pvlib 0.11.1__py3-none-any.whl → 0.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (149) hide show
  1. pvlib/__init__.py +1 -0
  2. pvlib/_deprecation.py +73 -0
  3. pvlib/atmosphere.py +77 -7
  4. pvlib/bifacial/infinite_sheds.py +4 -3
  5. pvlib/bifacial/utils.py +2 -1
  6. pvlib/clearsky.py +35 -22
  7. pvlib/iam.py +4 -4
  8. pvlib/iotools/midc.py +1 -1
  9. pvlib/iotools/psm3.py +1 -1
  10. pvlib/iotools/pvgis.py +10 -12
  11. pvlib/iotools/tmy.py +3 -69
  12. pvlib/irradiance.py +112 -55
  13. pvlib/ivtools/sdm.py +75 -52
  14. pvlib/location.py +73 -33
  15. pvlib/modelchain.py +18 -35
  16. pvlib/pvsystem.py +139 -94
  17. pvlib/snow.py +64 -28
  18. pvlib/solarposition.py +46 -30
  19. pvlib/spa.py +4 -2
  20. pvlib/spectrum/__init__.py +0 -1
  21. pvlib/spectrum/irradiance.py +2 -64
  22. pvlib/spectrum/mismatch.py +3 -3
  23. pvlib/spectrum/spectrl2.py +2 -1
  24. pvlib/temperature.py +49 -3
  25. pvlib/tools.py +6 -5
  26. {pvlib-0.11.1.dist-info → pvlib-0.12.0.dist-info}/METADATA +14 -11
  27. pvlib-0.12.0.dist-info/RECORD +75 -0
  28. {pvlib-0.11.1.dist-info → pvlib-0.12.0.dist-info}/WHEEL +1 -1
  29. pvlib/data/BIRD_08_16_2012.csv +0 -8761
  30. pvlib/data/BIRD_08_16_2012_patm.csv +0 -8761
  31. pvlib/data/Burlington, United States SolarAnywhere Time Series 2021 Lat_44_465 Lon_-73_205 TMY3 format.csv +0 -8762
  32. pvlib/data/Burlington, United States SolarAnywhere Time Series 20210101 to 20210103 Lat_44_4675 Lon_-73_2075 SA format.csv +0 -578
  33. pvlib/data/Burlington, United States SolarAnywhere Typical GHI Year Lat_44_465 Lon_-73_205 SA format.csv +0 -74
  34. pvlib/data/CPS SCH275KTL-DO-US-800-250kW_275kVA_1.OND +0 -146
  35. pvlib/data/CRNS0101-05-2019-AZ_Tucson_11_W.txt +0 -4
  36. pvlib/data/CRN_with_problems.txt +0 -3
  37. pvlib/data/ET-M772BH550GL.PAN +0 -75
  38. pvlib/data/NLD_Amsterdam062400_IWEC.epw +0 -8768
  39. pvlib/data/PVsyst_demo.csv +0 -10757
  40. pvlib/data/PVsyst_demo_model.csv +0 -3588
  41. pvlib/data/SRML-day-EUPO1801.txt +0 -1441
  42. pvlib/data/abq19056.dat +0 -6
  43. pvlib/data/aod550_tcwv_20121101_test.nc +0 -0
  44. pvlib/data/bishop88_numerical_precision.csv +0 -101
  45. pvlib/data/bsrn-lr0100-pay0616.dat +0 -86901
  46. pvlib/data/bsrn-pay0616.dat.gz +0 -0
  47. pvlib/data/cams_mcclear_1min_verbose.csv +0 -60
  48. pvlib/data/cams_mcclear_monthly.csv +0 -42
  49. pvlib/data/cams_radiation_1min_verbose.csv +0 -72
  50. pvlib/data/cams_radiation_monthly.csv +0 -47
  51. pvlib/data/detect_clearsky_data.csv +0 -35
  52. pvlib/data/detect_clearsky_threshold_data.csv +0 -126
  53. pvlib/data/greensboro_kimber_soil_manwash.dat +0 -8761
  54. pvlib/data/greensboro_kimber_soil_nowash.dat +0 -8761
  55. pvlib/data/inverter_fit_snl_meas.csv +0 -127
  56. pvlib/data/inverter_fit_snl_sim.csv +0 -19
  57. pvlib/data/ivtools_numdiff.csv +0 -52
  58. pvlib/data/midc_20181014.txt +0 -1441
  59. pvlib/data/midc_raw_20181018.txt +0 -1441
  60. pvlib/data/midc_raw_short_header_20191115.txt +0 -1441
  61. pvlib/data/msn19056.dat +0 -6
  62. pvlib/data/precise_iv_curves1.json +0 -10251
  63. pvlib/data/precise_iv_curves2.json +0 -10251
  64. pvlib/data/precise_iv_curves_parameter_sets1.csv +0 -33
  65. pvlib/data/precise_iv_curves_parameter_sets2.csv +0 -33
  66. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA2_10kWp_CIS_5_2a_2013_2014.json +0 -1
  67. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA_30deg_0deg_2016_2016.csv +0 -35
  68. pvlib/data/pvgis_tmy_meta.json +0 -32
  69. pvlib/data/pvgis_tmy_test.dat +0 -8761
  70. pvlib/data/pvwatts_8760_rackmount.csv +0 -8779
  71. pvlib/data/pvwatts_8760_roofmount.csv +0 -8779
  72. pvlib/data/singleaxis_tracker_wslope.csv +0 -8761
  73. pvlib/data/spectrl2_example_spectra.csv +0 -123
