 -0
  52. packages/tmsi/build/lib/TMSiFileFormats/file_formats/lsl_stream_writer.py +200 -0
  53. packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_file_writer.py +496 -0
  54. packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_to_edf_converter.py +236 -0
  55. packages/tmsi/build/lib/TMSiFileFormats/file_formats/xdf_file_writer.py +977 -0
  56. packages/tmsi/build/lib/TMSiFileFormats/file_readers/__init__.py +35 -0
  57. packages/tmsi/build/lib/TMSiFileFormats/file_readers/edf_reader.py +116 -0
  58. packages/tmsi/build/lib/TMSiFileFormats/file_readers/poly5reader.py +294 -0
  59. packages/tmsi/build/lib/TMSiFileFormats/file_readers/xdf_reader.py +229 -0
  60. packages/tmsi/build/lib/TMSiFileFormats/file_writer.py +102 -0
  61. packages/tmsi/build/lib/TMSiPlotters/__init__.py +2 -0
  62. packages/tmsi/build/lib/TMSiPlotters/gui/__init__.py +39 -0
  63. packages/tmsi/build/lib/TMSiPlotters/gui/_plotter_gui.py +234 -0
  64. packages/tmsi/build/lib/TMSiPlotters/gui/plotting_gui.py +440 -0
  65. packages/tmsi/build/lib/TMSiPlotters/plotters/__init__.py +44 -0
  66. packages/tmsi/build/lib/TMSiPlotters/plotters/hd_emg_plotter.py +446 -0
  67. packages/tmsi/build/lib/TMSiPlotters/plotters/impedance_plotter.py +589 -0
  68. packages/tmsi/build/lib/TMSiPlotters/plotters/signal_plotter.py +1326 -0
  69. packages/tmsi/build/lib/TMSiSDK/__init__.py +54 -0
  70. packages/tmsi/build/lib/TMSiSDK/device.py +588 -0
  71. packages/tmsi/build/lib/TMSiSDK/devices/__init__.py +34 -0
  72. packages/tmsi/build/lib/TMSiSDK/devices/saga/TMSi_Device_API.py +1764 -0
  73. packages/tmsi/build/lib/TMSiSDK/devices/saga/__init__.py +34 -0
  74. packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_device.py +1366 -0
  75. packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_types.py +520 -0
  76. packages/tmsi/build/lib/TMSiSDK/devices/saga/xml_saga_config.py +165 -0
  77. packages/tmsi/build/lib/TMSiSDK/error.py +95 -0
  78. packages/tmsi/build/lib/TMSiSDK/sample_data.py +63 -0
  79. packages/tmsi/build/lib/TMSiSDK/sample_data_server.py +99 -0
  80. packages/tmsi/build/lib/TMSiSDK/settings.py +45 -0
  81. packages/tmsi/build/lib/TMSiSDK/tmsi_device.py +111 -0
  82. packages/tmsi/build/lib/__init__.py +4 -0
  83. packages/tmsi/build/lib/apex_sdk/__init__.py +34 -0
  84. packages/tmsi/build/lib/apex_sdk/device/__init__.py +41 -0
  85. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API.py +1009 -0
  86. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_enums.py +239 -0
  87. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_structures.py +668 -0
  88. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_device.py +1611 -0
  89. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_dongle.py +38 -0
  90. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_event_reader.py +57 -0
  91. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_channel.py +44 -0
  92. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_config.py +150 -0
  93. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_const.py +36 -0
  94. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_impedance_channel.py +48 -0
  95. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_info.py +108 -0
  96. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/dongle_info.py +39 -0
  97. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/download_measurement.py +77 -0
  98. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/eeg_measurement.py +150 -0
  99. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/impedance_measurement.py +129 -0
  100. packages/tmsi/build/lib/apex_sdk/device/threads/conversion_thread.py +59 -0
  101. packages/tmsi/build/lib/apex_sdk/device/threads/sampling_thread.py +57 -0
  102. packages/tmsi/build/lib/apex_sdk/device/tmsi_channel.py +83 -0
  103. packages/tmsi/build/lib/apex_sdk/device/tmsi_device.py +201 -0
  104. packages/tmsi/build/lib/apex_sdk/device/tmsi_device_enums.py +103 -0
  105. packages/tmsi/build/lib/apex_sdk/device/tmsi_dongle.py +43 -0
  106. packages/tmsi/build/lib/apex_sdk/device/tmsi_event_reader.py +50 -0
  107. packages/tmsi/build/lib/apex_sdk/device/tmsi_measurement.py +118 -0
  108. packages/tmsi/build/lib/apex_sdk/sample_data_server/__init__.py +33 -0
  109. packages/tmsi/build/lib/apex_sdk/sample_data_server/event_data.py +44 -0
  110. packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data.py +50 -0
  111. packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data_server.py +136 -0
  112. packages/tmsi/build/lib/apex_sdk/tmsi_errors/error.py +126 -0
  113. packages/tmsi/build/lib/apex_sdk/tmsi_sdk.py +113 -0
  114. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/apex/apex_structure_generator.py +134 -0
  115. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/decorators.py +60 -0
  116. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/logger_filter.py +42 -0
  117. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/singleton.py +42 -0
  118. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/support_functions.py +72 -0
  119. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/tmsi_logger.py +98 -0
