py-neuromodulation 0.0.2__py3-none-any.whl → 0.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- docs/build/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +68 -0
- docs/build/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +233 -0
- docs/build/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +219 -0
- docs/build/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +97 -0
- docs/build/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +64 -0
- docs/build/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +192 -0
- docs/build/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +210 -0
- docs/build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +68 -0
- docs/build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +239 -0
- docs/build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +219 -0
- docs/build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +97 -0
- docs/build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +64 -0
- docs/build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +192 -0
- docs/build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +210 -0
- docs/source/_build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +76 -0
- docs/source/_build/html/_downloads/0d0d0a76e8f648d5d3cbc47da6351932/plot_real_time_demo.py +97 -0
- docs/source/_build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +240 -0
- docs/source/_build/html/_downloads/5d73cadc59a8805c47e3b84063afc157/plot_example_BIDS.py +233 -0
- docs/source/_build/html/_downloads/7660317fa5a6bfbd12fcca9961457fc4/plot_example_rmap_computing.py +63 -0
- docs/source/_build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +219 -0
- docs/source/_build/html/_downloads/839e5b319379f7fd9e867deb00fd797f/plot_example_gridPointProjection.py +210 -0
- docs/source/_build/html/_downloads/ae8be19afe5e559f011fc9b138968ba0/plot_first_demo.py +192 -0
- docs/source/_build/html/_downloads/b8b06cacc17969d3725a0b6f1d7741c5/plot_example_sharpwave_analysis.py +219 -0
- docs/source/_build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +121 -0
- docs/source/_build/html/_downloads/c31a86c0b68cb4167d968091ace8080d/plot_example_add_feature.py +68 -0
- docs/source/_build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +64 -0
- docs/source/_build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +189 -0
- docs/source/_build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +210 -0
- docs/source/auto_examples/plot_0_first_demo.py +189 -0
- docs/source/auto_examples/plot_1_example_BIDS.py +240 -0
- docs/source/auto_examples/plot_2_example_add_feature.py +76 -0
- docs/source/auto_examples/plot_3_example_sharpwave_analysis.py +219 -0
- docs/source/auto_examples/plot_4_example_gridPointProjection.py +210 -0
- docs/source/auto_examples/plot_5_example_rmap_computing.py +64 -0
- docs/source/auto_examples/plot_6_real_time_demo.py +121 -0
- docs/source/conf.py +105 -0
- examples/plot_0_first_demo.py +189 -0
- examples/plot_1_example_BIDS.py +240 -0
- examples/plot_2_example_add_feature.py +76 -0
- examples/plot_3_example_sharpwave_analysis.py +219 -0
- examples/plot_4_example_gridPointProjection.py +210 -0
- examples/plot_5_example_rmap_computing.py +64 -0
- examples/plot_6_real_time_demo.py +121 -0
- packages/realtime_decoding/build/lib/realtime_decoding/__init__.py +4 -0
- packages/realtime_decoding/build/lib/realtime_decoding/decoder.py +104 -0
- packages/realtime_decoding/build/lib/realtime_decoding/features.py +163 -0
- packages/realtime_decoding/build/lib/realtime_decoding/helpers.py +15 -0
- packages/realtime_decoding/build/lib/realtime_decoding/run_decoding.py +345 -0
- packages/realtime_decoding/build/lib/realtime_decoding/trainer.py +54 -0
- packages/tmsi/build/lib/TMSiFileFormats/__init__.py +37 -0
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/__init__.py +36 -0
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/lsl_stream_writer.py +200 -0
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_file_writer.py +496 -0
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_to_edf_converter.py +236 -0
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/xdf_file_writer.py +977 -0
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/__init__.py +35 -0
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/edf_reader.py +116 -0
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/poly5reader.py +294 -0
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/xdf_reader.py +229 -0
- packages/tmsi/build/lib/TMSiFileFormats/file_writer.py +102 -0
- packages/tmsi/build/lib/TMSiPlotters/__init__.py +2 -0
- packages/tmsi/build/lib/TMSiPlotters/gui/__init__.py +39 -0
- packages/tmsi/build/lib/TMSiPlotters/gui/_plotter_gui.py +234 -0
- packages/tmsi/build/lib/TMSiPlotters/gui/plotting_gui.py +440 -0
- packages/tmsi/build/lib/TMSiPlotters/plotters/__init__.py +44 -0
- packages/tmsi/build/lib/TMSiPlotters/plotters/hd_emg_plotter.py +446 -0
- packages/tmsi/build/lib/TMSiPlotters/plotters/impedance_plotter.py +589 -0
