pvlib 0.11.1__py3-none-any.whl → 0.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (149) hide show
  1. pvlib/__init__.py +1 -0
  2. pvlib/_deprecation.py +73 -0
  3. pvlib/atmosphere.py +77 -7
  4. pvlib/bifacial/infinite_sheds.py +4 -3
  5. pvlib/bifacial/utils.py +2 -1
  6. pvlib/clearsky.py +35 -22
  7. pvlib/iam.py +4 -4
  8. pvlib/iotools/midc.py +1 -1
  9. pvlib/iotools/psm3.py +1 -1
  10. pvlib/iotools/pvgis.py +10 -12
  11. pvlib/iotools/tmy.py +3 -69
  12. pvlib/irradiance.py +112 -55
  13. pvlib/ivtools/sdm.py +75 -52
  14. pvlib/location.py +73 -33
  15. pvlib/modelchain.py +18 -35
  16. pvlib/pvsystem.py +139 -94
  17. pvlib/snow.py +64 -28
  18. pvlib/solarposition.py +46 -30
  19. pvlib/spa.py +4 -2
  20. pvlib/spectrum/__init__.py +0 -1
  21. pvlib/spectrum/irradiance.py +2 -64
  22. pvlib/spectrum/mismatch.py +3 -3
  23. pvlib/spectrum/spectrl2.py +2 -1
  24. pvlib/temperature.py +49 -3
  25. pvlib/tools.py +6 -5
  26. {pvlib-0.11.1.dist-info → pvlib-0.12.0.dist-info}/METADATA +14 -11
  27. pvlib-0.12.0.dist-info/RECORD +75 -0
  28. {pvlib-0.11.1.dist-info → pvlib-0.12.0.dist-info}/WHEEL +1 -1
  29. pvlib/data/BIRD_08_16_2012.csv +0 -8761
  30. pvlib/data/BIRD_08_16_2012_patm.csv +0 -8761
  31. pvlib/data/Burlington, United States SolarAnywhere Time Series 2021 Lat_44_465 Lon_-73_205 TMY3 format.csv +0 -8762
  32. pvlib/data/Burlington, United States SolarAnywhere Time Series 20210101 to 20210103 Lat_44_4675 Lon_-73_2075 SA format.csv +0 -578
  33. pvlib/data/Burlington, United States SolarAnywhere Typical GHI Year Lat_44_465 Lon_-73_205 SA format.csv +0 -74
  34. pvlib/data/CPS SCH275KTL-DO-US-800-250kW_275kVA_1.OND +0 -146
  35. pvlib/data/CRNS0101-05-2019-AZ_Tucson_11_W.txt +0 -4
  36. pvlib/data/CRN_with_problems.txt +0 -3
  37. pvlib/data/ET-M772BH550GL.PAN +0 -75
  38. pvlib/data/NLD_Amsterdam062400_IWEC.epw +0 -8768
  39. pvlib/data/PVsyst_demo.csv +0 -10757
  40. pvlib/data/PVsyst_demo_model.csv +0 -3588
  41. pvlib/data/SRML-day-EUPO1801.txt +0 -1441
  42. pvlib/data/abq19056.dat +0 -6
  43. pvlib/data/aod550_tcwv_20121101_test.nc +0 -0
  44. pvlib/data/bishop88_numerical_precision.csv +0 -101
  45. pvlib/data/bsrn-lr0100-pay0616.dat +0 -86901
  46. pvlib/data/bsrn-pay0616.dat.gz +0 -0
  47. pvlib/data/cams_mcclear_1min_verbose.csv +0 -60
  48. pvlib/data/cams_mcclear_monthly.csv +0 -42
  49. pvlib/data/cams_radiation_1min_verbose.csv +0 -72
  50. pvlib/data/cams_radiation_monthly.csv +0 -47
  51. pvlib/data/detect_clearsky_data.csv +0 -35
  52. pvlib/data/detect_clearsky_threshold_data.csv +0 -126
  53. pvlib/data/greensboro_kimber_soil_manwash.dat +0 -8761
  54. pvlib/data/greensboro_kimber_soil_nowash.dat +0 -8761
  55. pvlib/data/inverter_fit_snl_meas.csv +0 -127
  56. pvlib/data/inverter_fit_snl_sim.csv +0 -19
  57. pvlib/data/ivtools_numdiff.csv +0 -52
  58. pvlib/data/midc_20181014.txt +0 -1441
  59. pvlib/data/midc_raw_20181018.txt +0 -1441
  60. pvlib/data/midc_raw_short_header_20191115.txt +0 -1441
  61. pvlib/data/msn19056.dat +0 -6
  62. pvlib/data/precise_iv_curves1.json +0 -10251
  63. pvlib/data/precise_iv_curves2.json +0 -10251
  64. pvlib/data/precise_iv_curves_parameter_sets1.csv +0 -33
  65. pvlib/data/precise_iv_curves_parameter_sets2.csv +0 -33
  66. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA2_10kWp_CIS_5_2a_2013_2014.json +0 -1
  67. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA_30deg_0deg_2016_2016.csv +0 -35