  74. pvlib/data/surfrad-slv16001.dat +0 -1442
  75. pvlib/data/test_psm3_2017.csv +0 -17521
  76. pvlib/data/test_psm3_2019_5min.csv +0 -289
  77. pvlib/data/test_psm3_tmy-2017.csv +0 -8761
  78. pvlib/data/test_read_psm3.csv +0 -17523
  79. pvlib/data/test_read_pvgis_horizon.csv +0 -49
  80. pvlib/data/tmy_45.000_8.000_2005_2020.csv +0 -8789
  81. pvlib/data/tmy_45.000_8.000_2005_2020.epw +0 -8768
  82. pvlib/data/tmy_45.000_8.000_2005_2020.json +0 -1
  83. pvlib/data/tmy_45.000_8.000_2005_2020.txt +0 -8761
  84. pvlib/data/tmy_45.000_8.000_userhorizon.json +0 -1
  85. pvlib/data/variables_style_rules.csv +0 -56
  86. pvlib/spa_c_files/README.md +0 -81
  87. pvlib/spa_c_files/cspa_py.pxd +0 -43
  88. pvlib/spa_c_files/spa_py.pyx +0 -30
  89. pvlib/tests/__init__.py +0 -0
  90. pvlib/tests/bifacial/__init__.py +0 -0
  91. pvlib/tests/bifacial/test_infinite_sheds.py +0 -317
  92. pvlib/tests/bifacial/test_losses_models.py +0 -54
  93. pvlib/tests/bifacial/test_pvfactors.py +0 -82
  94. pvlib/tests/bifacial/test_utils.py +0 -192
  95. pvlib/tests/conftest.py +0 -476
  96. pvlib/tests/iotools/__init__.py +0 -0
  97. pvlib/tests/iotools/test_acis.py +0 -213
  98. pvlib/tests/iotools/test_bsrn.py +0 -131
  99. pvlib/tests/iotools/test_crn.py +0 -95
  100. pvlib/tests/iotools/test_epw.py +0 -23
  101. pvlib/tests/iotools/test_midc.py +0 -89
  102. pvlib/tests/iotools/test_panond.py +0 -32
  103. pvlib/tests/iotools/test_psm3.py +0 -198
  104. pvlib/tests/iotools/test_pvgis.py +0 -644
  105. pvlib/tests/iotools/test_sodapro.py +0 -298
  106. pvlib/tests/iotools/test_solaranywhere.py +0 -287
  107. pvlib/tests/iotools/test_solargis.py +0 -68
  108. pvlib/tests/iotools/test_solcast.py +0 -324
  109. pvlib/tests/iotools/test_solrad.py +0 -152
  110. pvlib/tests/iotools/test_srml.py +0 -124
  111. pvlib/tests/iotools/test_surfrad.py +0 -75
  112. pvlib/tests/iotools/test_tmy.py +0 -133
  113. pvlib/tests/ivtools/__init__.py +0 -0
  114. pvlib/tests/ivtools/test_sde.py +0 -230
  115. pvlib/tests/ivtools/test_sdm.py +0 -407
  116. pvlib/tests/ivtools/test_utils.py +0 -173
  117. pvlib/tests/spectrum/__init__.py +0 -0
  118. pvlib/tests/spectrum/conftest.py +0 -40
  119. pvlib/tests/spectrum/test_irradiance.py +0 -138
  120. pvlib/tests/spectrum/test_mismatch.py +0 -304
  121. pvlib/tests/spectrum/test_response.py +0 -124
  122. pvlib/tests/spectrum/test_spectrl2.py +0 -72
  123. pvlib/tests/test_albedo.py +0 -84
  124. pvlib/tests/test_atmosphere.py +0 -204
  125. pvlib/tests/test_clearsky.py +0 -878
  126. pvlib/tests/test_conftest.py +0 -81
  127. pvlib/tests/test_iam.py +0 -555
  128. pvlib/tests/test_inverter.py +0 -213
  129. pvlib/tests/test_irradiance.py +0 -1441
  130. pvlib/tests/test_location.py +0 -356
  131. pvlib/tests/test_modelchain.py +0 -2020
  132. pvlib/tests/test_numerical_precision.py +0 -124
  133. pvlib/tests/test_pvarray.py +0 -71
  134. pvlib/tests/test_pvsystem.py +0 -2495
  135. pvlib/tests/test_scaling.py +0 -207
  136. pvlib/tests/test_shading.py +0 -391
  137. pvlib/tests/test_singlediode.py +0 -608
  138. pvlib/tests/test_snow.py +0 -212
  139. pvlib/tests/test_soiling.py +0 -230
  140. pvlib/tests/test_solarposition.py +0 -933
  141. pvlib/tests/test_spa.py +0 -425
  142. pvlib/tests/test_temperature.py +0 -470
  143. pvlib/tests/test_tools.py +0 -146
  144. pvlib/tests/test_tracking.py +0 -474
  145. pvlib/tests/test_transformer.py +0 -60
  146. pvlib-0.11.1.dist-info/RECORD +0 -192
  147. {pvlib-0.11.1.dist-info → pvlib-0.12.0.dist-info/licenses}/AUTHORS.md +0 -0
  148. {pvlib-0.11.1.dist-info → pvlib-0.12.0.dist-info/licenses}/LICENSE +0 -0
  149. {pvlib-0.11.1.dist-info → pvlib-0.12.0.dist-info}/top_level.txt +0 -0
@@ -1,470 +0,0 @@
1
- import pandas as pd
2
- import numpy as np
3
-
4