- packages/tmsi/build/lib/TMSiPlotters/plotters/signal_plotter.py +1326 -0
- packages/tmsi/build/lib/TMSiSDK/__init__.py +54 -0
- packages/tmsi/build/lib/TMSiSDK/device.py +588 -0
- packages/tmsi/build/lib/TMSiSDK/devices/__init__.py +34 -0
- packages/tmsi/build/lib/TMSiSDK/devices/saga/TMSi_Device_API.py +1764 -0
- packages/tmsi/build/lib/TMSiSDK/devices/saga/__init__.py +34 -0
- packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_device.py +1366 -0
- packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_types.py +520 -0
- packages/tmsi/build/lib/TMSiSDK/devices/saga/xml_saga_config.py +165 -0
- packages/tmsi/build/lib/TMSiSDK/error.py +95 -0
- packages/tmsi/build/lib/TMSiSDK/sample_data.py +63 -0
- packages/tmsi/build/lib/TMSiSDK/sample_data_server.py +99 -0
- packages/tmsi/build/lib/TMSiSDK/settings.py +45 -0
- packages/tmsi/build/lib/TMSiSDK/tmsi_device.py +111 -0
- packages/tmsi/build/lib/__init__.py +4 -0
- packages/tmsi/build/lib/apex_sdk/__init__.py +34 -0
- packages/tmsi/build/lib/apex_sdk/device/__init__.py +41 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API.py +1009 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_enums.py +239 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_structures.py +668 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_device.py +1611 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_dongle.py +38 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_event_reader.py +57 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_channel.py +44 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_config.py +150 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_const.py +36 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_impedance_channel.py +48 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_info.py +108 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/dongle_info.py +39 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/download_measurement.py +77 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/eeg_measurement.py +150 -0
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/impedance_measurement.py +129 -0
- packages/tmsi/build/lib/apex_sdk/device/threads/conversion_thread.py +59 -0
- packages/tmsi/build/lib/apex_sdk/device/threads/sampling_thread.py +57 -0
- packages/tmsi/build/lib/apex_sdk/device/tmsi_channel.py +83 -0
- packages/tmsi/build/lib/apex_sdk/device/tmsi_device.py +201 -0
- packages/tmsi/build/lib/apex_sdk/device/tmsi_device_enums.py +103 -0
- packages/tmsi/build/lib/apex_sdk/device/tmsi_dongle.py +43 -0
- packages/tmsi/build/lib/apex_sdk/device/tmsi_event_reader.py +50 -0
- packages/tmsi/build/lib/apex_sdk/device/tmsi_measurement.py +118 -0
- packages/tmsi/build/lib/apex_sdk/sample_data_server/__init__.py +33 -0
- packages/tmsi/build/lib/apex_sdk/sample_data_server/event_data.py +44 -0
- packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data.py +50 -0
- packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data_server.py +136 -0
- packages/tmsi/build/lib/apex_sdk/tmsi_errors/error.py +126 -0
- packages/tmsi/build/lib/apex_sdk/tmsi_sdk.py +113 -0
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/apex/apex_structure_generator.py +134 -0
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/decorators.py +60 -0
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/logger_filter.py +42 -0
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/singleton.py +42 -0
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/support_functions.py +72 -0
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/tmsi_logger.py +98 -0
- py_neuromodulation/{helper.py → _write_example_dataset_helper.py} +1 -1
- py_neuromodulation/nm_EpochStream.py +2 -3
- py_neuromodulation/nm_IO.py +43 -70
- py_neuromodulation/nm_RMAP.py +308 -11
- py_neuromodulation/nm_analysis.py +1 -1
- py_neuromodulation/nm_artifacts.py +25 -0
- py_neuromodulation/nm_bispectra.py +64 -29
- py_neuromodulation/nm_bursts.py +44 -30
- py_neuromodulation/nm_coherence.py +2 -1
- py_neuromodulation/nm_features.py +4 -2
- py_neuromodulation/nm_filter.py +63 -32
- py_neuromodulation/nm_filter_preprocessing.py +91 -0
- py_neuromodulation/nm_fooof.py +47 -29
- py_neuromodulation/nm_mne_connectivity.py +1 -1
- py_neuromodulation/nm_normalization.py +50 -74
- py_neuromodulation/nm_oscillatory.py +151 -31
- py_neuromodulation/nm_plots.py +13 -10
- py_neuromodulation/nm_rereference.py +10 -8
- py_neuromodulation/nm_run_analysis.py +28 -13
- py_neuromodulation/nm_sharpwaves.py +103 -136
- py_neuromodulation/nm_stats.py +44 -30
- py_neuromodulation/nm_stream_abc.py +18 -10
- py_neuromodulation/nm_stream_offline.py +181 -40
- py_neuromodulation/utils/_logging.py +24 -0
- {py_neuromodulation-0.0.2.dist-info → py_neuromodulation-0.0.3.dist-info}/METADATA +182 -142
- py_neuromodulation-0.0.3.dist-info/RECORD +188 -0
- {py_neuromodulation-0.0.2.dist-info → py_neuromodulation-0.0.3.dist-info}/WHEEL +2 -1