  120. py_neuromodulation/{helper.py → _write_example_dataset_helper.py} +1 -1
  121. py_neuromodulation/nm_EpochStream.py +2 -3
  122. py_neuromodulation/nm_IO.py +43 -70
  123. py_neuromodulation/nm_RMAP.py +308 -11
  124. py_neuromodulation/nm_analysis.py +1 -1
  125. py_neuromodulation/nm_artifacts.py +25 -0
  126. py_neuromodulation/nm_bispectra.py +64 -29
  127. py_neuromodulation/nm_bursts.py +44 -30
  128. py_neuromodulation/nm_coherence.py +2 -1
  129. py_neuromodulation/nm_features.py +4 -2
  130. py_neuromodulation/nm_filter.py +63 -32
  131. py_neuromodulation/nm_filter_preprocessing.py +91 -0
  132. py_neuromodulation/nm_fooof.py +47 -29
  133. py_neuromodulation/nm_mne_connectivity.py +1 -1
  134. py_neuromodulation/nm_normalization.py +50 -74
  135. py_neuromodulation/nm_oscillatory.py +151 -31
  136. py_neuromodulation/nm_plots.py +13 -10
  137. py_neuromodulation/nm_rereference.py +10 -8
  138. py_neuromodulation/nm_run_analysis.py +28 -13
  139. py_neuromodulation/nm_sharpwaves.py +103 -136
  140. py_neuromodulation/nm_stats.py +44 -30
  141. py_neuromodulation/nm_stream_abc.py +18 -10
  142. py_neuromodulation/nm_stream_offline.py +181 -40
  143. py_neuromodulation/utils/_logging.py +24 -0
  144. {py_neuromodulation-0.0.2.dist-info → py_neuromodulation-0.0.3.dist-info}/METADATA +182 -142
  145. py_neuromodulation-0.0.3.dist-info/RECORD +188 -0
  146. {py_neuromodulation-0.0.2.dist-info → py_neuromodulation-0.0.3.dist-info}/WHEEL +2 -1
  147. py_neuromodulation-0.0.3.dist-info/top_level.txt +5 -0
  148. tests/__init__.py +0 -0
  149. tests/conftest.py +117 -0
  150. tests/test_all_examples.py +10 -0
  151. tests/test_all_features.py +63 -0
  152. tests/test_bispectra.py +70 -0
  153. tests/test_bursts.py +105 -0
  154. tests/test_feature_sampling_rates.py +143 -0
  155. tests/test_fooof.py +16 -0
  156. tests/test_initalization_offline_stream.py +41 -0
  157. tests/test_multiprocessing.py +58 -0
  158. tests/test_nan_values.py +29 -0
  159. tests/test_nm_filter.py +95 -0
  160. tests/test_nm_resample.py +63 -0
  161. tests/test_normalization_settings.py +146 -0
  162. tests/test_notch_filter.py +31 -0
  163. tests/test_osc_features.py +424 -0
  164. tests/test_preprocessing_filter.py +151 -0
  165. tests/test_rereference.py +171 -0
  166. tests/test_sampling.py +57 -0
  167. tests/test_settings_change_after_init.py +76 -0
  168. tests/test_sharpwave.py +165 -0
  169. tests/test_target_channel_add.py +100 -0
  170. tests/test_timing.py +80 -0
  171. py_neuromodulation/data/README +0 -6
  172. py_neuromodulation/data/dataset_description.json +0 -8
  173. py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/MOV_aligned_features_ch_ECOG_RIGHT_0_all.png +0 -0
  174. py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/all_feature_plt.pdf +0 -0
  175. py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_FEATURES.csv +0 -182
  176. py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_LM_ML_RES.p +0 -0
  177. py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_SETTINGS.json +0 -273
  178. py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_SIDECAR.json +0 -6
  179. py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_decoding_performance.png +0 -0
  180. py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_nm_channels.csv +0 -11
  181. py_neuromodulation/data/participants.json +0 -32
  182. py_neuromodulation/data/participants.tsv +0 -2
  183. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_coordsystem.json +0 -5
  184. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv +0 -11
  185. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv +0 -11
  186. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.eeg +0 -0
  187. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.json +0 -18
  188. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr +0 -35
  189. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vmrk +0 -13
  190. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/sub-testsub_ses-EphysMedOff_scans.tsv +0 -2
  191. py_neuromodulation/grid_cortex.tsv +0 -40
  192. py_neuromodulation/grid_subcortex.tsv +0 -1429
  193. py_neuromodulation/nm_settings.json +0 -290
  194. py_neuromodulation/plots/STN_surf.mat +0 -0
  195. py_neuromodulation/plots/Vertices.mat +0 -0
  196. py_neuromodulation/plots/faces.mat +0 -0
  197. py_neuromodulation/plots/grid.mat +0 -0
  198. py_neuromodulation/py_neuromodulation.egg-info/PKG-INFO +0 -104
  199. py_neuromodulation/py_neuromodulation.egg-info/dependency_links.txt +0 -1
  200. py_neuromodulation/py_neuromodulation.egg-info/requires.txt +0 -26
  201. py_neuromodulation/py_neuromodulation.egg-info/top_level.txt +0 -1
  202. py_neuromodulation-0.0.2.dist-info/RECORD +0 -73
  203. /py_neuromodulation/{py_neuromodulation.egg-info/SOURCES.txt → utils/__init__.py} +0 -0
  204. {py_neuromodulation-0.0.2.dist-info → py_neuromodulation-0.0.3.dist-info}/LICENSE +0 -0
@@ -0,0 +1,210 @@
1
+ """
2
+ Grid Point Projection
3
+ =====================
4
+
5
+ """
6
+
7
+ # %%
8
+ # In ECoG datasets the electrode locations are usually different. For this reason, we established a grid
9
+ # with a set of points defined in a standardized MNI brain.