  68. pvlib/data/pvgis_tmy_meta.json +0 -32
  69. pvlib/data/pvgis_tmy_test.dat +0 -8761
  70. pvlib/data/pvwatts_8760_rackmount.csv +0 -8779
  71. pvlib/data/pvwatts_8760_roofmount.csv +0 -8779
  72. pvlib/data/singleaxis_tracker_wslope.csv +0 -8761
  73. pvlib/data/spectrl2_example_spectra.csv +0 -123
  74. pvlib/data/surfrad-slv16001.dat +0 -1442
  75. pvlib/data/test_psm3_2017.csv +0 -17521
  76. pvlib/data/test_psm3_2019_5min.csv +0 -289
  77. pvlib/data/test_psm3_tmy-2017.csv +0 -8761
  78. pvlib/data/test_read_psm3.csv +0 -17523
  79. pvlib/data/test_read_pvgis_horizon.csv +0 -49
  80. pvlib/data/tmy_45.000_8.000_2005_2020.csv +0 -8789
  81. pvlib/data/tmy_45.000_8.000_2005_2020.epw +0 -8768
  82. pvlib/data/tmy_45.000_8.000_2005_2020.json +0 -1
  83. pvlib/data/tmy_45.000_8.000_2005_2020.txt +0 -8761
  84. pvlib/data/tmy_45.000_8.000_userhorizon.json +0 -1
  85. pvlib/data/variables_style_rules.csv +0 -56
  86. pvlib/spa_c_files/README.md +0 -81
  87. pvlib/spa_c_files/cspa_py.pxd +0 -43
  88. pvlib/spa_c_files/spa_py.pyx +0 -30
  89. pvlib/tests/__init__.py +0 -0
  90. pvlib/tests/bifacial/__init__.py +0 -0
  91. pvlib/tests/bifacial/test_infinite_sheds.py +0 -317
  92. pvlib/tests/bifacial/test_losses_models.py +0 -54
  93. pvlib/tests/bifacial/test_pvfactors.py +0 -82
  94. pvlib/tests/bifacial/test_utils.py +0 -192
  95. pvlib/tests/conftest.py +0 -476
  96. pvlib/tests/iotools/__init__.py +0 -0
  97. pvlib/tests/iotools/test_acis.py +0 -213
  98. pvlib/tests/iotools/test_bsrn.py +0 -131
  99. pvlib/tests/iotools/test_crn.py +0 -95
  100. pvlib/tests/iotools/test_epw.py +0 -23
  101. pvlib/tests/iotools/test_midc.py +0 -89
  102. pvlib/tests/iotools/test_panond.py +0 -32
  103. pvlib/tests/iotools/test_psm3.py +0 -198
  104. pvlib/tests/iotools/test_pvgis.py +0 -644
  105. pvlib/tests/iotools/test_sodapro.py +0 -298
  106. pvlib/tests/iotools/test_solaranywhere.py +0 -287
  107. pvlib/tests/iotools/test_solargis.py +0 -68
  108. pvlib/tests/iotools/test_solcast.py +0 -324
  109. pvlib/tests/iotools/test_solrad.py +0 -152
  110. pvlib/tests/iotools/test_srml.py +0 -124
  111. pvlib/tests/iotools/test_surfrad.py +0 -75
  112. pvlib/tests/iotools/test_tmy.py +0 -133
  113. pvlib/tests/ivtools/__init__.py +0 -0
  114. pvlib/tests/ivtools/test_sde.py +0 -230
  115. pvlib/tests/ivtools/test_sdm.py +0 -407
  116. pvlib/tests/ivtools/test_utils.py +0 -173
  117. pvlib/tests/spectrum/__init__.py +0 -0
  118. pvlib/tests/spectrum/conftest.py +0 -40
  119. pvlib/tests/spectrum/test_irradiance.py +0 -138
  120. pvlib/tests/spectrum/test_mismatch.py +0 -304
  121. pvlib/tests/spectrum/test_response.py +0 -124
  122. pvlib/tests/spectrum/test_spectrl2.py +0 -72
  123. pvlib/tests/test_albedo.py +0 -84
  124. pvlib/tests/test_atmosphere.py +0 -204
  125. pvlib/tests/test_clearsky.py +0 -878
  126. pvlib/tests/test_conftest.py +0 -81
  127. pvlib/tests/test_iam.py +0 -555
  128. pvlib/tests/test_inverter.py +0 -213
  129. pvlib/tests/test_irradiance.py +0 -1441
  130. pvlib/tests/test_location.py +0 -356
  131. pvlib/tests/test_modelchain.py +0 -2020
  132. pvlib/tests/test_numerical_precision.py +0 -124
  133. pvlib/tests/test_pvarray.py +0 -71
  134. pvlib/tests/test_pvsystem.py +0 -2495
  135. pvlib/tests/test_scaling.py +0 -207
  136. pvlib/tests/test_shading.py +0 -391
  137. pvlib/tests/test_singlediode.py +0 -608
  138. pvlib/tests/test_snow.py +0 -212
  139. pvlib/tests/test_soiling.py +0 -230