- py_neuromodulation-0.0.3.dist-info/top_level.txt +5 -0
- tests/__init__.py +0 -0
- tests/conftest.py +117 -0
- tests/test_all_examples.py +10 -0
- tests/test_all_features.py +63 -0
- tests/test_bispectra.py +70 -0
- tests/test_bursts.py +105 -0
- tests/test_feature_sampling_rates.py +143 -0
- tests/test_fooof.py +16 -0
- tests/test_initalization_offline_stream.py +41 -0
- tests/test_multiprocessing.py +58 -0
- tests/test_nan_values.py +29 -0
- tests/test_nm_filter.py +95 -0
- tests/test_nm_resample.py +63 -0
- tests/test_normalization_settings.py +146 -0
- tests/test_notch_filter.py +31 -0
- tests/test_osc_features.py +424 -0
- tests/test_preprocessing_filter.py +151 -0
- tests/test_rereference.py +171 -0
- tests/test_sampling.py +57 -0
- tests/test_settings_change_after_init.py +76 -0
- tests/test_sharpwave.py +165 -0
- tests/test_target_channel_add.py +100 -0
- tests/test_timing.py +80 -0
- py_neuromodulation/data/README +0 -6
- py_neuromodulation/data/dataset_description.json +0 -8
- py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/MOV_aligned_features_ch_ECOG_RIGHT_0_all.png +0 -0
- py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/all_feature_plt.pdf +0 -0
- py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_FEATURES.csv +0 -182
- py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_LM_ML_RES.p +0 -0
- py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_SETTINGS.json +0 -273
- py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_SIDECAR.json +0 -6
- py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_decoding_performance.png +0 -0
- py_neuromodulation/data/derivatives/sub-testsub_ses-EphysMedOff_task-gripforce_run-0/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_nm_channels.csv +0 -11
- py_neuromodulation/data/participants.json +0 -32
- py_neuromodulation/data/participants.tsv +0 -2
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_coordsystem.json +0 -5
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv +0 -11
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv +0 -11
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.eeg +0 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.json +0 -18
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr +0 -35
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vmrk +0 -13
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/sub-testsub_ses-EphysMedOff_scans.tsv +0 -2
- py_neuromodulation/grid_cortex.tsv +0 -40
- py_neuromodulation/grid_subcortex.tsv +0 -1429
- py_neuromodulation/nm_settings.json +0 -290
- py_neuromodulation/plots/STN_surf.mat +0 -0
- py_neuromodulation/plots/Vertices.mat +0 -0
- py_neuromodulation/plots/faces.mat +0 -0
- py_neuromodulation/plots/grid.mat +0 -0
- py_neuromodulation/py_neuromodulation.egg-info/PKG-INFO +0 -104
- py_neuromodulation/py_neuromodulation.egg-info/dependency_links.txt +0 -1
- py_neuromodulation/py_neuromodulation.egg-info/requires.txt +0 -26
- py_neuromodulation/py_neuromodulation.egg-info/top_level.txt +0 -1
- py_neuromodulation-0.0.2.dist-info/RECORD +0 -73
- /py_neuromodulation/{py_neuromodulation.egg-info/SOURCES.txt → utils/__init__.py} +0 -0
- {py_neuromodulation-0.0.2.dist-info → py_neuromodulation-0.0.3.dist-info}/LICENSE +0 -0
|
@@ -0,0 +1,143 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import pandas as pd
|
|
3
|
+
import pytest
|
|
4
|
+
|
|
5
|
+
from py_neuromodulation import (
|
|
6
|
+
nm_settings,
|
|
7
|
+
nm_stream_offline,
|
|
8
|
+
nm_define_nmchannels,
|
|
9
|
+
nm_stream_abc,
|
|
10
|
+
)
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def get_example_settings(test_arr: np.array) -> nm_stream_abc.PNStream:
|
|
14
|
+
settings = nm_settings.set_settings_fast_compute(
|
|
15
|
+
nm_settings.get_default_settings()
|
|
16
|
+
)
|
|
17
|
+
|
|
18
|
+
nm_channels = nm_define_nmchannels.get_default_channels_from_data(test_arr)
|
|
19
|
+
|
|
20
|
+
return settings, nm_channels
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def test_different_sampling_rate_100Hz():
|
|
24
|
+
sampling_rate_features = 100
|
|
25
|
+
|
|
26
|
+
arr_test = np.random.random([2, 1020])
|
|
27
|
+
settings, nm_channels = get_example_settings(arr_test)
|
|
28
|
+
|
|
29
|
+
settings["sampling_rate_features_hz"] = sampling_rate_features
|
|
30
|
+
stream = nm_stream_offline.Stream(
|
|
31
|
+
sfreq=1000, nm_channels=nm_channels, settings=settings, verbose=True
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
df = stream.run(arr_test)
|
|
35
|
+
|
|
36
|
+
# check the difference between time points
|
|
37
|
+
|
|
38
|
+
assert np.diff(df["time"].iloc[:2]) / 1000 == (1 / sampling_rate_features)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def test_different_sampling_rate_10Hz():
|
|
42
|
+
sampling_rate_features = 10
|
|
43
|
+
|
|
44
|
+
arr_test = np.random.random([2, 1200])
|
|
45
|
+
settings, nm_channels = get_example_settings(arr_test)
|
|
46
|
+
|
|
47
|
+
settings["sampling_rate_features_hz"] = sampling_rate_features