10
+ # Data is then interpolated to this grid, such that they are common across patients, which allows across patient decoding use cases.
11
+ #
12
+ # In this notebook, we will plot these grid points and see how the features extracted from our data can be projected into this grid space.
13
+ #
14
+ # In order to do so, we'll read saved features that were computed in the ECoG movement notebook.
15
+ # Please note that in order to do so, when running the feature estimation, the settings
16
+ #
17
+ # .. note::
18
+ #
19
+ # .. code-block:: python
20
+ #
21
+ # stream.settings['postprocessing']['project_cortex'] = True
22
+ # stream.settings['postprocessing']['project_subcortex'] = True
23
+ #
24
+ # need to be set to `True` for a cortical and/or subcortical projection.
25
+ #
26
+
27
+ # %%
28
+ import numpy as np
29
+ import matplotlib.pyplot as plt
30
+
31
+ import py_neuromodulation as nm
32
+ from py_neuromodulation import (
33
+ nm_analysis,
34
+ nm_plots,
35
+ nm_IO,
36
+ nm_settings,
37
+ nm_define_nmchannels
38
+ )
39
+
40
+
41
+ # %%
42
+ # Read features from BIDS data
43
+ # ----------------------------
44
+ #
45
+ # We first estimate features, with the `grid_point` projection settings enabled for cortex.
46
+
47
+
48
+ # %%
49
+ RUN_NAME, PATH_RUN, PATH_BIDS, PATH_OUT, datatype = nm_IO.get_paths_example_data()
50
+
51
+ (
52
+ raw,
53
+ data,
54
+ sfreq,
55
+ line_noise,
56
+ coord_list,
57
+ coord_names,
58
+ ) = nm_IO.read_BIDS_data(
59
+ PATH_RUN=PATH_RUN,
60
+ BIDS_PATH=PATH_BIDS, datatype=datatype
61
+ )
62
+
63
+ settings = nm_settings.get_default_settings()
64
+ settings = nm_settings.set_settings_fast_compute(settings)
65
+
66
+ settings["postprocessing"]["project_cortex"] = True
67
+
68
+ nm_channels = nm_define_nmchannels.set_channels(
69
+ ch_names=raw.ch_names,
70
+ ch_types=raw.get_channel_types(),
71
+ reference="default",
72
+ bads=raw.info["bads"],
73
+ new_names="default",
74
+ used_types=("ecog", "dbs", "seeg"),
75
+ target_keywords=["MOV_RIGHT_CLEAN","MOV_LEFT_CLEAN"]
76
+ )
77
+
78
+ stream = nm.Stream(
79
+ sfreq=sfreq,
80
+ nm_channels=nm_channels,
81
+ settings=settings,
82
+ line_noise=line_noise,
83
+ coord_list=coord_list,
84
+ coord_names=coord_names,
85
+ verbose=True,
86
+ )
87
+
88
+ features = stream.run(
89
+ data=data[:, :int(sfreq*5)],
90
+ out_path_root=PATH_OUT,
91
+ folder_name=RUN_NAME,
92
+ )
93
+
94
+ # %%
95
+ # From nm_analysis.py, we use the :class:~`nm_analysis.FeatureReader` class to load the data.
96
+
97
+ # init analyzer
98
+ feature_reader = nm_analysis.Feature_Reader(
99
+ feature_dir=PATH_OUT, feature_file=RUN_NAME
100
+ )
101
+
102
+ # %%
103
+ # To perform the grid projection, for all computed features we check for every grid point if there is any electrode channel within the spatial range ```max_dist_mm```, and weight
104
+ # this electrode contact by the inverse distance and normalize across all electrode distances within the maximum distance range.