  140. pvlib/tests/test_solarposition.py +0 -933
  141. pvlib/tests/test_spa.py +0 -425
  142. pvlib/tests/test_temperature.py +0 -470
  143. pvlib/tests/test_tools.py +0 -146
  144. pvlib/tests/test_tracking.py +0 -474
  145. pvlib/tests/test_transformer.py +0 -60
  146. pvlib-0.11.1.dist-info/RECORD +0 -192
  147. {pvlib-0.11.1.dist-info → pvlib-0.12.0.dist-info/licenses}/AUTHORS.md +0 -0
  148. {pvlib-0.11.1.dist-info → pvlib-0.12.0.dist-info/licenses}/LICENSE +0 -0
  149. {pvlib-0.11.1.dist-info → pvlib-0.12.0.dist-info}/top_level.txt +0 -0
@@ -1,474 +0,0 @@
1
- import numpy as np
2
- from numpy import nan
3
- import pandas as pd
4
-
5
- import pytest
6
- from numpy.testing import assert_allclose
7
-
8
- import pvlib
9
- from pvlib import tracking
10
- from .conftest import DATA_DIR, assert_frame_equal, assert_series_equal
11
- from pvlib._deprecation import pvlibDeprecationWarning
12
-
13
- SINGLEAXIS_COL_ORDER = ['tracker_theta', 'aoi',
14
- 'surface_azimuth', 'surface_tilt']
15
-
16
-
17
- def test_solar_noon():
18
- index = pd.date_range(start='20180701T1200', freq='1s', periods=1)
19
- apparent_zenith = pd.Series([10], index=index)
20
- apparent_azimuth = pd.Series([180], index=index)
21
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
22
- axis_tilt=0, axis_azimuth=0,
23
- max_angle=90, backtrack=True,
24
- gcr=2.0/7.0)
25
-
26
- expect = pd.DataFrame({'tracker_theta': 0, 'aoi': 10,
27
- 'surface_azimuth': 90, 'surface_tilt': 0},
28
- index=index, dtype=np.float64)
29
- expect = expect[SINGLEAXIS_COL_ORDER]
30
-
31
- assert_frame_equal(expect, tracker_data)
32
-
33
-
34
- def test_scalars():
35
- apparent_zenith = 10
36
- apparent_azimuth = 180
37
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
38
- axis_tilt=0, axis_azimuth=0,
39
- max_angle=90, backtrack=True,
40
- gcr=2.0/7.0)
41
- assert isinstance(tracker_data, dict)
42
- expect = {'tracker_theta': 0, 'aoi': 10, 'surface_azimuth': 90,
43
- 'surface_tilt': 0}
44
- for k, v in expect.items():
45
- assert np.isclose(tracker_data[k], v)
46
-
47
-
48
- def test_arrays():
49
- apparent_zenith = np.array([10])
50
- apparent_azimuth = np.array([180])
51
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
52
- axis_tilt=0, axis_azimuth=0,
53
- max_angle=90, backtrack=True,
54
- gcr=2.0/7.0)
55
- assert isinstance(tracker_data, dict)
56
- expect = {'tracker_theta': 0, 'aoi': 10, 'surface_azimuth': 90,
57
- 'surface_tilt': 0}
58
- for k, v in expect.items():
59
- assert_allclose(tracker_data[k], v, atol=1e-7)
60
-
61
-
62
- def test_nans():
63
- apparent_zenith = np.array([10, np.nan, 10])
64
- apparent_azimuth = np.array([180, 180, np.nan])
65
- with np.errstate(invalid='ignore'):
66
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
67
- axis_tilt=0, axis_azimuth=0,
68
- max_angle=90, backtrack=True,
69
- gcr=2.0/7.0)
70
- expect = {'tracker_theta': np.array([0, nan, nan]),
71
- 'aoi': np.array([10, nan, nan]),
72
- 'surface_azimuth': np.array([90, nan, nan]),
73
- 'surface_tilt': np.array([0, nan, nan])}
74
- for k, v in expect.items():
75
- assert_allclose(tracker_data[k], v, atol=1e-7)
76
-
77
- # repeat with Series because nans can differ
78
- apparent_zenith = pd.Series(apparent_zenith)
79
- apparent_azimuth = pd.Series(apparent_azimuth)
80
- with np.errstate(invalid='ignore'):
81
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
82
- axis_tilt=0, axis_azimuth=0,
83
- max_angle=90, backtrack=True,
84
- gcr=2.0/7.0)