|
|
48
|
+
stream = nm_stream_offline.Stream(
|
|
49
|
+
sfreq=1000, nm_channels=nm_channels, settings=settings, verbose=True
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
df = stream.run(arr_test)
|
|
53
|
+
|
|
54
|
+
# check the difference between time points
|
|
55
|
+
|
|
56
|
+
assert np.diff(df["time"].iloc[:2]) / 1000 == (1 / sampling_rate_features)
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
def test_different_sampling_rate_1Hz():
|
|
60
|
+
sampling_rate_features = 1
|
|
61
|
+
|
|
62
|
+
arr_test = np.random.random([2, 3000])
|
|
63
|
+
settings, nm_channels = get_example_settings(arr_test)
|
|
64
|
+
|
|
65
|
+
settings["sampling_rate_features_hz"] = sampling_rate_features
|
|
66
|
+
stream = nm_stream_offline.Stream(
|
|
67
|
+
sfreq=1000, nm_channels=nm_channels, settings=settings, verbose=True
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
df = stream.run(arr_test)
|
|
71
|
+
|
|
72
|
+
# check the difference between time points
|
|
73
|
+
|
|
74
|
+
assert np.diff(df["time"].iloc[:2]) / 1000 == (1 / sampling_rate_features)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
def test_different_sampling_rate_0DOT1Hz():
|
|
78
|
+
sampling_rate_features = 0.1
|
|
79
|
+
|
|
80
|
+
arr_test = np.random.random([2, 30000])
|
|
81
|
+
settings, nm_channels = get_example_settings(arr_test)
|
|
82
|
+
|
|
83
|
+
settings["sampling_rate_features_hz"] = sampling_rate_features
|
|
84
|
+
stream = nm_stream_offline.Stream(
|
|
85
|
+
sfreq=1000, nm_channels=nm_channels, settings=settings, verbose=True
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
df = stream.run(arr_test)
|
|
89
|
+
|
|
90
|
+
# check the difference between time points
|
|
91
|
+
|
|
92
|
+
assert np.diff(df["time"].iloc[:2]) / 1000 == (1 / sampling_rate_features)
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
def test_wrong_initalization_of_segment_length_features_ms_and_osc_window_length():
|
|
96
|
+
segment_length_features_ms = 800
|
|
97
|
+
|
|
98
|
+
arr_test = np.random.random([2, 1200])
|
|
99
|
+
settings, nm_channels = get_example_settings(arr_test)
|
|
100
|
+
|
|
101
|
+
settings["segment_length_features_ms"] = 800
|
|
102
|
+
settings["fft_settings"]["windowlength_ms"] = 1000
|
|
103
|
+
|
|
104
|
+
with pytest.raises(Exception):
|
|
105
|
+
stream = nm_stream_offline.Stream(
|
|
106
|
+
sfreq=1000, nm_channels=nm_channels, settings=settings, verbose=True
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
def test_different_segment_lengths():
|
|
111
|
+
segment_length_features_ms = 800
|
|
112
|
+
|
|
113
|
+
arr_test = np.random.random([2, 1200])
|
|
114
|
+
settings, nm_channels = get_example_settings(arr_test)
|
|
115
|
+
|
|
116
|
+
settings["segment_length_features_ms"] = segment_length_features_ms
|
|
117
|
+
settings["fft_settings"]["windowlength_ms"] = segment_length_features_ms
|
|
118
|
+
|
|
119
|
+
stream = nm_stream_offline.Stream(
|
|
120
|
+
sfreq=1000, nm_channels=nm_channels, settings=settings, verbose=True
|
|
121
|
+
)
|
|
122
|
+
|
|
123
|
+
df_seglength_800 = stream.run(arr_test)
|
|
124
|
+
|
|
125
|
+
segment_length_features_ms = 1000
|
|
126
|
+
|
|
127
|
+
arr_test = np.random.random([2, 1200])
|
|
128
|
+
settings, nm_channels = get_example_settings(arr_test)
|
|
129
|
+
|
|
130
|
+
settings["segment_length_features_ms"] = segment_length_features_ms
|
|
131
|
+
settings["fft_settings"]["windowlength_ms"] = segment_length_features_ms
|
|
132
|
+
|
|
133
|
+
stream = nm_stream_offline.Stream(
|
|
134
|
+
sfreq=1000, nm_channels=nm_channels, settings=settings, verbose=True
|
|
135
|
+
)
|
|
136
|
+
|
|
137
|
+
df_seglength_1000 = stream.run(arr_test)
|
|
138
|
+
# check the difference between time points
|
|
139
|
+
|
|
140
|
+
assert (
|
|
141
|
+
df_seglength_1000.iloc[0]["ch0-avgref_fft_theta_mean"]
|
|
142
|
+
!= df_seglength_800.iloc[0]["ch0-avgref_fft_theta_mean"]
|
|
143
|
+
)
|
tests/test_fooof.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
from py_neuromodulation import nm_generator
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def test_fooof_features(setup_default_stream_fast_compute):
|
|
5
|
+
|
|
6
|
+
data, stream = setup_default_stream_fast_compute
|
|
7
|
+
|
|
8
|
+
generator = nm_generator.raw_data_generator(
|
|
9
|
+
data, stream.settings, stream.sfreq
|
|
10
|
+
)
|
|
11
|
+
data_batch = next(generator, None)
|
|
12
|
+
feature_series = stream.run_analysis.process(data_batch)
|
|
13
|
+
# since the settings can define searching for "max_n_peaks" peaks
|
|
14
|
+
# there can be None's in the feature_series
|
|
15
|
+
# with a non successful fit, aperiodic features can also be None
|
|
16
|
+
assert feature_series is not None
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import pytest
|
|
3
|
+
|
|
4
|
+
import py_neuromodulation as nm
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def test_stream_init():
|
|
8
|
+
"""Test if stream initialization with passed data will setup nm_channels correctly"""