105
+ # This gives us a projection matrix that we can apply to streamed data, to transform the feature-channel matrix *(n_features, n_channels)* into the grid point matrix *(n_features, n_gridpoints)*.
106
+ #
107
+ # To save computation time, this projection matrix is precomputed before the real time run computation.
108
+ # The cortical grid is stored in *py_neuromodulation/grid_cortex.tsv* and the electrodes coordinates are stored in *_space-mni_electrodes.tsv* in a BIDS dataset.
109
+ #
110
+ # .. note::
111
+ #
112
+ # One remark is that our cortical and subcortical grids are defined for the **left** hemisphere of the brain and, therefore, electrode contacts are mapped to the left hemisphere.
113
+ #
114
+ # From the analyzer, the user can plot the cortical projection with the function below, display the grid points and ECoG electrodes are crosses.
115
+ # The yellow grid points are the ones that are active for that specific ECoG electrode location. The inactive grid points are shown in purple.
116
+
117
+ feature_reader.plot_cort_projection()
118
+
119
+ # %%
120
+ # We can also plot only the ECoG electrodes or the grid points, with the help of the data saved in feature_reader.sidecar. BIDS sidecar files are json files where you store additional information, here it is used to save the ECoG strip positions and the grid coordinates, which are not part of the settings and nm_channels.csv. We can check what is stored in the file and then use the nmplotter.plot_cortex function:
121
+
122
+ grid_plotter = nm_plots.NM_Plot(
123
+ ecog_strip=np.array(feature_reader.sidecar["coords"]["cortex_right"]["positions"]),
124
+ grid_cortex=np.array(feature_reader.sidecar["grid_cortex"]),
125
+ # grid_subcortex=np.array(feature_reader.sidecar["grid_subcortex"]),
126
+ sess_right=feature_reader.sidecar["sess_right"],
127
+ proj_matrix_cortex=np.array(feature_reader.sidecar["proj_matrix_cortex"])
128
+ )
129
+
130
+ # %%
131
+ grid_plotter.plot_cortex(
132
+ grid_color=np.sum(np.array(feature_reader.sidecar["proj_matrix_cortex"]),axis=1),
133
+ lower_clim=0.,
134
+ upper_clim=1.0,
135
+ cbar_label="Used Grid Points",
136
+ title = "ECoG electrodes projected onto cortical grid"
137
+ )
138
+
139
+ # %%
140
+ feature_reader.sidecar["coords"]["cortex_right"]["positions"]
141
+
142
+ # %%
143
+ feature_reader.nmplotter.plot_cortex(
144
+ ecog_strip=np.array(
145
+ feature_reader.sidecar["coords"]["cortex_right"]["positions"],
146
+ ),
147
+ lower_clim=0.,
148
+ upper_clim=1.0,
149
+ cbar_label="Used ECoG Electrodes",
150
+ title = "Plot of ECoG electrodes"
151
+ )
152
+
153
+ # %%
154
+ feature_reader.nmplotter.plot_cortex(
155
+ np.array(
156
+ feature_reader.sidecar["grid_cortex"]
157
+ ),
158
+ lower_clim=0.,
159
+ upper_clim=1.0,
160
+ cbar_label="All Grid Points",
161
+ title = "All grid points"
162
+ )
163
+
164
+ # %%
165
+ # The Projection Matrix
166
+ # ---------------------
167
+ # To go from the feature-channel matrix *(n_features, n_channels)* to the grid point matrix *(n_features, n_gridpoints)*
168
+ # we need a projection matrix that has the shape *(n_channels, n_gridpoints)*.
169
+ # It maps the strengths of the signals in each ECoG channel to the correspondent ones in the cortical grid.
170
+ # In the cell below we plot this matrix, that has the property that the column sum over channels for each grid point is either 1 or 0.
171
+
172
+ plt.figure(figsize=(8,5))
173
+ plt.imshow(np.array(feature_reader.sidecar['proj_matrix_cortex']), aspect = 'auto')
174
+ plt.colorbar(label = "Strength of ECoG signal in each grid point")
175
+ plt.xlabel("ECoG channels")
176
+ plt.ylabel("Grid points")
177
+ plt.title("Matrix mapping from ECoG to grid")
178
+
179
+ # %%
180
+ # Feature Plot in the Grid: An Example of Post-processing
181
+ # -------------------------------------------------------
182
+ # First we take the dataframe with all the features in all time points.
183
+
184
+ df = feature_reader.feature_arr
185
+
186
+ # %%
187
+ df.iloc[:5, :5]
188
+
189
+ # %%
190
+ # Then we filter for only 'avgref_fft_theta', which gives us the value for fft_theta in all 6 ECoG channels over all time points. Then we take only the 6th time point - as an arbitrary choice.