- import pytest
5
- from .conftest import DATA_DIR, assert_series_equal
6
- from numpy.testing import assert_allclose
7
-
8
- from pvlib import temperature, tools
9
- from pvlib._deprecation import pvlibDeprecationWarning
10
-
11
- import re
12
-
13
-
14
- @pytest.fixture
15
- def sapm_default():
16
- return temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][
17
- 'open_rack_glass_glass']
18
-
19
-
20
- def test_sapm_cell(sapm_default):
21
- default = temperature.sapm_cell(900, 20, 5, sapm_default['a'],
22
- sapm_default['b'], sapm_default['deltaT'])
23
- assert_allclose(default, 43.509, 1e-3)
24
-
25
-
26
- def test_sapm_module(sapm_default):
27
- default = temperature.sapm_module(900, 20, 5, sapm_default['a'],
28
- sapm_default['b'])
29
- assert_allclose(default, 40.809, 1e-3)
30
-
31
-
32
- def test_sapm_cell_from_module(sapm_default):
33
- default = temperature.sapm_cell_from_module(50, 900,
34
- sapm_default['deltaT'])
35
- assert_allclose(default, 50 + 900 / 1000 * sapm_default['deltaT'])
36
-
37
-
38
- def test_sapm_ndarray(sapm_default):
39
- temps = np.array([0, 10, 5])
40
- irrads = np.array([0, 500, 0])
41
- winds = np.array([10, 5, 0])
42
- cell_temps = temperature.sapm_cell(irrads, temps, winds, sapm_default['a'],
43
- sapm_default['b'],
44
- sapm_default['deltaT'])
45
- module_temps = temperature.sapm_module(irrads, temps, winds,
46
- sapm_default['a'],
47
- sapm_default['b'])
48
- expected_cell = np.array([0., 23.06066166, 5.])
49
- expected_module = np.array([0., 21.56066166, 5.])
50
- assert_allclose(expected_cell, cell_temps, 1e-3)
51
- assert_allclose(expected_module, module_temps, 1e-3)
52
-
53
-
54
- def test_sapm_series(sapm_default):
55
- times = pd.date_range(start='2015-01-01', end='2015-01-02', freq='12h')
56
- temps = pd.Series([0, 10, 5], index=times)
57
- irrads = pd.Series([0, 500, 0], index=times)
58
- winds = pd.Series([10, 5, 0], index=times)
59
- cell_temps = temperature.sapm_cell(irrads, temps, winds, sapm_default['a'],
60
- sapm_default['b'],
61
- sapm_default['deltaT'])
62
- module_temps = temperature.sapm_module(irrads, temps, winds,
63
- sapm_default['a'],
64
- sapm_default['b'])
65
- expected_cell = pd.Series([0., 23.06066166, 5.], index=times)
66
- expected_module = pd.Series([0., 21.56066166, 5.], index=times)
67
- assert_series_equal(expected_cell, cell_temps)
68
- assert_series_equal(expected_module, module_temps)
69
-
70
-
71
- def test_pvsyst_cell_default():
72
- result = temperature.pvsyst_cell(900, 20, 5)
73
- assert_allclose(result, 45.137, 0.001)
74
-
75
-
76
- def test_pvsyst_cell_kwargs():
77
- result = temperature.pvsyst_cell(900, 20, wind_speed=5.0, u_c=23.5,
78
- u_v=6.25, module_efficiency=0.1)
79
- assert_allclose(result, 33.315, 0.001)
80
-
81
-
82
- def test_pvsyst_cell_ndarray():
83
- temps = np.array([0, 10, 5])
84
- irrads = np.array([0, 500, 0])
85
- winds = np.array([10, 5, 0])
86
- result = temperature.pvsyst_cell(irrads, temps, wind_speed=winds)
87
- expected = np.array([0.0, 23.965517, 5.0])
88
- assert_allclose(expected, result)
89
-
90
-
91
- def test_pvsyst_cell_series():
92
- times = pd.date_range(start="2015-01-01", end="2015-01-02", freq="12h")
93
- temps = pd.Series([0, 10, 5], index=times)
94
- irrads = pd.Series([0, 500, 0], index=times)
95
- winds = pd.Series([10, 5, 0], index=times)
96
-
97
- result = temperature.pvsyst_cell(irrads, temps, wind_speed=winds)
98
- expected = pd.Series([0.0, 23.965517, 5.0], index=times)
99
- assert_series_equal(expected, result)
100
-
101
-
102
- def test_faiman_default():
103
- result = temperature.faiman(900, 20, 5)
104
- assert_allclose(result, 35.203, atol=0.001)
105
-
106
-
107
- def test_faiman_kwargs():
108
- result = temperature.faiman(900, 20, wind_speed=5.0, u0=22.0, u1=6.)