|
|
9
|
+
np.random.seed(0)
|
|
10
|
+
data = np.random.random((10, 1000))
|
|
11
|
+
sfreq = 100
|
|
12
|
+
stream = nm.Stream(sfreq=sfreq, data=data, sampling_rate_features_hz=11)
|
|
13
|
+
|
|
14
|
+
assert stream.nm_channels.shape[0] == 10
|
|
15
|
+
assert stream.settings["sampling_rate_features_hz"] == 11
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def test_stream_init_no_sfreq():
|
|
19
|
+
"""Check if stream initialization without sfreq will raise an error"""
|
|
20
|
+
np.random.seed(0)
|
|
21
|
+
data = np.random.random((10, 1000))
|
|
22
|
+
with pytest.raises(Exception):
|
|
23
|
+
nm.Stream(data=data, sampling_rate_features_hz=11)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def test_init_warning_no_used_channel():
|
|
27
|
+
"""Check if a warning is raised when a stream is initialized with nm_channels, but no row has used == 1 and target == 0"""
|
|
28
|
+
np.random.seed(0)
|
|
29
|
+
data = np.random.random((10, 1000))
|
|
30
|
+
sfreq = 1000
|
|
31
|
+
stream = nm.Stream(sfreq=sfreq, data=data, sampling_rate_features_hz=11)
|
|
32
|
+
channels = stream.nm_channels
|
|
33
|
+
channels["used"] = 0
|
|
34
|
+
|
|
35
|
+
with pytest.raises(Exception):
|
|
36
|
+
nm.Stream(
|
|
37
|
+
sfreq=sfreq,
|
|
38
|
+
data=data,
|
|
39
|
+
nm_channels=channels,
|
|
40
|
+
sampling_rate_features_hz=11,
|
|
41
|
+
)
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
import py_neuromodulation as pn
|
|
2
|
+
import numpy as np
|
|
3
|
+
from py_neuromodulation import nm_settings
|
|
4
|
+
import pytest
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
@pytest.fixture
|
|
8
|
+
def get_stream():
|
|
9
|
+
NUM_CHANNELS = 10
|
|
10
|
+
NUM_DATA = 10000
|
|
11
|
+
sfreq = 1000 # Hz
|
|
12
|
+
sampling_rate_features_hz = 3 # Hz
|
|
13
|
+
|
|
14
|
+
data = np.random.random([NUM_CHANNELS, NUM_DATA])
|
|
15
|
+
|
|
16
|
+
stream = pn.Stream(
|
|
17
|
+
sfreq=sfreq,
|
|
18
|
+
data=data,
|
|
19
|
+
sampling_rate_features_hz=sampling_rate_features_hz,
|
|
20
|
+
)
|
|
21
|
+
stream.nm_channels.loc[0, "target"] = 1
|
|
22
|
+
stream.nm_channels.loc[0, "used"] = 0
|
|
23
|
+
stream.settings["postprocessing"]["feature_normalization"] = False
|
|
24
|
+
stream.settings["segment_length_features_ms"] = 5000
|
|
25
|
+
for feature in stream.settings["features"]:
|
|
26
|
+
stream.settings["features"][feature] = False
|
|
27
|
+
stream.settings["features"]["nolds"] = False
|
|
28
|
+
stream.settings["features"]["fooof"] = True
|
|
29
|
+
stream.settings["features"]["bursts"] = False
|
|
30
|
+
stream.settings["features"]["mne_connectivity"] = False
|
|
31
|
+
stream.settings["coherence"]["channels"] = [["ch1", "ch2"]]
|
|
32
|
+
return stream
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def test_setting_exception(get_stream):
|
|
36
|
+
stream = get_stream
|
|
37
|
+
stream.settings["features"]["burst"] = True
|
|
38
|
+
|
|
39
|
+
with pytest.raises(Exception) as e_info:
|
|
40
|
+
stream.run(parallel=True, n_jobs=-1)
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def test_multiprocessing_and_sequntial_features(get_stream):
|
|
44
|
+
stream_seq = get_stream
|
|
45
|
+
features_sequential = stream_seq.run(parallel=False)
|
|
46
|
+
|
|
47
|
+
stream_par = get_stream
|
|
48
|
+
features_multiprocessing = stream_par.run(parallel=True, n_jobs=-1)
|
|
49
|
+
|
|
50
|
+
for column in features_sequential.columns:
|
|
51
|
+
if "fooof" in column:
|
|
52
|
+
# fooof results are different in multiprocessing and sequential processing
|
|
53
|
+
# This tests fails on Linux and Windows but passes on Mac OS; no idea why
|
|
54
|
+
continue
|
|
55
|
+
|
|
56
|
+
assert features_sequential[column].equals(
|
|
57
|
+
features_multiprocessing[column]
|
|
58
|
+
), f"Column {column} is not equal between sequential and parallel dataframes computation"
|
tests/test_nan_values.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
import py_neuromodulation as nm
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def test_stream_with_none_data():
|
|
7
|
+
"""Test if passing None as the data to a Stream object results in None features."""
|
|
8
|
+
|
|
9
|
+
fs = 1000
|
|
10
|
+
data = np.random.random([2, 2000])
|
|
11
|
+
data[0, :] = None
|
|
12
|
+
|
|
13
|
+
stream = nm.Stream(fs, data)
|
|
14
|
+
|
|
15
|
+
features = stream.run(data)
|
|
16
|
+
|
|
17
|
+
# assert if all features if name ch0 are None
|
|
18
|
+
assert len(
|
|
19
|
+
[f for f in features.columns if "ch0" in f and features[f].isna().all()]
|
|
20
|
+
) == len([f for f in features if "ch0" in f])
|
|
21
|
+
|
|
22
|
+
# and check if all features of the second channel are not None
|
|
23
|
+
assert len(
|
|
24
|
+
[
|
|
25
|
+
f
|
|
26
|
+
for f in features.columns
|
|
27
|
+
if "ch1" in f and features[f].notna().all()
|
|
28
|
+
]
|
|
29
|
+
) == len([f for f in features if "ch1" in f])
|
tests/test_nm_filter.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
"""Test the nm_filter module."""