191
+
192
+ fft_theta_oneTimePoint = np.asarray(df[df.columns[df.columns.str.contains(pat = 'avgref_fft_theta')]].iloc[5])
193
+ fft_theta_oneTimePoint
194
+
195
+ # %%
196
+ # Then the projection of the features into the grid is gonna be the color of the grid points in the *plot_cortex* function.
197
+ # That is the matrix multiplication of the projection matrix of the cortex and 6 values for the *fft_theta* feature above.
198
+
199
+ grid_fft_Theta = np.array(feature_reader.sidecar["proj_matrix_cortex"]) @ fft_theta_oneTimePoint
200
+
201
+ feature_reader.nmplotter.plot_cortex(np.array(
202
+ feature_reader.sidecar["grid_cortex"]),grid_color = grid_fft_Theta, set_clim = True, lower_clim=min(grid_fft_Theta[grid_fft_Theta>0]), upper_clim=max(grid_fft_Theta), cbar_label="FFT Theta Projection to Grid", title = "FFT Theta Projection to Grid")
203
+
204
+ # %%
205
+ # Lower and upper boundaries for clim were chosen to be the max and min values of the projection of the features (minimum value excluding zero). This can be checked in the cell below:
206
+
207
+ grid_fft_Theta
208
+
209
+ # %%
210
+ # In the plot above we can see how the intensity of the fast fourier transform in the theta band varies for each grid point in the cortex, for one specific time point.
@@ -0,0 +1,189 @@
1
+ """
2
+ First Demo
3
+ ==========
4
+
5
+ This Demo will showcase the feature estimation and
6
+ exemplar analysis using simulated data.
7
+ """
8
+
9
+ import numpy as np
10
+ from matplotlib import pyplot as plt
11
+
12
+ import py_neuromodulation as nm
13
+
14
+ from py_neuromodulation import nm_analysis, nm_define_nmchannels, nm_plots
15
+
16
+ # %%
17
+ # Data Simulation
18
+ # ---------------
19
+ # We will now generate some exemplar data with 10 second duration for 6 channels with a sample rate of 1 kHz.
20
+
21
+
22
+ def generate_random_walk(NUM_CHANNELS, TIME_DATA_SAMPLES):
23
+ # from https://towardsdatascience.com/random-walks-with-python-8420981bc4bc
24
+ dims = NUM_CHANNELS
25
+ step_n = TIME_DATA_SAMPLES - 1
26
+ step_set = [-1, 0, 1]
27
+ origin = (np.random.random([1, dims]) - 0.5) * 1 # Simulate steps in 1D
28
+ step_shape = (step_n, dims)
29
+ steps = np.random.choice(a=step_set, size=step_shape)
30
+ path = np.concatenate([origin, steps]).cumsum(0)
31
+ return path.T
32
+
33
+
34
+ NUM_CHANNELS = 6
35
+ sfreq = 1000
36
+ TIME_DATA_SAMPLES = 10 * sfreq
37
+ data = generate_random_walk(NUM_CHANNELS, TIME_DATA_SAMPLES)
38
+ time = np.arange(0, TIME_DATA_SAMPLES / sfreq, 1 / sfreq)
39
+
40
+ plt.figure(figsize=(8, 4), dpi=100)
41
+ for ch_idx in range(data.shape[0]):
42
+ plt.plot(time, data[ch_idx, :])
43
+ plt.xlabel("Time [s]")
44
+ plt.ylabel("Amplitude")
45
+ plt.title("Example random walk data")
46
+
47
+ # %%
48
+ # Now let’s define the necessary setup files we will be using for data
49
+ # preprocessing and feature estimation. Py_neuromodualtion is based on two
50
+ # parametrization files: the *nm_channels.tsv* and the *nm_setting.json*.