109
- assert_allclose(result, 37.308, atol=0.001)
110
-
111
-
112
- def test_faiman_list():
113
- temps = [0, 10, 5]
114
- irrads = [0, 500, 0]
115
- winds = [10, 5, 0]
116
- result = temperature.faiman(irrads, temps, wind_speed=winds)
117
- expected = np.array([0.0, 18.446, 5.0])
118
- assert_allclose(expected, result, atol=0.001)
119
-
120
-
121
- def test_faiman_ndarray():
122
- temps = np.array([0, 10, 5])
123
- irrads = np.array([0, 500, 0])
124
- winds = np.array([10, 5, 0])
125
- result = temperature.faiman(irrads, temps, wind_speed=winds)
126
- expected = np.array([0.0, 18.446, 5.0])
127
- assert_allclose(expected, result, atol=0.001)
128
-
129
-
130
- def test_faiman_rad_no_ir():
131
- expected = temperature.faiman(900, 20, 5)
132
- result = temperature.faiman_rad(900, 20, 5)
133
- assert_allclose(result, expected)
134
-
135
-
136
- def test_faiman_rad_ir():
137
- ir_down = np.array([0, 100, 200, 315.6574, 400])
138
- expected = [-11.111, -7.591, -4.071, -0.000, 2.969]
139
- result = temperature.faiman_rad(0, 0, 0, ir_down)
140
- assert_allclose(result, expected, atol=0.001)
141
-
142
- sky_view = np.array([1.0, 0.5, 0.0])
143
- expected = [-4.071, -2.036, 0.000]
144
- result = temperature.faiman_rad(0, 0, 0, ir_down=200,
145
- sky_view=sky_view)
146
- assert_allclose(result, expected, atol=0.001)
147
-
148
- emissivity = np.array([1.0, 0.88, 0.5, 0.0])
149
- expected = [-4.626, -4.071, -2.313, 0.000]
150
- result = temperature.faiman_rad(0, 0, 0, ir_down=200,
151
- emissivity=emissivity)
152
- assert_allclose(result, expected, atol=0.001)
153
-
154
-
155
- def test_ross():
156
- result = temperature.ross(np.array([1000., 600., 1000.]),
157
- np.array([20., 40., 60.]),
158
- np.array([40., 100., 20.]))
159
- expected = np.array([45., 100., 60.])
160
- assert_allclose(expected, result)
161
-
162
-
163
- def test_faiman_series():
164
- times = pd.date_range(start="2015-01-01", end="2015-01-02", freq="12h")
165
- temps = pd.Series([0, 10, 5], index=times)
166
- irrads = pd.Series([0, 500, 0], index=times)
167
- winds = pd.Series([10, 5, 0], index=times)
168
-
169
- result = temperature.faiman(irrads, temps, wind_speed=winds)
170
- expected = pd.Series([0.0, 18.446, 5.0], index=times)
171
- assert_series_equal(expected, result)
172
-
173
-
174
- def test__temperature_model_params():
175
- params = temperature._temperature_model_params('sapm',
176
- 'open_rack_glass_glass')
177
- assert params == temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][
178
- 'open_rack_glass_glass']
179
- with pytest.raises(KeyError):
180
- temperature._temperature_model_params('sapm', 'not_a_parameter_set')
181
-
182
-
183
- def _read_pvwatts_8760(filename):
184
- df = pd.read_csv(filename,
185
- skiprows=17, # ignore location/simulation metadata
186
- skipfooter=1, # ignore "Totals" row
187
- engine='python')
188
- df['Year'] = 2019
189
- df.index = pd.to_datetime(df[['Year', 'Month', 'Day', 'Hour']])
190
- return df
191
-
192
-
193
- @pytest.mark.parametrize('filename,inoct', [
194
- ('pvwatts_8760_rackmount.csv', 45),
195
- ('pvwatts_8760_roofmount.csv', 49),
196
- ])
197
- def test_fuentes(filename, inoct):
198
- # Test against data exported from pvwatts.nrel.gov
199
- data = _read_pvwatts_8760(DATA_DIR / filename)
200
- data = data.iloc[:24*7, :] # just use one week
201
- inputs = {
202
- 'poa_global': data['Plane of Array Irradiance (W/m^2)'],
203
- 'temp_air': data['Ambient Temperature (C)'],
204
- 'wind_speed': data['Wind Speed (m/s)'],
205
- 'noct_installed': inoct,
206
- }
207
- expected_tcell = data['Cell Temperature (C)']
208
- expected_tcell.name = 'tmod'
209
- actual_tcell = temperature.fuentes(**inputs)
210
- # the SSC implementation of PVWatts diverges from the Fuentes model at
211
- # at night by setting Tcell=Tamb when POA=0. This not only means that
212
- # nighttime values are slightly different (Fuentes models cooling to sky
213
