piegy 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,206 @@
1
+ '''
2
+ Helper functions for making figures.
3
+
4
+ Functions:
5
+ - heatmap: Make a heatmap based on input data. Sets title, text ... as well
6
+ - bar: Make a barplot. Sets title, text ... as well.
7
+ - scatter: Make a scatter plot. Sets title, text ... as well.
8
+ - gen_title: Generates a title when the plot is about an interval of time.
9
+ - gen_text: Generates a text about standard deviation info.
10
+ - scale_interval: scale interval if sim's data was already reduced.
11
+ - ave_interval: Calculates average value of data over a time interval.
12
+ - ave_interval_1D: Return in a 1D format.
13
+ '''
14
+
15
+
16
+ import matplotlib.pyplot as plt
17
+ import numpy as np
18
+ import seaborn as sns
19
+
20
+ # move ax a bit left if add text
21
+ # default value is [0.125, 0.11, 0.9, 0.88]
22
+
23
+
24
+ def heatmap(data, cmap = "Greens", annot = False, fmt = '.3g', title = None, text = None):
25
+ '''
26
+ Helper function for making heatmaps.
27
+
28
+ Inputs:
29
+ data: 1D data for which you want to make a heatmap.
30
+ cmap: Color of heatmap. Uses matplotlib color maps
31
+ annot: Whether to show numbers of every block.
32
+ fmt: Number format for annotations. How many digits you want to keep.
33
+ title: The title you want to add. None means no title.
34
+ text: Adds some text in a text block at the top-right corner.
35
+
36
+ Returns:
37
+ fig: Seaborn heatmap.
38
+ '''
39
+
40
+ fig, ax = plt.subplots()
41
+ if text != None:
42
+ ax.text(0.63, 0.9, text, size = 10, linespacing = 1.5, transform = plt.gcf().transFigure)
43
+
44
+ ax = sns.heatmap(data, cmap = cmap, annot = annot, fmt = fmt)
45
+ ax.title.set_text(title)
46
+
47
+ return fig
48
+
49
+
50
+
51
+ def bar(data, color = "green", xlabel = None, ylabel = None, title = None, text = None):
52
+ '''
53
+ Helper Function for making barplots.
54
+
55
+ Inputs:
56
+ data: 2D data to make barplot.
57
+ color: Uses Matplotlib colors.
58
+ xlabel, y_label:
59
+ Label for axes.
60
+ title: Title for the barplot.
61
+ text: Adds some text in a text block at the top-right corner.
62
+
63
+ Returns:
64
+ fig: A Matplotlib barplot.
65
+ '''
66
+
67
+ N = np.array(data).size
68
+ xaxis = np.array([i for i in range(N)])
69
+
70
+ # make figure larger if has more data points
71
+ fig, ax = plt.subplots()
72
+ if N > 60:
73
+ fig.set_size_inches(min(N * 0.12, 9.6), 4.8)
74
+
75
+ if text != None:
76
+ ax.text(0.63, 0.9, text, size = 10, linespacing = 1.5, transform = plt.gcf().transFigure)
77
+
78
+ ax.bar(x = xaxis, height = data, color = color)
79
+ ax.set_xlabel(xlabel)
80
+ ax.set_ylabel(ylabel)
81
+ ax.title.set_text(title)
82
+
83
+ return fig
84
+
85
+
86
+
87
+ def scatter(X, Y, color = "orange", alpha = 0.25, xlabel = "x", ylabel = "y", title = None):
88
+ '''
89
+ Helper function for makeing scatter plots.
90
+
91
+ Inputs:
92
+ X: x-coordinates of points.
93
+ Y: y-coordinates of points.
94
+ Note color is Matplotlib colors.
95
+
96
+ Returns:
97
+ fig: A Matplotlib scatter plot.
98
+ '''
99
+
100
+ fig, ax = plt.subplots()
101
+ ax.scatter(X, Y, color = color, alpha = alpha)
102
+
103
+ ax.set_xlabel(xlabel)
104
+ ax.set_ylabel(ylabel)
105
+ ax.title.set_text(title)
106
+
107
+ return fig
108
+
109
+
110
+
111
+ def gen_title(title, start, end):
112
+ '''
113
+ Generate a title for plot when it's about an interval of time.
114
+ '''
115
+ title += ", " + str(round(start * 100, 1)) + " ~ " + str(round(end * 100, 1)) + "%"
116
+ return title
117
+
118
+
119
+
120
+ def gen_text(ave, std):
121
+ '''
122
+ Generate text about standard deviation info.
123
+ '''
124
+ text = "ave: " + str(round(ave, 3)) + ", std: " + str(round(std, 3))
125
+ return text
126
+
127
+
128
+
129
+ def ave_interval(data, start_index, end_index):
130
+ '''
131
+ Calculate average value of data over an interval. Return a 2D np.array
132
+ Assume data is 3D with shape N x M x K, then takes average on the 3rd axis.
133
+
134
+ Input:
135
+ data: 3D np.array or list. Will take average on the 3rd axis.
136
+ start_index, end_index:
137
+ over what interval to take average.