51
+ #
52
+ # nm_channels
53
+ # ~~~~~~~~~~~
54
+ #
55
+ # The *nm_channel* dataframe. This dataframe contains the columns
56
+ #
57
+ # +-----------------------------------+-----------------------------------+
58
+ # | Column name | Description |
59
+ # +===================================+===================================+
60
+ # | **name** | name of the channel |
61
+ # +-----------------------------------+-----------------------------------+
62
+ # | **rereference** | different channel name for |
63
+ # | | bipolar re-referencing, or |
64
+ # | | average for common average |
65
+ # | | re-referencing |
66
+ # +-----------------------------------+-----------------------------------+
67
+ # | **used** | 0 or 1, channel selection |
68
+ # +-----------------------------------+-----------------------------------+
69
+ # | **target** | 0 or 1, for some decoding |
70
+ # | | applications we can define target |
71
+ # | | channels, e.g. EMG channels |
72
+ # +-----------------------------------+-----------------------------------+
73
+ # | **type** | channel type according to the |
74
+ # | | `mne-python`_ toolbox |
75
+ # | | |
76
+ # | | |
77
+ # | | |
78
+ # | | |
79
+ # | | e.g. ecog, eeg, ecg, emg, dbs, |
80
+ # | | seeg etc. |
81
+ # +-----------------------------------+-----------------------------------+
82
+ # | **status** | good or bad, used for channel |
83
+ # | | quality indication |
84
+ # +-----------------------------------+-----------------------------------+
85
+ # | **new_name** | this keyword can be specified to |
86
+ # | | indicate for example the used |
87
+ # | | rereferncing scheme |
88
+ # +-----------------------------------+-----------------------------------+
89
+ #
90
+ # .. _mne-python: https://mne.tools/stable/auto_tutorials/raw/10_raw_overview.html#sphx-glr-auto-tutorials-raw-10-raw-overview-py
91
+ #
92
+ # The :class:`~nm_stream_abc` can either be created as a *.tsv* text file, or as a pandas
93
+ # DataFrame. There are some helper functions that let you create the
94
+ # nm_channels without much effort:
95
+
96
+ nm_channels = nm_define_nmchannels.get_default_channels_from_data(
97
+ data, car_rereferencing=True
98
+ )
99
+
100
+ nm_channels
101
+
102
+ # %%
103
+ # Using this function default channel names and a common average re-referencing scheme is specified.
104
+ # Alternatively the *nm_define_nmchannels.set_channels* function can be used to pass each column values.
105
+ #
106
+ # nm_settings
107
+ # -----------
108
+ # Next, we will initialize the nm_settings dictionary and use the default settings, reset them, and enable a subset of features:
109
+
110
+ settings = nm.nm_settings.get_default_settings()
111
+ settings = nm.nm_settings.reset_settings(settings)
112
+
113
+
114
+ # %%
115
+ # The setting itself is a .json file which contains the parametrization for preprocessing, feature estimation, postprocessing and
116
+ # definition with which sampling rate features are being calculated.
117
+ # In this example `sampling_rate_features_hz` is specified to be 10 Hz, so every 100ms a new set of features is calculated.
118
+ #
119
+ # For many features the `segment_length_features_ms` specifies the time dimension of the raw signal being used for feature calculation. Here it is specified to be 1000 ms.
120
+ #
121
+ # We will now enable the features:
122
+ #
123
+ # * fft
124
+ # * bursts
125
+ # * sharpwave
126
+ #
127
+ # and stay with the default preprcessing methods:
128
+ #
129
+ # * notch_filter
130
+ # * re_referencing
131
+ #
132
+ # and use *z-score* postprocessing normalization.
133
+
134
+ settings["features"]["fft"] = True
135
+ settings["features"]["bursts"] = True
136
+ settings["features"]["sharpwave_analysis"] = True
137
+
138
+ # %%
139
+ # We are now ready to go to instantiate the *Stream* and call the *run* method for feature estimation:
140
+
141
+ stream = nm.Stream(
142
+ settings=settings,
143
+ nm_channels=nm_channels,
144
+ verbose=True,
145
+ sfreq=sfreq,
146
+ line_noise=50,
147
+ )
148
+
149
+ features = stream.run(data)
150
+
151
+ # %%
152
+ # Feature Analysis
153
+ # ----------------
154
+ #
155
+ # There is a lot of output, which we could omit by verbose being False, but let's have a look what was being computed.
156
+ # We will therefore use the :class:`~nm_analysis` class to showcase some functions. For multi-run -or subject analysis we will pass here the feature_file "sub" as default directory:
157
+
158
+ analyzer = nm_analysis.Feature_Reader(
159
+ feature_dir=stream.PATH_OUT, feature_file=stream.PATH_OUT_folder_name
160
+ )
161
+
162
+ # %%
163
+ # Let's have a look at the resulting "feature_arr" DataFrame:
164
+
165
+ analyzer.feature_arr.iloc[:10, :7]
166
+
167
+ # %%
168
+ # Seems like a lot of features were calculated. The `time` column tells us about each row time index.
169
+ # For the 6 specified channels, it is each 31 features.
170
+ # We can now use some in-built plotting functions for visualization.
171
+ #
172
+ # .. note::
173
+ #
174
+ # Due to the nature of simulated data, some of the features have constant values, which are not displayed through the image normalization.
175
+ #
176
+ #
177
+
178
+ analyzer.plot_all_features(ch_used="ch1")
179
+
180
+ # %%
181
+ nm_plots.plot_corr_matrix(
182
+ figsize=(25, 25),
183
+ show_plot=True,
184
+ feature=analyzer.feature_arr,
185
+ )
186
+
187
+ # %%
188
+ # The upper correlation matrix shows the correlation of every feature of every channel to every other.
189
+ # This notebook demonstrated a first demo how features can quickly be generated. For further feature modalities and decoding applications check out the next notebooks.