- # at night), but because of the thermal inertia, there is a transient
214
- # error after dawn as well. Test each case separately:
215
- is_night = inputs['poa_global'] == 0
216
- is_dawn = is_night.shift(1) & ~is_night
217
- is_daytime = (inputs['poa_global'] > 0) & ~is_dawn
218
- # the accuracy is probably higher than 3 digits here, but the PVWatts
219
- # export data has low precision so can only test up to 3 digits
220
- assert_series_equal(expected_tcell[is_daytime].round(3),
221
- actual_tcell[is_daytime].round(3))
222
- # use lower precision for dawn times to accommodate the dawn transient
223
- error = actual_tcell[is_dawn] - expected_tcell[is_dawn]
224
- assert (error.abs() < 0.1).all()
225
- # sanity check on night values -- Fuentes not much lower than PVWatts
226
- night_difference = expected_tcell[is_night] - actual_tcell[is_night]
227
- assert night_difference.max() < 6
228
- assert night_difference.min() > 0
229
-
230
-
231
- @pytest.mark.parametrize('tz', [None, 'Etc/GMT+5'])
232
- def test_fuentes_timezone(tz):
233
- index = pd.date_range('2019-01-01', freq='h', periods=3, tz=tz)
234
-
235
- df = pd.DataFrame({'poa_global': 1000, 'temp_air': 20, 'wind_speed': 1},
236
- index)
237
-
238
- out = temperature.fuentes(df['poa_global'], df['temp_air'],
239
- df['wind_speed'], noct_installed=45)
240
-
241
- assert_series_equal(out, pd.Series([47.85, 50.85, 50.85], index=index,
242
- name='tmod'))
243
-
244
-
245
- def test_noct_sam():
246
- poa_global, temp_air, wind_speed, noct, module_efficiency = (
247
- 1000., 25., 1., 45., 0.2)
248
- expected = 55.230790492
249
- result = temperature.noct_sam(poa_global, temp_air, wind_speed, noct,
250
- module_efficiency)
251
- assert_allclose(result, expected)
252
- # test with different types
253
- result = temperature.noct_sam(np.array(poa_global), np.array(temp_air),
254
- np.array(wind_speed), np.array(noct),
255
- np.array(module_efficiency))
256
- assert_allclose(result, expected)
257
- dr = pd.date_range(start='2020-01-01 12:00:00', end='2020-01-01 13:00:00',
258
- freq='1h')
259
- result = temperature.noct_sam(pd.Series(index=dr, data=poa_global),
260
- pd.Series(index=dr, data=temp_air),
261
- pd.Series(index=dr, data=wind_speed),
262
- pd.Series(index=dr, data=noct),
263
- module_efficiency)
264
- assert_series_equal(result, pd.Series(index=dr, data=expected))
265
-
266
-
267
- def test_noct_sam_against_sam():
268
- # test is constructed to reproduce output from SAM v2020.11.29.
269
- # SAM calculation is the default Detailed PV System model (CEC diode model,
270
- # NOCT cell temperature model), with the only change being the soiling
271
- # loss is set to 0. Weather input is TMY3 for Phoenix AZ.
272
- # Values are taken from the Jan 1 12:00:00 timestamp.
273
- poa_total, temp_air, wind_speed, noct, module_efficiency = (
274
- 860.673, 25, 3, 46.4, 0.20551)
275
- poa_total_after_refl = 851.458 # from SAM output
276
- # compute effective irradiance
277
- # spectral loss coefficients fixed in lib_cec6par.cpp
278
- a = np.flipud([0.918093, 0.086257, -0.024459, 0.002816, -0.000126])
279
- # reproduce SAM air mass calculation
280
- zen = 56.4284
281
- elev = 358
282
- air_mass = 1. / (tools.cosd(zen) + 0.5057 * (96.080 - zen)**-1.634)
283
- air_mass *= np.exp(-0.0001184 * elev)
284
- f1 = np.polyval(a, air_mass)
285
- effective_irradiance = f1 * poa_total_after_refl
286
- transmittance_absorptance = 0.9
287
- array_height = 1
288
- mount_standoff = 4.0
289
- result = temperature.noct_sam(poa_total, temp_air, wind_speed, noct,
290
- module_efficiency, effective_irradiance,
291
- transmittance_absorptance, array_height,
292
- mount_standoff)
293
- expected = 43.0655
294
- # rtol from limited SAM output precision
295
- assert_allclose(result, expected, rtol=1e-5)
296
-
297
-
298
- def test_noct_sam_options():
299
- poa_global, temp_air, wind_speed, noct, module_efficiency = (
300
- 1000., 25., 1., 45., 0.2)
301
- effective_irradiance = 1100.