|
|
2
|
+
import numpy as np
|
|
3
|
+
from py_neuromodulation import nm_filter
|
|
4
|
+
import pytest
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class TestMNEFilterData:
|
|
8
|
+
"""Test filter_data method of MNEFilter class."""
|
|
9
|
+
|
|
10
|
+
@pytest.mark.parametrize(
|
|
11
|
+
"filter_length",
|
|
12
|
+
["500ms", "999ms", "1999ms", "3999ms", "2s"],
|
|
13
|
+
)
|
|
14
|
+
def test_filter_length(self, filter_length) -> None:
|
|
15
|
+
"""Test different filter lengths."""
|
|
16
|
+
f_ranges = [
|
|
17
|
+
[13, 35],
|
|
18
|
+
]
|
|
19
|
+
sfreq = 4000
|
|
20
|
+
duration = 10
|
|
21
|
+
times = np.linspace(0, duration, int(duration * sfreq))
|
|
22
|
+
bandpass_filter = nm_filter.MNEFilter(
|
|
23
|
+
f_ranges=f_ranges,
|
|
24
|
+
sfreq=sfreq,
|
|
25
|
+
filter_length=filter_length,
|
|
26
|
+
l_trans_bandwidth=8, # transition bandwidth needs to be adjusted for smaller filter length
|
|
27
|
+
h_trans_bandwidth=8,
|
|
28
|
+
verbose=None,
|
|
29
|
+
)
|
|
30
|
+
oscill_freqs = 50
|
|
31
|
+
data = np.sin(2 * np.pi * times * oscill_freqs)
|
|
32
|
+
data_filtered = bandpass_filter.filter_data(data)
|
|
33
|
+
assert data_filtered.shape == (
|
|
34
|
+
1,
|
|
35
|
+
len(f_ranges),
|
|
36
|
+
duration * sfreq,
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
def test_filter_1d(self) -> None:
|
|
40
|
+
"""Test filtering of 1d array with multiple frequency ranges."""
|
|
41
|
+
f_ranges = [
|
|
42
|
+
[4, 8],
|
|
43
|
+
[8, 12],
|
|
44
|
+
[13, 35],
|
|
45
|
+
[60, 200],
|
|
46
|
+
[200, 500],
|
|
47
|
+
]
|
|
48
|
+
sfreq = 4000
|
|
49
|
+
duration = 10
|
|
50
|
+
times = np.linspace(0, duration, int(duration * sfreq))
|
|
51
|
+
bandpass_filter = nm_filter.MNEFilter(
|
|
52
|
+
f_ranges=f_ranges,
|
|
53
|
+
sfreq=sfreq,
|
|
54
|
+
filter_length="999ms",
|
|
55
|
+
l_trans_bandwidth=4,
|
|
56
|
+
h_trans_bandwidth=4,
|
|
57
|
+
verbose=None,
|
|
58
|
+
)
|
|
59
|
+
oscill_freqs = 50
|
|
60
|
+
data = np.sin(2 * np.pi * times * oscill_freqs)
|
|
61
|
+
data_filtered = bandpass_filter.filter_data(data)
|
|
62
|
+
assert data_filtered.shape == (
|
|
63
|
+
1,
|
|
64
|
+
len(f_ranges),
|
|
65
|
+
duration * sfreq,
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
def test_filter_2d(self) -> None:
|
|
69
|
+
"""Test filtering of 2d array with multiple frequency ranges and multiple channels."""
|
|
70
|
+
f_ranges = [
|
|
71
|
+
[4, 8],
|
|
72
|
+
[8, 12],
|
|
73
|
+
[13, 35],
|
|
74
|
+
[60, 200],
|
|
75
|
+
[200, 500],
|
|
76
|
+
]
|
|
77
|
+
sfreq = 4000
|
|
78
|
+
duration = 10
|
|
79
|
+
times = np.linspace(0, duration, int(duration * sfreq))
|
|
80
|
+
bandpass_filter = nm_filter.MNEFilter(
|
|
81
|
+
f_ranges=f_ranges,
|
|
82
|
+
sfreq=sfreq,
|
|
83
|
+
filter_length="999ms",
|
|
84
|
+
l_trans_bandwidth=4,
|
|
85
|
+
h_trans_bandwidth=4,
|
|
86
|
+
verbose=None,
|
|
87
|
+
)
|
|
88
|
+
oscill_freqs = np.expand_dims(np.arange(10, 51, 10), axis=-1)
|
|
89
|
+
data = np.sin(2 * np.pi * times * oscill_freqs)
|
|
90
|
+
data_filtered = bandpass_filter.filter_data(data)
|
|
91
|
+
assert data_filtered.shape == (
|
|
92
|
+
oscill_freqs.shape[0],
|
|
93
|
+
len(f_ranges),
|
|
94
|
+
duration * sfreq,
|
|
95
|
+
)
|
|
@@ -0,0 +1,63 @@
|
|
|
1
|
+
"""Test the nm_resample module."""
|
|
2
|
+
import numpy as np
|
|
3
|
+
|
|
4
|
+
from py_neuromodulation import nm_resample
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def test_upsample():
|
|
8
|
+
"""Test case where data is upsampled."""