@@ -0,0 +1,240 @@
1
+ """
2
+ ECoG Movement decoding example
3
+ ==============================
4
+
5
+ """
6
+
7
+ # %%
8
+ # This example notebook read openly accessible data from the publication
9
+ # *Electrocorticography is superior to subthalamic local field potentials
10
+ # for movement decoding in Parkinson’s disease*
11
+ # (`Merk et al. 2022 <https://elifesciences.org/articles/75126>_`).
12
+ # The dataset is available `here <https://doi.org/10.7910/DVN/IO2FLM>`_.
13
+ #
14
+ # For simplicity one example subject is automatically shipped within
15
+ # this repo at the *py_neuromodulation/data* folder, stored in
16
+ # `iEEG BIDS <https://www.nature.com/articles/s41597-019-0105-7>`_ format.
17
+
18
+ # %%
19
+ from sklearn import metrics, model_selection, linear_model
20
+ import matplotlib.pyplot as plt
21
+
22
+ import py_neuromodulation as nm
23
+ from py_neuromodulation import (
24
+ nm_analysis,
25
+ nm_decode,
26
+ nm_define_nmchannels,
27
+ nm_IO,
28
+ nm_plots,
29
+ nm_settings,
30
+ )
31
+
32
+ # %%
33
+ # Let's read the example using `mne_bids <https://mne.tools/mne-bids/stable/index.html>`_.
34
+ # The resulting raw object is of type `mne.RawArray <https://mne.tools/stable/generated/mne.io.RawArray.html>`_.
35
+ # We can use the properties such as sampling frequency, channel names, channel types all from the mne array and create the *nm_channels* DataFrame:
36
+
37
+ (
38
+ RUN_NAME,
39
+ PATH_RUN,
40
+ PATH_BIDS,
41
+ PATH_OUT,
42
+ datatype,
43
+ ) = nm_IO.get_paths_example_data()
44
+
45
+ (
46
+ raw,
47
+ data,
48
+ sfreq,
49
+ line_noise,
50
+ coord_list,
51
+ coord_names,
52
+ ) = nm_IO.read_BIDS_data(
53
+ PATH_RUN=PATH_RUN, BIDS_PATH=PATH_BIDS, datatype=datatype
54
+ )
55
+
56
+ nm_channels = nm_define_nmchannels.set_channels(
57
+ ch_names=raw.ch_names,
58
+ ch_types=raw.get_channel_types(),
59
+ reference="default",
60
+ bads=raw.info["bads"],
61
+ new_names="default",
62
+ used_types=("ecog", "dbs", "seeg"),
63
+ target_keywords=["MOV_RIGHT"],
64
+ )
65
+
66
+ nm_channels
67
+
68
+ # %%
69
+ # This example contains the grip force movement traces, we'll use the *MOV_RIGHT* channel as a decoding target channel.
70
+ # Let's check some of the raw feature and time series traces:
71
+
72
+ plt.figure(figsize=(12, 4), dpi=300)
73
+ plt.subplot(121)
74
+ plt.plot(raw.times, data[-1, :])
75
+ plt.xlabel("Time [s]")
76
+ plt.ylabel("a.u.")
77
+ plt.title("Movement label")
78
+ plt.xlim(0, 20)
79
+
80
+ plt.subplot(122)
81
+ for idx, ch_name in enumerate(nm_channels.query("used == 1").name):
82
+ plt.plot(raw.times, data[idx, :] + idx * 300, label=ch_name)
83
+ plt.legend(bbox_to_anchor=(1, 0.5), loc="center left")
84
+ plt.title("ECoG + STN-LFP time series")
85
+ plt.xlabel("Time [s]")
86
+ plt.ylabel("Voltage a.u.")
87
+ plt.xlim(0, 20)
88
+
89
+ # %%
90
+ settings = nm_settings.get_default_settings()
91
+ settings = nm_settings.set_settings_fast_compute(settings)
92
+
93
+ settings["features"]["welch"] = True
94
+ settings["features"]["fft"] = True
95
+ settings["features"]["bursts"] = True
96
+ settings["features"]["sharpwave_analysis"] = True
97
+ settings["features"]["coherence"] = True
98
+ settings["coherence"]["channels"] = [["LFP_RIGHT_0", "ECOG_RIGHT_0"]]
99
+ settings["coherence"]["frequency_bands"] = ["high beta", "low gamma"]
100
+ settings["sharpwave_analysis_settings"]["estimator"]["mean"] = []
101
+ for sw_feature in list(
102
+ settings["sharpwave_analysis_settings"]["sharpwave_features"].keys()
103
+ ):
104
+ settings["sharpwave_analysis_settings"]["sharpwave_features"][
105
+ sw_feature
106
+ ] = True
107
+ settings["sharpwave_analysis_settings"]["estimator"]["mean"].append(
108
+ sw_feature
109
+ )
110
+
111
+ # %%
112
+ stream = nm.Stream(
113
+ sfreq=sfreq,
114
+ nm_channels=nm_channels,
115
+ settings=settings,
116
+ line_noise=line_noise,
117
+ coord_list=coord_list,
118
+ coord_names=coord_names,
119
+ verbose=True,
120
+ )
121
+
122
+ # %%
123
+ features = stream.run(
124
+ data=data,
125
+ out_path_root=PATH_OUT,
126
+ folder_name=RUN_NAME,
127
+ )
128
+
129
+ # %%
130
+ # Feature Analysis Movement
131
+ # -------------------------
132
+ # The obtained performances can now be read and visualized using the :class:`nm_analysis.Feature_Reader`.