302
- transmittance_absorptance = 0.8
303
- array_height = 2
304
- mount_standoff = 2.0
305
- result = temperature.noct_sam(poa_global, temp_air, wind_speed, noct,
306
- module_efficiency, effective_irradiance,
307
- transmittance_absorptance, array_height,
308
- mount_standoff)
309
- expected = 60.477703576
310
- assert_allclose(result, expected)
311
-
312
-
313
- def test_noct_sam_errors():
314
- with pytest.raises(ValueError):
315
- temperature.noct_sam(1000., 25., 1., 34., 0.2, array_height=3)
316
-
317
-
318
- def test_prilliman():
319
- # test against values calculated using pvl_MAmodel_2, see pvlib #1081
320
- times = pd.date_range('2019-01-01', freq='5min', periods=8)
321
- cell_temperature = pd.Series([0, 1, 3, 6, 10, 15, 21, 27], index=times)
322
- wind_speed = pd.Series([0, 1, 2, 3, 2, 1, 2, 3])
323
-
324
- # default coeffs
325
- expected = pd.Series([0, 0, 0.7047457, 2.21176412, 4.45584299, 7.63635512,
326
- 12.26808265, 18.00305776], index=times)
327
- actual = temperature.prilliman(cell_temperature, wind_speed, unit_mass=10)
328
- assert_series_equal(expected, actual)
329
-
330
- # custom coeffs
331
- coefficients = [0.0046, 4.5537e-4, -2.2586e-4, -1.5661e-5]
332
- expected = pd.Series([0, 0, 0.70716941, 2.2199537, 4.47537694, 7.6676931,
333
- 12.30423167, 18.04215198], index=times)
334
- actual = temperature.prilliman(cell_temperature, wind_speed, unit_mass=10,
335
- coefficients=coefficients)
336
- assert_series_equal(expected, actual)
337
-
338
- # even very short inputs < 20 minutes total still work
339
- times = pd.date_range('2019-01-01', freq='1min', periods=8)
340
- cell_temperature = pd.Series([0, 1, 3, 6, 10, 15, 21, 27], index=times)
341
- wind_speed = pd.Series([0, 1, 2, 3, 2, 1, 2, 3])
342
- expected = pd.Series([0, 0, 0.53557976, 1.49270094, 2.85940173,
343
- 4.63914366, 7.09641845, 10.24899272], index=times)
344
- actual = temperature.prilliman(cell_temperature, wind_speed, unit_mass=12)
345
- assert_series_equal(expected, actual)
346
-
347
-
348
- def test_prilliman_coarse():
349
- # if the input series time step is >= 20 min, input is returned unchanged,
350
- # and a warning is emitted
351
- times = pd.date_range('2019-01-01', freq='30min', periods=3)
352
- cell_temperature = pd.Series([0, 1, 3], index=times)
353
- wind_speed = pd.Series([0, 1, 2])
354
- msg = re.escape("temperature.prilliman only applies smoothing when the "
355
- "sampling interval is shorter than 20 minutes (input "
356
- "sampling interval: 30.0 minutes); returning "
357
- "input temperature series unchanged")
358
- with pytest.warns(UserWarning, match=msg):
359
- actual = temperature.prilliman(cell_temperature, wind_speed)
360
- assert_series_equal(cell_temperature, actual)
361
-
362
-
363
- def test_prilliman_nans():
364
- # nans in inputs are handled appropriately; nans in input tcell
365
- # are ignored but nans in wind speed cause nan in output
366
- times = pd.date_range('2019-01-01', freq='1min', periods=8)
367
- cell_temperature = pd.Series([0, 1, 3, 6, 10, np.nan, 21, 27], index=times)
368
- wind_speed = pd.Series([0, 1, 2, 3, 2, 1, np.nan, 3])
369
- actual = temperature.prilliman(cell_temperature, wind_speed)
370
- expected = pd.Series([True, True, True, True, True, True, False, True],
371
- index=times)
372
- assert_series_equal(actual.notnull(), expected)
373
-
374
- # check that nan temperatures do not mess up the weighted average;
375
- # the original implementation did not set weight=0 for nan values,
376
- # so the numerator of the weighted average ignored nans but the
377
- # denominator (total weight) still included the weight for the nan.