85
- expect = pd.DataFrame(np.array(
86
- [[ 0., 10., 90., 0.],
87
- [nan, nan, nan, nan],
88
- [nan, nan, nan, nan]]),
89
- columns=['tracker_theta', 'aoi', 'surface_azimuth', 'surface_tilt'])
90
- assert_frame_equal(tracker_data, expect)
91
-
92
-
93
- def test_arrays_multi():
94
- apparent_zenith = np.array([[10, 10], [10, 10]])
95
- apparent_azimuth = np.array([[180, 180], [180, 180]])
96
- # singleaxis should fail for num dim > 1
97
- with pytest.raises(ValueError):
98
- tracking.singleaxis(apparent_zenith, apparent_azimuth,
99
- axis_tilt=0, axis_azimuth=0,
100
- max_angle=90, backtrack=True,
101
- gcr=2.0/7.0)
102
- # uncomment if we ever get singleaxis to support num dim > 1 arrays
103
- # assert isinstance(tracker_data, dict)
104
- # expect = {'tracker_theta': np.full_like(apparent_zenith, 0),
105
- # 'aoi': np.full_like(apparent_zenith, 10),
106
- # 'surface_azimuth': np.full_like(apparent_zenith, 90),
107
- # 'surface_tilt': np.full_like(apparent_zenith, 0)}
108
- # for k, v in expect.items():
109
- # assert_allclose(tracker_data[k], v)
110
-
111
-
112
- def test_azimuth_north_south():
113
- apparent_zenith = pd.Series([60])
114
- apparent_azimuth = pd.Series([90])
115
-
116
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
117
- axis_tilt=0, axis_azimuth=180,
118
- max_angle=90, backtrack=True,
119
- gcr=2.0/7.0)
120
-
121
- expect = pd.DataFrame({'tracker_theta': -60, 'aoi': 0,
122
- 'surface_azimuth': 90, 'surface_tilt': 60},
123
- index=[0], dtype=np.float64)
124
- expect = expect[SINGLEAXIS_COL_ORDER]
125
-
126
- assert_frame_equal(expect, tracker_data)
127
-
128
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
129
- axis_tilt=0, axis_azimuth=0,
130
- max_angle=90, backtrack=True,
131
- gcr=2.0/7.0)
132
-
133
- expect['tracker_theta'] *= -1
134
-
135
- assert_frame_equal(expect, tracker_data)
136
-
137
-
138
- def test_max_angle():
139
- apparent_zenith = pd.Series([60])
140
- apparent_azimuth = pd.Series([90])
141
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
142
- axis_tilt=0, axis_azimuth=0,
143
- max_angle=45, backtrack=True,
144
- gcr=2.0/7.0)
145
-
146
- expect = pd.DataFrame({'aoi': 15, 'surface_azimuth': 90,
147
- 'surface_tilt': 45, 'tracker_theta': 45},
148
- index=[0], dtype=np.float64)
149
- expect = expect[SINGLEAXIS_COL_ORDER]
150
-
151
- assert_frame_equal(expect, tracker_data)
152
-
153
-
154
- def test_min_angle():
155
- apparent_zenith = pd.Series([60])
156
- apparent_azimuth = pd.Series([270])
157
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
158
- axis_tilt=0, axis_azimuth=0,
159
- max_angle=(-45, 50), backtrack=True,
160
- gcr=2.0/7.0)
161
-
162
- expect = pd.DataFrame({'aoi': 15, 'surface_azimuth': 270,
163
- 'surface_tilt': 45, 'tracker_theta': -45},
164
- index=[0], dtype=np.float64)
165
- expect = expect[SINGLEAXIS_COL_ORDER]
166
-
167
- assert_frame_equal(expect, tracker_data)
168
-
169
-
170
- def test_backtrack():
171
- apparent_zenith = pd.Series([80])
172
- apparent_azimuth = pd.Series([90])
173
-
174
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
175
- axis_tilt=0, axis_azimuth=0,
176
- max_angle=90, backtrack=False,
177
- gcr=2.0/7.0)
178
-
179
- expect = pd.DataFrame({'aoi': 0, 'surface_azimuth': 90,
180
- 'surface_tilt': 80, 'tracker_theta': 80},
181
- index=[0], dtype=np.float64)
182
- expect = expect[SINGLEAXIS_COL_ORDER]
183
-
184
- assert_frame_equal(expect, tracker_data)
185
-
186