138
+
139
+ Returns:
140
+ data_ave: 2D np.array with shape N x M, contains average value of data.
141
+ '''
142
+
143
+ N = len(data)
144
+ M = len(data[0])
145
+
146
+ # plot a particular record
147
+ if start_index == end_index:
148
+ start_index = end_index - 1
149
+
150
+ data_ave = np.zeros((N, M))
151
+
152
+ for i in range(N):
153
+ for j in range(M):
154
+ for k in range(start_index, end_index):
155
+ data_ave[i][j] += data[i][j][k]
156
+ data_ave[i][j] /= (end_index - start_index)
157
+
158
+ return data_ave
159
+
160
+
161
+
162
+ def ave_interval_1D(data, start_index, end_index):
163
+ '''
164
+ Calculate average value of data over an interval. Return a 1D np.array.
165
+ Assume data is 3D and has shape (1 x M x K) or (N x 1 x K). Then implicitly 'compress' that 1 and takes average on the 3rd axis.
166
+
167
+ Input:
168
+ data: 3D np.array or list. One of its dimensions must have size 1. Will take average on the 3rd axis.
169
+ start_index, end_index:
170
+ over what interval to take average.
171
+
172
+ Returns:
173
+ data_ave: 1D np.array with len N * M, contains average value of data.
174
+ '''
175
+
176
+ N = len(data)
177
+ M = len(data[0])
178
+
179
+ if start_index == end_index:
180
+ start_index = end_index - 1
181
+
182
+ data_ave = np.zeros(N * M)
183
+
184
+ for i in range(N):
185
+ for j in range(M):
186
+ for k in range(start_index, end_index):
187
+ data_ave[i * M + j] += data[i][j][k]
188
+ data_ave[i * M + j] /= (end_index - start_index)
189
+
190
+ return data_ave
191
+
192
+
193
+
194
+ def scale_interval(interval, compress_itv):
195
+ # scale interval if sim's data was already reduced.
196
+ if compress_itv < 1:
197
+ raise ValueError('figures.scale_interval has compress_itv < 1:', compress_itv)
198
+
199
+ interval = int(interval / compress_itv)
200
+ if interval == 0:
201
+ print('Warning: data already smoothed by an interval: sim.compress_itv =', compress_itv, 'which is coarser than your', interval)
202
+ interval = 1
203
+
204
+ return interval
205
+
206
+
@@ -0,0 +1,29 @@
1
+ '''
2
+ File-processing tools.
3
+
4
+ Functions:
5
+ - del_dirs: Delete everything in a directory, as well as the directory itself.
6
+ '''
7
+
8
+ import os
9
+
10
+
11
+ def del_dirs(dirs):
12
+ # Delete everything in a directory.
13
+
14
+ subdirs_list = []
15
+
16
+ for subdirs, dirs_, files in os.walk(dirs):
17
+ if subdirs not in subdirs_list:
18
+ subdirs_list.append(subdirs)
19
+
20
+ for file in files:
21
+ path = os.path.join(subdirs, file)
22
+ if os.path.isfile(path):
23
+ os.remove(path)
24
+
25
+ len_s = len(subdirs_list)
26
+
27
+ for i in range(len_s):
28
+ os.rmdir(subdirs_list[len_s - i - 1])
29
+
piegy/videos.py ADDED
@@ -0,0 +1,322 @@
1
+ '''
2
+ Make mp4 videos for simulation results.
3
+
4
+ Videos are made by:
5
+ make every frame by figures.py functions, then put frames together into a video.
6
+
7
+ Public Function:
8
+ - make_video: make video based simulation results.
9
+
10
+ Private Functions
11
+ - get_max_lim: Get the max lim (interval) over many lims, and then expand it a bit for better accommodation.
12
+ Essentially takes union of those intervals.
13
+ - video_lim: Find a large enough xlim and ylim for video.
14
+ - sort_frames: Put frames in order.
15
+ other not documented here.
16
+
17
+ '''
18
+
19
+
20
+ from . import figures
21
+ from .tools import file_tools as file_t
22
+
23
+
24
+ import matplotlib.pyplot as plt
25
+ import numpy as np
26
+ import os
27
+ import imageio.v2 as imageio
28
+ import re
29
+ from moviepy import VideoFileClip
30
+
31
+
32
+ # a list of supported figures
33
+ SUPPORTED_FIGURES = ['UV_heatmap', 'pi_heatmap', 'UV_bar', 'pi_bar', 'UV_hist', 'pi_hist', 'UV_pi']
34
+
35
+
36
+ # map function name to functios in figures.py
37
+ # functions not in this dictionary is not supported for videos.
38
+ FUNC_DICT = {'UV_heatmap': figures.UV_heatmap, 'UV_bar': figures.UV_bar, 'UV_hist': figures.UV_hist,
39
+ 'pi_heatmap': figures.pi_heatmap, 'pi_bar': figures.pi_bar, 'pi_hist': figures.pi_hist, 'UV_pi': figures.UV_pi}
40
+
41
+
42
+ # Map some color maps to regular colors, used to change colors when an invalid color name is given
43
+ SNS_PLT_COLOR_DICT = {'Greens': 'green', 'Purples': 'purple', 'BuPu': 'violet', 'YlGn': 'yellowgreen'}
44
+ # Map regular colors to color maps
45
+ PLT_SNS_COLOR_DICT = {'green': 'Greens', 'purple': 'Purples', 'violet': 'BuPu', 'yellowgreen': 'YlGn'}
46
+
47
+
48
+
49
+
50
+ def convert_color(func_name, U_color, V_color):
51
+ '''
52
+ Converts some invalid colors.