378
- cell_temperature = pd.Series([1, 1, 1, 1, 1, np.nan, 1, 1], index=times)
379
- wind_speed = pd.Series(1, index=times)
380
- actual = temperature.prilliman(cell_temperature, wind_speed)
381
- # original implementation would return some values < 1 here
382
- expected = pd.Series(1., index=times)
383
- assert_series_equal(actual, expected)
384
-
385
-
386
- def test_glm_conversions():
387
- # it is easiest and sufficient to test conversion from & to the same model
388
- glm = temperature.GenericLinearModel(module_efficiency=0.1,
389
- absorptance=0.9)
390
-
391
- inp = {'u0': 25.0, 'u1': 6.84}
392
- glm.use_faiman(**inp)
393
- out = glm.to_faiman()
394
- for k, v in inp.items():
395
- assert np.isclose(out[k], v)
396
-
397
- inp = {'u_c': 25, 'u_v': 4}
398
- glm.use_pvsyst(**inp)
399
- out = glm.to_pvsyst()
400
- for k, v in inp.items():
401
- assert np.isclose(out[k], v)
402
-
403
- # test with optional parameters
404
- inp = {'u_c': 25, 'u_v': 4,
405
- 'module_efficiency': 0.15,
406
- 'alpha_absorption': 0.95}
407
- glm.use_pvsyst(**inp)
408
- out = glm.to_pvsyst()
409
- for k, v in inp.items():
410
- assert np.isclose(out[k], v)
411
-
412
- inp = {'noct': 47}
413
- glm.use_noct_sam(**inp)
414
- out = glm.to_noct_sam()
415
- for k, v in inp.items():
416
- assert np.isclose(out[k], v)
417
-
418
- # test with optional parameters
419
- inp = {'noct': 47,
420
- 'module_efficiency': 0.15,
421
- 'transmittance_absorptance': 0.95}
422
- glm.use_noct_sam(**inp)
423
- out = glm.to_noct_sam()
424
- for k, v in inp.items():
425
- assert np.isclose(out[k], v)
426
-
427
- inp = {'a': -3.5, 'b': -0.1}
428
- glm.use_sapm(**inp)
429
- out = glm.to_sapm()
430
- for k, v in inp.items():
431
- assert np.isclose(out[k], v)
432
-
433
-
434
- def test_glm_simulations():
435
-
436
- glm = temperature.GenericLinearModel(module_efficiency=0.1,
437
- absorptance=0.9)
438
- wind = np.array([1.4, 1/.51, 5.4])
439
- weather = (800, 20, wind)
440
-
441
- inp = {'u0': 20.0, 'u1': 5.0}
442
- glm.use_faiman(**inp)
443
- out = glm(*weather)
444
- expected = temperature.faiman(*weather, **inp)
445
- assert np.allclose(out, expected)
446
-
447
- out = glm(*weather)
448
- assert np.allclose(out, expected)
449
-
450
- out = glm(*weather, module_efficiency=0.1)
451
- assert np.allclose(out, expected)
452
-
453
- inp = glm.get_generic_linear()
454
- out = temperature.generic_linear(*weather, **inp)
455
- assert np.allclose(out, expected)
456
-
457
-
458
- def test_glm_repr():
459
-
460
- glm = temperature.GenericLinearModel(module_efficiency=0.1,
461
- absorptance=0.9)
462
- inp = {'u0': 20.0, 'u1': 5.0}
463
- glm.use_faiman(**inp)
464
- expected = ("GenericLinearModel: {"
465
- "'u_const': 16.0, "
466
- "'du_wind': 4.0, "
467
- "'eta': 0.1, "
468
- "'alpha': 0.9}")
469
-
470
- assert glm.__repr__() == expected
pvlib/tests/test_tools.py DELETED
@@ -1,146 +0,0 @@
1
- import pytest
2
-
3
- from pvlib import tools
4
- import numpy as np
5
- import pandas as pd
6
- from numpy.testing import assert_allclose
7
-
8
-
9
- @pytest.mark.parametrize('keys, input_dict, expected', [
10
- (['a', 'b'], {'a': 1, 'b': 2, 'c': 3}, {'a': 1, 'b': 2}),
11
- (['a', 'b', 'd'], {'a': 1, 'b': 2, 'c': 3}, {'a': 1, 'b': 2}),
12
- (['a'], {}, {}),
13
- (['a'], {'b': 2}, {})
14
- ])
15
- def test_build_kwargs(keys, input_dict, expected):
16
- kwargs = tools._build_kwargs(keys, input_dict)
17
- assert kwargs == expected
18
-
19
-
20
- def _obj_test_golden_sect(params, loc):
21
- return params[loc] * (1. - params['c'] * params[loc]**params['n'])
22
-
23
-
24
- @pytest.mark.parametrize('params, lb, ub, expected, func', [
25
- ({'c': 1., 'n': 1.}, 0., 1., 0.5, _obj_test_golden_sect),
26
- ({'c': 1e6, 'n': 6.}, 0., 1., 0.07230200263994839, _obj_test_golden_sect),
27
- ({'c': 0.2, 'n': 0.3}, 0., 100., 89.14332727531685, _obj_test_golden_sect)
28
- ])
29
- def test__golden_sect_DataFrame(params, lb, ub, expected, func):
30
- v, x = tools._golden_sect_DataFrame(params, lb, ub, func)
31
- assert np.isclose(x, expected, atol=1e-8)
32
-
33
-
34
- def test__golden_sect_DataFrame_atol():
35
- params = {'c': 0.2, 'n': 0.3}
36
- expected = 89.14332727531685
37
- v, x = tools._golden_sect_DataFrame(
38
- params, 0., 100., _obj_test_golden_sect, atol=1e-12)
39
- assert np.isclose(x, expected, atol=1e-12)
40
-
41
-
42
- def test__golden_sect_DataFrame_vector():
43
- params = {'c': np.array([1., 2.]), 'n': np.array([1., 1.])}
44
- lower = np.array([0., 0.001])
45
- upper = np.array([1.1, 1.2])
46
- expected = np.array([0.5, 0.25])
47
- v, x = tools._golden_sect_DataFrame(params, lower, upper,
48
- _obj_test_golden_sect)
49
- assert np.allclose(x, expected, atol=1e-8)
50
- # some upper and lower bounds equal
51
- params = {'c': np.array([1., 2., 1.]), 'n': np.array([1., 1., 1.])}
52
- lower = np.array([0., 0.001, 1.])
53
- upper = np.array([1., 1.2, 1.])