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
187
- axis_tilt=0, axis_azimuth=0,
188
- max_angle=90, backtrack=True,
189
- gcr=2.0/7.0)
190
-
191
- expect = pd.DataFrame({'aoi': 52.5716, 'surface_azimuth': 90,
192
- 'surface_tilt': 27.42833, 'tracker_theta': 27.4283},
193
- index=[0], dtype=np.float64)
194
- expect = expect[SINGLEAXIS_COL_ORDER]
195
-
196
- assert_frame_equal(expect, tracker_data)
197
-
198
-
199
- def test_axis_tilt():
200
- apparent_zenith = pd.Series([30])
201
- apparent_azimuth = pd.Series([135])
202
-
203
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
204
- axis_tilt=30, axis_azimuth=180,
205
- max_angle=90, backtrack=True,
206
- gcr=2.0/7.0)
207
-
208
- expect = pd.DataFrame({'aoi': 7.286245, 'surface_azimuth': 142.65730,
209
- 'surface_tilt': 35.98741,
210
- 'tracker_theta': -20.88121},
211
- index=[0], dtype=np.float64)
212
- expect = expect[SINGLEAXIS_COL_ORDER]
213
-
214
- assert_frame_equal(expect, tracker_data)
215
-
216
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
217
- axis_tilt=30, axis_azimuth=0,
218
- max_angle=90, backtrack=True,
219
- gcr=2.0/7.0)
220
-
221
- expect = pd.DataFrame({'aoi': 47.6632, 'surface_azimuth': 50.96969,
222
- 'surface_tilt': 42.5152, 'tracker_theta': 31.6655},
223
- index=[0], dtype=np.float64)
224
- expect = expect[SINGLEAXIS_COL_ORDER]
225
-
226
- assert_frame_equal(expect, tracker_data)
227
-
228
-
229
- def test_axis_azimuth():
230
- apparent_zenith = pd.Series([30])
231
- apparent_azimuth = pd.Series([90])
232
-
233
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
234
- axis_tilt=0, axis_azimuth=90,
235
- max_angle=90, backtrack=True,
236
- gcr=2.0/7.0)
237
-
238
- expect = pd.DataFrame({'aoi': 30, 'surface_azimuth': 180,
239
- 'surface_tilt': 0, 'tracker_theta': 0},
240
- index=[0], dtype=np.float64)
241
- expect = expect[SINGLEAXIS_COL_ORDER]
242
-
243
- assert_frame_equal(expect, tracker_data)
244
-
245
- apparent_zenith = pd.Series([30])
246
- apparent_azimuth = pd.Series([180])
247
-
248
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
249
- axis_tilt=0, axis_azimuth=90,
250
- max_angle=90, backtrack=True,
251
- gcr=2.0/7.0)
252
-
253
- expect = pd.DataFrame({'aoi': 0, 'surface_azimuth': 180,
254
- 'surface_tilt': 30, 'tracker_theta': 30},
255
- index=[0], dtype=np.float64)
256
- expect = expect[SINGLEAXIS_COL_ORDER]
257
-
258
- assert_frame_equal(expect, tracker_data)
259
-
260
-
261
- def test_horizon_flat():
262
- # GH 569
263
- solar_azimuth = np.array([0, 180, 359])
264
- solar_zenith = np.array([100, 45, 100])
265
- solar_azimuth = pd.Series(solar_azimuth)
266
- solar_zenith = pd.Series(solar_zenith)
267
- # depending on platform and numpy versions this will generate
268
- # RuntimeWarning: invalid value encountered in > < >=
269
- out = tracking.singleaxis(solar_zenith, solar_azimuth, axis_tilt=0,
270
- axis_azimuth=180, backtrack=False, max_angle=180)
271
- expected = pd.DataFrame(np.array(
272
- [[ nan, nan, nan, nan],
273
- [ 0., 45., 270., 0.],
274
- [ nan, nan, nan, nan]]),
275
- columns=['tracker_theta', 'aoi', 'surface_azimuth', 'surface_tilt'])
276
- assert_frame_equal(out, expected)
277
-
278
-
279
- def test_horizon_tilted():
280
- # GH 569
281
- solar_azimuth = np.array([0, 180, 359])
282
- solar_zenith = np.full_like(solar_azimuth, 45)
283
- solar_azimuth = pd.Series(solar_azimuth)
284
- solar_zenith = pd.Series(solar_zenith)
285
- out = tracking.singleaxis(solar_zenith, solar_azimuth, axis_tilt=90,