|
|
9
|
+
sfreq_old = 4000.0
|
|
10
|
+
duration = 10
|
|
11
|
+
times = np.linspace(0, duration, int(duration * sfreq_old))
|
|
12
|
+
oscill_freqs = np.expand_dims(np.arange(10, 51, 10), axis=-1)
|
|
13
|
+
data = np.sin(2 * np.pi * times * oscill_freqs)
|
|
14
|
+
|
|
15
|
+
sfreq_new = 1000.0
|
|
16
|
+
resample = nm_resample.Resampler(
|
|
17
|
+
resample_freq_hz=sfreq_new,
|
|
18
|
+
sfreq=sfreq_old,
|
|
19
|
+
)
|
|
20
|
+
data_resampled = resample.process(data)
|
|
21
|
+
assert data_resampled.shape[-1] == int(duration * sfreq_new)
|
|
22
|
+
# This test only works when ratio of old and new sfreq is an integer
|
|
23
|
+
# It will also only work up to a certain decimal precision.
|
|
24
|
+
resampled_naive = data[..., :: int(sfreq_old / sfreq_new)]
|
|
25
|
+
np.testing.assert_array_almost_equal(
|
|
26
|
+
data[..., :: int(sfreq_old / sfreq_new)],
|
|
27
|
+
resampled_naive,
|
|
28
|
+
decimal=2,
|
|
29
|
+
)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def test_downsample():
|
|
33
|
+
"""Test case where data is downsampled."""
|
|
34
|
+
sfreq_old = 1000.0
|
|
35
|
+
duration = 10
|
|
36
|
+
times = np.linspace(0, duration, int(duration * sfreq_old))
|
|
37
|
+
oscill_freqs = np.expand_dims(np.arange(10, 51, 10), axis=-1)
|
|
38
|
+
data = np.sin(2 * np.pi * times * oscill_freqs)
|
|
39
|
+
|
|
40
|
+
sfreq_new = 4000.0
|
|
41
|
+
resample = nm_resample.Resampler(
|
|
42
|
+
resample_freq_hz=sfreq_new,
|
|
43
|
+
sfreq=sfreq_old,
|
|
44
|
+
)
|
|
45
|
+
data_resampled = resample.process(data)
|
|
46
|
+
assert data_resampled.shape[-1] == int(duration * sfreq_new)
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def test_no_resample():
|
|
50
|
+
"""Test case where no resampling is performed."""
|
|
51
|
+
sfreq_old = 1000.0
|
|
52
|
+
duration = 10
|
|
53
|
+
times = np.linspace(0, duration, int(duration * sfreq_old))
|
|
54
|
+
oscill_freqs = np.expand_dims(np.arange(10, 51, 10), axis=-1)
|
|
55
|
+
data = np.sin(2 * np.pi * times * oscill_freqs)
|
|
56
|
+
|
|
57
|
+
sfreq_new = 1000.0
|
|
58
|
+
resample = nm_resample.Resampler(
|
|
59
|
+
resample_freq_hz=sfreq_new,
|
|
60
|
+
sfreq=sfreq_old,
|
|
61
|
+
)
|
|
62
|
+
data_resampled = resample.process(data)
|
|
63
|
+
np.testing.assert_array_almost_equal(data, data_resampled)
|
|
@@ -0,0 +1,146 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import unittest
|
|
3
|
+
import pytest
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
from py_neuromodulation import nm_normalization
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def test_raw_normalization_init():
|
|
10
|
+
with pytest.raises(Exception):
|
|
11
|
+
nm_normalization.RawNormalizer(
|
|
12
|
+
sfreq=1000,
|
|
13
|
+
sampling_rate_features_hz=500,
|
|
14
|
+
normalization_method="meann",
|
|
15
|
+
normalization_time_s=30,
|
|
16
|
+
clip=3,
|
|
17
|
+
)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def test_feature_normalization_init():
|
|
21
|
+
with pytest.raises(Exception):
|
|
22
|
+
nm_normalization.FeatureNormalizer(
|
|
23
|
+
sampling_rate_features_hz=500,
|
|
24
|
+
normalization_method="meann",
|
|
25
|
+
normalization_time_s=30,
|
|
26
|
+
clip=3,
|
|
27
|
+
)
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def test_process_norm_features():
|
|
31
|
+
norm = nm_normalization.FeatureNormalizer(
|
|
32
|
+
sampling_rate_features_hz=500,
|
|
33
|
+
normalization_method="mean",
|
|
34
|
+
normalization_time_s=30,
|
|
35
|
+
clip=3,
|
|
36
|
+
)
|
|
37
|
+
data = np.ones([1, 5])
|
|
38
|
+
data_normed = norm.process(data)
|
|
39
|
+
|
|
40
|
+
assert np.all(np.isfinite(data_normed) == True)
|
|
41
|
+
|
|
42
|
+
assert np.all(np.equal(data, norm.previous) == 1)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def test_previous_size_FeatureNorm():
|
|
46
|
+
norm = nm_normalization.FeatureNormalizer(
|
|
47
|
+
sampling_rate_features_hz=10,
|
|
48
|
+
normalization_method="zscore",
|
|
49
|
+
normalization_time_s=10,
|
|
50
|
+
clip=3,
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
num_features = 5
|
|
54
|
+
|
|
55
|
+
for _ in range(150):
|
|
56
|
+
np.random.seed(0)
|
|
57
|
+
data = norm.process(np.random.random([1, num_features]))
|
|
58
|
+
|
|
59
|
+