54
- expected = np.array([0.5, 0.25, 1.0]) # x values for maxima
55
- v, x = tools._golden_sect_DataFrame(params, lower, upper,
56
- _obj_test_golden_sect)
57
- assert np.allclose(x, expected, atol=1e-8)
58
- # all upper and lower bounds equal, arrays of length 1
59
- params = {'c': np.array([1.]), 'n': np.array([1.])}
60
- lower = np.array([1.])
61
- upper = np.array([1.])
62
- expected = np.array([1.]) # x values for maxima
63
- v, x = tools._golden_sect_DataFrame(params, lower, upper,
64
- _obj_test_golden_sect)
65
- assert np.allclose(x, expected, atol=1e-8)
66
-
67
-
68
- def test__golden_sect_DataFrame_nans():
69
- # nan in bounds
70
- params = {'c': np.array([1., 2., 1.]), 'n': np.array([1., 1., 1.])}
71
- lower = np.array([0., 0.001, np.nan])
72
- upper = np.array([1.1, 1.2, 1.])
73
- expected = np.array([0.5, 0.25, np.nan])
74
- v, x = tools._golden_sect_DataFrame(params, lower, upper,
75
- _obj_test_golden_sect)
76
- assert np.allclose(x, expected, atol=1e-8, equal_nan=True)
77
- # nan in function values
78
- params = {'c': np.array([1., 2., np.nan]), 'n': np.array([1., 1., 1.])}
79
- lower = np.array([0., 0.001, 0.])
80
- upper = np.array([1.1, 1.2, 1.])
81
- expected = np.array([0.5, 0.25, np.nan])
82
- v, x = tools._golden_sect_DataFrame(params, lower, upper,
83
- _obj_test_golden_sect)
84
- assert np.allclose(x, expected, atol=1e-8, equal_nan=True)
85
- # all nan in bounds
86
- params = {'c': np.array([1., 2., 1.]), 'n': np.array([1., 1., 1.])}
87
- lower = np.array([np.nan, np.nan, np.nan])
88
- upper = np.array([1.1, 1.2, 1.])
89
- expected = np.array([np.nan, np.nan, np.nan])
90
- v, x = tools._golden_sect_DataFrame(params, lower, upper,
91
- _obj_test_golden_sect)
92
- assert np.allclose(x, expected, atol=1e-8, equal_nan=True)
93
-
94
-
95
- def test_degrees_to_index_1():
96
- """Test that _degrees_to_index raises an error when something other than
97
- 'latitude' or 'longitude' is passed."""
98
- with pytest.raises(IndexError): # invalid value for coordinate argument
99
- tools._degrees_to_index(degrees=22.0, coordinate='width')
100
-
101
-
102
- @pytest.mark.parametrize('args, args_idx', [
103
- # no pandas.Series or pandas.DataFrame args
104
- ((1,), None),
105
- (([1],), None),
106
- ((np.array(1),), None),
107
- ((np.array([1]),), None),
108
- # has pandas.Series or pandas.DataFrame args
109
- ((pd.DataFrame([1], index=[1]),), 0),
110
- ((pd.Series([1], index=[1]),), 0),
111
- ((1, pd.Series([1], index=[1]),), 1),
112
- ((1, pd.DataFrame([1], index=[1]),), 1),
113
- # first pandas.Series or pandas.DataFrame is used
114
- ((1, pd.Series([1], index=[1]), pd.DataFrame([2], index=[2]),), 1),
115
- ((1, pd.DataFrame([1], index=[1]), pd.Series([2], index=[2]),), 1),
116
- ])
117
- def test_get_pandas_index(args, args_idx):
118
- index = tools.get_pandas_index(*args)
119
-
120
- if args_idx is None:
121
- assert index is None
122
- else:
123
- pd.testing.assert_index_equal(args[args_idx].index, index)
124
-
125
-
126
- @pytest.mark.parametrize('data_in,expected', [
127
- (np.array([1, 2, 3, 4, 5]),
128
- np.array([0.2, 0.4, 0.6, 0.8, 1])),
129
- (np.array([[0, 1, 2], [0, 3, 6]]),
130
- np.array([[0, 0.5, 1], [0, 0.5, 1]])),
131
- (pd.Series([1, 2, 3, 4, 5]),
132
- pd.Series([0.2, 0.4, 0.6, 0.8, 1])),
133
- (pd.DataFrame({"a": [0, 1, 2], "b": [0, 2, 8]}),
134
- pd.DataFrame({"a": [0, 0.5, 1], "b": [0, 0.25, 1]})),
135
- # test with NaN and all zeroes
136
- (pd.DataFrame({"a": [0, np.nan, 1], "b": [0, 0, 0]}),
137
- pd.DataFrame({"a": [0, np.nan, 1], "b": [np.nan]*3})),
138
- # test with negative values
139
- (np.array([1, 2, -3, 4, -5]),
140
- np.array([0.2, 0.4, -0.6, 0.8, -1])),
141
- (pd.Series([-2, np.nan, 1]),
142
- pd.Series([-1, np.nan, 0.5])),
143
- ])
144
- def test_normalize_max2one(data_in, expected):
145
- result = tools.normalize_max2one(data_in)
146
- assert_allclose(result, expected)