286
- axis_azimuth=180, backtrack=False, max_angle=180)
287
- expected = pd.DataFrame(np.array(
288
- [[-180., 45., 0., 90.],
289
- [ 0., 45., 180., 90.],
290
- [ 179., 45., 359., 90.]]),
291
- columns=['tracker_theta', 'aoi', 'surface_azimuth', 'surface_tilt'])
292
- assert_frame_equal(out, expected)
293
-
294
-
295
- def test_low_sun_angles():
296
- # GH 656, 824
297
- result = tracking.singleaxis(
298
- apparent_zenith=80, apparent_azimuth=338, axis_tilt=30,
299
- axis_azimuth=180, max_angle=60, backtrack=True, gcr=0.35)
300
- expected = {
301
- 'tracker_theta': np.array([60.0]),
302
- 'aoi': np.array([80.420987]),
303
- 'surface_azimuth': np.array([253.897886]),
304
- 'surface_tilt': np.array([64.341094])}
305
- for k, v in result.items():
306
- assert_allclose(expected[k], v)
307
-
308
-
309
- def test_calc_axis_tilt():
310
- # expected values
311
- expected_axis_tilt = 2.239 # [degrees]
312
- expected_side_slope = 9.86649274360294 # [degrees]
313
- expected = DATA_DIR / 'singleaxis_tracker_wslope.csv'
314
- expected = pd.read_csv(expected, index_col='timestamp', parse_dates=True)
315
- # solar positions
316
- starttime = '2017-01-01T00:30:00-0300'
317
- stoptime = '2017-12-31T23:59:59-0300'
318
- lat, lon = -27.597300, -48.549610
319
- times = pd.DatetimeIndex(pd.date_range(starttime, stoptime, freq='h'))
320
- solpos = pvlib.solarposition.get_solarposition(times, lat, lon)
321
- # singleaxis tracker w/slope data
322
- slope_azimuth, slope_tilt = 77.34, 10.1149
323
- axis_azimuth = 0.0
324
- max_angle = 75.0
325
- # Note: GCR is relative to horizontal distance between rows
326
- gcr = 0.33292759 # GCR = length / horizontal_pitch = 1.64 / 5 / cos(9.86)
327
- # calculate tracker axis zenith
328
- axis_tilt = tracking.calc_axis_tilt(
329
- slope_azimuth, slope_tilt, axis_azimuth=axis_azimuth)
330
- assert np.isclose(axis_tilt, expected_axis_tilt)
331
- # calculate cross-axis tilt and relative rotation
332
- cross_axis_tilt = tracking.calc_cross_axis_tilt(
333
- slope_azimuth, slope_tilt, axis_azimuth, axis_tilt)
334
- assert np.isclose(cross_axis_tilt, expected_side_slope)
335
- sat = tracking.singleaxis(
336
- solpos.apparent_zenith, solpos.azimuth, axis_tilt, axis_azimuth,
337
- max_angle, backtrack=True, gcr=gcr, cross_axis_tilt=cross_axis_tilt)
338
- np.testing.assert_allclose(
339
- sat['tracker_theta'], expected['tracker_theta'], atol=1e-7)
340
- np.testing.assert_allclose(sat['aoi'], expected['aoi'], atol=1e-7)
341
- np.testing.assert_allclose(
342
- sat['surface_azimuth'], expected['surface_azimuth'], atol=1e-7)
343
- np.testing.assert_allclose(
344
- sat['surface_tilt'], expected['surface_tilt'], atol=1e-7)
345
-
346
-
347
- def test_slope_aware_backtracking():
348
- """
349
- Test validation data set from https://www.nrel.gov/docs/fy20osti/76626.pdf
350
- """
351
- index = pd.date_range('2019-01-01T08:00', '2019-01-01T17:00', freq='h')
352
- index = index.tz_localize('Etc/GMT+5')
353
- expected_data = pd.DataFrame(index=index, data=[
354
- ( 2.404287, 122.79177, -84.440, -10.899),
355
- (11.263058, 133.288729, -72.604, -25.747),
356
- (18.733558, 145.285552, -59.861, -59.861),
357
- (24.109076, 158.939435, -45.578, -45.578),
358
- (26.810735, 173.931802, -28.764, -28.764),
359
- (26.482495, 189.371536, -8.475, -8.475),
360
- (23.170447, 204.13681, 15.120, 15.120),
361
- (17.296785, 217.446538, 39.562, 39.562),
362
- ( 9.461862, 229.102218, 61.587, 32.339),
363