133
+
134
+ # initialize analyzer
135
+ feature_reader = nm_analysis.Feature_Reader(
136
+ feature_dir=PATH_OUT,
137
+ feature_file=RUN_NAME,
138
+ )
139
+ feature_reader.label_name = "MOV_RIGHT"
140
+ feature_reader.label = feature_reader.feature_arr["MOV_RIGHT"]
141
+
142
+ # %%
143
+ feature_reader.feature_arr.iloc[100:108, -6:]
144
+
145
+ # %%
146
+ print(feature_reader.feature_arr.shape)
147
+
148
+ # %%
149
+ feature_reader._get_target_ch()
150
+
151
+ # %%
152
+ feature_reader.plot_target_averaged_channel(
153
+ ch="ECOG_RIGHT_0",
154
+ list_feature_keywords=None,
155
+ epoch_len=4,
156
+ threshold=0.5,
157
+ ytick_labelsize=7,
158
+ figsize_x=12,
159
+ figsize_y=12,
160
+ )
161
+
162
+ # %%
163
+ feature_reader.plot_all_features(
164
+ ytick_labelsize=6,
165
+ clim_low=-2,
166
+ clim_high=2,
167
+ ch_used="ECOG_RIGHT_0",
168
+ time_limit_low_s=0,
169
+ time_limit_high_s=20,
170
+ normalize=True,
171
+ save=True,
172
+ )
173
+
174
+ # %%
175
+ nm_plots.plot_corr_matrix(
176
+ feature=feature_reader.feature_arr.filter(regex="ECOG_RIGHT_0"),
177
+ ch_name="ECOG_RIGHT_0-avgref",
178
+ feature_names=feature_reader.feature_arr.filter(
179
+ regex="ECOG_RIGHT_0-avgref"
180
+ ).columns,
181
+ feature_file=feature_reader.feature_file,
182
+ show_plot=True,
183
+ figsize=(15, 15),
184
+ )
185
+
186
+ # %%
187
+ # Decoding
188
+ # --------
189
+ #
190
+ # The main focus of the *py_neuromodulation* pipeline is feature estimation.
191
+ # Nevertheless, the user can also use the pipeline for machine learning decoding.
192
+ # It can be used for regression and classification problems and also dimensionality reduction such as PCA and CCA.
193
+ #
194
+ # Here, we show an example using the XGBOOST classifier. The used labels came from a continuous grip force movement target, named "MOV_RIGHT".
195
+ #
196
+ # First we initialize the :class:`~nm_decode.Decoder` class, which the specified *validation method*, here being a simple 3-fold cross validation,
197
+ # the evaluation metric, used machine learning model, and the channels we want to evaluate performances for.
198
+ #
199
+ # There are many more implemented methods, but we will here limit it to the ones presented.
200
+
201
+ model = linear_model.LinearRegression()
202
+
203
+ feature_reader.decoder = nm_decode.Decoder(
204
+ features=feature_reader.feature_arr,
205
+ label=feature_reader.label,
206
+ label_name=feature_reader.label_name,
207
+ used_chs=feature_reader.used_chs,
208
+ model=model,
209
+ eval_method=metrics.r2_score,
210
+ cv_method=model_selection.KFold(n_splits=3, shuffle=True),
211
+ )
212
+
213
+ # %%
214
+ performances = feature_reader.run_ML_model(
215
+ estimate_channels=True,
216
+ estimate_gridpoints=False,
217
+ estimate_all_channels_combined=True,
218
+ save_results=True,
219
+ )
220
+
221
+ # %%
222
+ # The performances are a dictionary that can be transformed into a DataFrame:
223
+
224
+ df_per = feature_reader.get_dataframe_performances(performances)
225
+
226
+ df_per
227
+
228
+ # %%
229
+ ax = nm_plots.plot_df_subjects(
230
+ df_per,
231
+ x_col="sub",
232
+ y_col="performance_test",
233
+ hue="ch_type",
234
+ PATH_SAVE=PATH_OUT / RUN_NAME / (RUN_NAME + "_decoding_performance.png"),
235
+ figsize_tuple=(8, 5),
236
+ )
237
+ ax.set_ylabel(r"$R^2$ Correlation")
238
+ ax.set_xlabel("Subject 000")
239
+ ax.set_title("Performance comparison Movement decoding")
240
+ plt.tight_layout()