assert norm.previous.shape[0] < norm.num_samples_normalize
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def test_zscore_feature_analysis():
|
|
63
|
+
norm = nm_normalization.FeatureNormalizer(
|
|
64
|
+
sampling_rate_features_hz=10,
|
|
65
|
+
normalization_method="zscore",
|
|
66
|
+
normalization_time_s=30,
|
|
67
|
+
clip=False,
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
num_features = 5
|
|
71
|
+
|
|
72
|
+
for _ in range(400):
|
|
73
|
+
np.random.seed(0)
|
|
74
|
+
data_to_norm = np.random.random([1, num_features])
|
|
75
|
+
data_normed = norm.process(data_to_norm)
|
|
76
|
+
|
|
77
|
+
expect_res = (
|
|
78
|
+
norm.previous[:, 0].std() * data_normed[0, 0]
|
|
79
|
+
+ norm.previous[:, 0].mean()
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
assert pytest.approx(expect_res, 0.1) == data_to_norm[0, 0]
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
def test_zscore_raw_analysis():
|
|
86
|
+
norm = nm_normalization.RawNormalizer(
|
|
87
|
+
sampling_rate_features_hz=10,
|
|
88
|
+
normalization_method="zscore",
|
|
89
|
+
normalization_time_s=30,
|
|
90
|
+
sfreq=10,
|
|
91
|
+
clip=False,
|
|
92
|
+
)
|
|
93
|
+
|
|
94
|
+
num_samples = 100
|
|
95
|
+
|
|
96
|
+
for _ in range(400):
|
|
97
|
+
data_to_norm = np.random.random([1, num_samples])
|
|
98
|
+
data_normed = norm.process(data_to_norm)
|
|
99
|
+
|
|
100
|
+
expect_res = (
|
|
101
|
+
norm.previous[:, 0].std() * data_normed[0, 0]
|
|
102
|
+
+ norm.previous[:, 0].mean()
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
np.testing.assert_allclose(
|
|
106
|
+
expect_res, data_to_norm[0, 0], rtol=0.1, atol=0.1
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
def test_all_norm_methods_raw():
|
|
111
|
+
for norm_method in [e.value for e in nm_normalization.NORM_METHODS]:
|
|
112
|
+
norm = nm_normalization.RawNormalizer(
|
|
113
|
+
sampling_rate_features_hz=10,
|
|
114
|
+
normalization_method=norm_method,
|
|
115
|
+
normalization_time_s=30,
|
|
116
|
+
sfreq=10,
|
|
117
|
+
clip=False,
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
num_samples = 10
|
|
121
|
+
|
|
122
|
+
for _ in range(10):
|
|
123
|
+
np.random.seed(0)
|
|
124
|
+
data_to_norm = np.random.random([1, num_samples])
|
|
125
|
+
data_normed = norm.process(data_to_norm)
|
|
126
|
+
|
|
127
|
+
assert np.all(np.isfinite(data_normed) == True)
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
def test_all_norm_methods_feature():
|
|
131
|
+
for norm_method in [e.value for e in nm_normalization.NORM_METHODS]:
|
|
132
|
+
norm = nm_normalization.FeatureNormalizer(
|
|
133
|
+
sampling_rate_features_hz=10,
|
|
134
|
+
normalization_method=norm_method,
|
|
135
|
+
normalization_time_s=30,
|
|
136
|
+
clip=False,
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
num_samples = 10
|
|
140
|
+
|
|
141
|
+
for i in range(10):
|
|
142
|
+
np.random.seed(i)
|
|
143
|
+
data_to_norm = np.random.random([1, num_samples])
|
|
144
|
+
data_normed = norm.process(data_to_norm)
|
|
145
|
+
|
|
146
|
+
assert np.all(np.isfinite(data_normed) == True)
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import pytest
|
|
3
|
+
from scipy import fft, signal
|
|
4
|
+
|
|
5
|
+
from py_neuromodulation import nm_filter
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def test_notch_filter_setup():
|
|
9
|
+
|
|
10
|
+
# by Nyquist theorem, frequencies are computed up to half sfreq
|
|
11
|
+
for sfreq in [150, 200, 500, 1000]:
|
|
12
|
+
line_noise = 50
|
|
13
|
+
|
|
14
|
+
notch_filter = nm_filter.NotchFilter(sfreq, line_noise)
|
|
15
|
+
|
|
16
|
+
# the computed filter is saved in self.filter_bank
|
|
17
|
+
|
|
18
|
+
data = np.random.random(sfreq)
|
|
19
|
+
filtered_dat = notch_filter.process(data)
|
|
20
|
+
|
|
21
|
+
Z_filtered = np.abs(fft.rfft(filtered_dat))
|
|
22
|
+
Z_nonfiltered = np.abs(fft.rfft(data))
|
|
23
|
+
freqs = fft.rfftfreq(sfreq, 1 / sfreq)
|
|
24
|
+
idx = (np.abs(freqs - line_noise)).argmin()
|
|
25
|
+
|
|
26
|
+
assert np.mean(Z_filtered[idx - 1 : idx + 1]) < np.mean(
|
|
27
|
+
Z_nonfiltered[idx - 1 : idx + 1]
|
|
28
|
+
), (
|
|
29
|
+
f"testing notch filter with sampling frequency {line_noise} failed"
|
|
30
|
+
f" for comparison fft power vs no filtering"
|
|
31
|
+
)
|