- ( 0.524817, 239.330401, 79.530, 5.490),
364
- ], columns=['ApparentElevation', 'SolarAzimuth',
365
- 'TrueTracking', 'Backtracking'])
366
- expected_axis_tilt = 9.666
367
- expected_slope_angle = -2.576
368
- slope_azimuth, slope_tilt = 180.0, 10.0
369
- axis_azimuth = 195.0
370
- axis_tilt = tracking.calc_axis_tilt(
371
- slope_azimuth, slope_tilt, axis_azimuth)
372
- assert np.isclose(axis_tilt, expected_axis_tilt, rtol=1e-3, atol=1e-3)
373
- cross_axis_tilt = tracking.calc_cross_axis_tilt(
374
- slope_azimuth, slope_tilt, axis_azimuth, axis_tilt)
375
- assert np.isclose(
376
- cross_axis_tilt, expected_slope_angle, rtol=1e-3, atol=1e-3)
377
- sat = tracking.singleaxis(
378
- 90.0-expected_data['ApparentElevation'], expected_data['SolarAzimuth'],
379
- axis_tilt, axis_azimuth, max_angle=90.0, backtrack=True, gcr=0.5,
380
- cross_axis_tilt=cross_axis_tilt)
381
- assert_series_equal(sat['tracker_theta'],
382
- expected_data['Backtracking'].rename('tracker_theta'),
383
- check_less_precise=True)
384
- truetracking = tracking.singleaxis(
385
- 90.0-expected_data['ApparentElevation'], expected_data['SolarAzimuth'],
386
- axis_tilt, axis_azimuth, max_angle=90.0, backtrack=False, gcr=0.5,
387
- cross_axis_tilt=cross_axis_tilt)
388
- assert_series_equal(truetracking['tracker_theta'],
389
- expected_data['TrueTracking'].rename('tracker_theta'),
390
- check_less_precise=True)
391
-
392
-
393
- def test_singleaxis_aoi_gh1221():
394
- # vertical tracker
395
- loc = pvlib.location.Location(40.1134, -88.3695)
396
- dr = pd.date_range(
397
- start='02-Jun-1998 00:00:00', end='02-Jun-1998 23:55:00', freq='5min',
398
- tz='Etc/GMT+6')
399
- sp = loc.get_solarposition(dr)
400
- tr = pvlib.tracking.singleaxis(
401
- sp['apparent_zenith'], sp['azimuth'], axis_tilt=90, axis_azimuth=180,
402
- max_angle=0.001, backtrack=False)
403
- fixed = pvlib.irradiance.aoi(90, 180, sp['apparent_zenith'], sp['azimuth'])
404
- fixed[np.isnan(tr['aoi'])] = np.nan
405
- assert np.allclose(tr['aoi'], fixed, equal_nan=True)
406
-
407
-
408
- def test_calc_surface_orientation_types():
409
- # numpy arrays
410
- rotations = np.array([-10, 0, 10])
411
- expected_tilts = np.array([10, 0, 10], dtype=float)
412
- expected_azimuths = np.array([270, 90, 90], dtype=float)
413
- out = tracking.calc_surface_orientation(tracker_theta=rotations)
414
- np.testing.assert_allclose(expected_tilts, out['surface_tilt'])
415
- np.testing.assert_allclose(expected_azimuths, out['surface_azimuth'])
416
-
417
- # pandas Series
418
- rotations = pd.Series(rotations)
419
- expected_tilts = pd.Series(expected_tilts).rename('surface_tilt')
420
- expected_azimuths = pd.Series(expected_azimuths).rename('surface_azimuth')
421
- out = tracking.calc_surface_orientation(tracker_theta=rotations)
422
- assert_series_equal(expected_tilts, out['surface_tilt'])
423
- assert_series_equal(expected_azimuths, out['surface_azimuth'])
424
-
425
- # float
426
- for rotation, expected_tilt, expected_azimuth in zip(
427
- rotations, expected_tilts, expected_azimuths):
428
- out = tracking.calc_surface_orientation(rotation)
429
- assert out['surface_tilt'] == pytest.approx(expected_tilt)
430
- assert out['surface_azimuth'] == pytest.approx(expected_azimuth)
431
-
432
-
433
- def test_calc_surface_orientation_kwargs():
434
- # non-default axis tilt & azimuth
435
- rotations = np.array([-10, 0, 10])
436
- expected_tilts = np.array([22.2687445, 20.0, 22.2687445])
437
- expected_azimuths = np.array([152.72683041, 180.0, 207.27316959])
438
- out = tracking.calc_surface_orientation(rotations,
439
- axis_tilt=20,
440
- axis_azimuth=180)
441
- np.testing.assert_allclose(out['surface_tilt'], expected_tilts)
442
- np.testing.assert_allclose(out['surface_azimuth'], expected_azimuths)
443
-
444
-
445
- def test_calc_surface_orientation_special():
446
- # special cases for rotations
447
- rotations = np.array([-180, -90, -0, 0, 90, 180])
448
- expected_tilts = np.array([180, 90, 0, 0, 90, 180], dtype=float)
449
- expected_azimuths = [270, 270, 90, 90, 90, 90]
450
- out = tracking.calc_surface_orientation(rotations)
451
- np.testing.assert_allclose(out['surface_tilt'], expected_tilts)
452
- np.testing.assert_allclose(out['surface_azimuth'], expected_azimuths)
453
-
454
- # special case for axis_tilt
455
- rotations = np.array([-10, 0, 10])
456
- expected_tilts = np.array([90, 90, 90], dtype=float)
457
- expected_azimuths = np.array([350, 0, 10], dtype=float)
458
- out = tracking.calc_surface_orientation(rotations, axis_tilt=90)
459
- np.testing.assert_allclose(out['surface_tilt'], expected_tilts)
460
- np.testing.assert_allclose(out['surface_azimuth'], expected_azimuths)
461
-
462
- # special cases for axis_azimuth
463
- rotations = np.array([-10, 0, 10])
464
- expected_tilts = np.array([10, 0, 10], dtype=float)
465
- expected_azimuth_offsets = np.array([-90, 90, 90], dtype=float)
466
- for axis_azimuth in [0, 90, 180, 270, 360]:
467
- expected_azimuths = (axis_azimuth + expected_azimuth_offsets) % 360
468
- out = tracking.calc_surface_orientation(rotations,
469
- axis_azimuth=axis_azimuth)
470
- np.testing.assert_allclose(out['surface_tilt'], expected_tilts)
471
- # the rounding is a bit ugly, but necessary to test approximately equal
472
- # in a modulo-360 sense.
473
- np.testing.assert_allclose(np.round(out['surface_azimuth'], 4) % 360,
474
- expected_azimuths, rtol=1e-5, atol=1e-5)
@@ -1,60 +0,0 @@
1
- import pandas as pd
2
-
3
- from numpy.testing import assert_allclose
4
-
5
- from pvlib import transformer
6
-
7
-
8
- def test_simple_efficiency():
9
-
10
- # define test inputs
11
- input_power = pd.Series([
12
- -800.0,
13
- 436016.609823837,
14
- 1511820.16603752,
15
- 1580687.44677249,
16
- 1616441.79660171
17
- ])
18
- no_load_loss = 0.002
19
- load_loss = 0.007
20
- transformer_rating = 2750000
21
-
22
- # define expected test results
23
- expected_output_power = pd.Series([
24
- -6300.10103234071,
25
- 430045.854892526,
26
- 1500588.39919874,
27
- 1568921.77089526,
28
- 1604389.62839879
29
- ])
30
-
31
- # run test function with test inputs
32
- calculated_output_power = transformer.simple_efficiency(
33
- input_power=input_power,
34
- no_load_loss=no_load_loss,
35
- load_loss=load_loss,
36
- transformer_rating=transformer_rating
37
- )
38
-
39
- # determine if expected results are obtained
40
- assert_allclose(calculated_output_power, expected_output_power)
41
-
42
-
43
- def test_simple_efficiency_known_values():
44
- no_load_loss = 0.005
45
- load_loss = 0.01
46
- rating = 1000
47
- args = (no_load_loss, load_loss, rating)
48
-
49
- # verify correct behavior at no-load condition
50
- assert_allclose(
51
- transformer.simple_efficiency(no_load_loss*rating, *args),
52
- 0.0
53
- )
54
-
55
- # verify correct behavior at rated condition
56
- assert_allclose(
57
- transformer.simple_efficiency(rating*(1 + no_load_loss + load_loss),
58
- *args),
59
- rating,
60
- )