53
+ If making heatmap videos but gave single colors, map to color maps.
54
+ If making barplot or histogram videos but gave single colors, map to Matplotlib
55
+ '''
56
+
57
+ if 'heatmap' in func_name:
58
+ # if making heatmaps but give regular colors
59
+ if U_color in PLT_SNS_COLOR_DICT.keys():
60
+ print('Making heatmaps, changed \'' + U_color + '\' to \'' + PLT_SNS_COLOR_DICT[U_color] + '\'')
61
+ U_color = PLT_SNS_COLOR_DICT[U_color]
62
+ if V_color in PLT_SNS_COLOR_DICT.keys():
63
+ print('Making heatmaps, changed \'' + V_color + '\' to \'' + PLT_SNS_COLOR_DICT[V_color] + '\'')
64
+ V_color = PLT_SNS_COLOR_DICT[V_color]
65
+
66
+ return U_color, V_color
67
+
68
+ elif 'heatmap' not in func_name:
69
+ # if making barplots or histogram
70
+ if U_color in SNS_PLT_COLOR_DICT.keys():
71
+ print('Not making heatmaps, changed \'' + U_color + '\' to \'' + SNS_PLT_COLOR_DICT[U_color] + '\'')
72
+ U_color = SNS_PLT_COLOR_DICT[U_color]
73
+ if V_color in SNS_PLT_COLOR_DICT.keys():
74
+ print('Not making heatmaps, changed \'' + V_color + '\' to \'' + SNS_PLT_COLOR_DICT[V_color] + '\'')
75
+ V_color = SNS_PLT_COLOR_DICT[V_color]
76
+
77
+ return U_color, V_color
78
+
79
+
80
+
81
+ def get_max_lim(lims):
82
+ '''
83
+ Get the max lim over many lims, i.e., the lowest lower bound and highest upper bound.
84
+ And then expand it a bit for better accommodation.
85
+
86
+ Input:
87
+ lim: list or np.array, has form [lim1, lim2, ...]
88
+
89
+ Returns:
90
+ A max lim which contains all lims.
91
+ '''
92
+
93
+ lims = np.array(lims)
94
+
95
+ lim_min = np.min(lims[:, 0]) # min of min
96
+ lim_max = np.max(lims[:, 1]) # max of max
97
+ r = lim_max - lim_min
98
+
99
+ if lim_min != 0:
100
+ # negative values are reached
101
+ # extend both upper bound and lower bound
102
+ return [lim_min - r * 0.05, lim_max + r * 0.05]
103
+ else:
104
+ # only extend upper bound
105
+ return [0, lim_max + r * 0.05]
106
+
107
+
108
+
109
+
110
+ def frame_lim(sim, func, frames):
111
+ '''
112
+ Find a large enough xlim and ylim for frames, if not heatmaps.
113
+
114
+ Inputs:
115
+ sim: A stochastic_model.simulation object, the simulation results.
116
+ frames: How many frame to make for the video.
117
+
118
+ Returns:
119
+ xlim and ylim for U and V, 4 in total.
120
+ '''
121
+
122
+ # take 10 samples and store their lims in list
123
+ U_xlist = []
124
+ U_ylist = []
125
+ V_xlist = []
126
+ V_ylist = []
127
+
128
+ for i in range(10):
129
+ U_fig, V_fig = func(sim, start = i / 10, end = (i / 10 + 1 / frames))
130
+
131
+ U_xlist.append(U_fig.get_axes()[0].get_xlim())
132
+ U_ylist.append(U_fig.get_axes()[0].get_ylim())
133
+ V_xlist.append(V_fig.get_axes()[0].get_xlim())
134
+ V_ylist.append(V_fig.get_axes()[0].get_ylim())
135
+
136
+ plt.close(U_fig)
137
+ plt.close(V_fig)
138
+
139
+ # get the largest 'range' based on the lists
140
+ U_xlim = get_max_lim(U_xlist)
141
+ U_ylim = get_max_lim(U_ylist)
142
+ V_xlim = get_max_lim(V_xlist)
143
+ V_ylim = get_max_lim(V_ylist)
144
+
145
+ return U_xlim, U_ylim, V_xlim, V_ylim
146
+
147
+
148
+
149
+
150
+ def frame_heatmap_lim(sim, func, frames):
151
+ '''
152
+ Find a large enough color bar lim for frames, if heatmaps.
153
+
154
+ Inputs:
155
+ sim: A stochastic_model.simulation object, the simulation results.
156
+ frames: How many frame to make for the video.
157
+
158
+ Returns:
159
+ clim for U and V
160
+ '''
161
+
162
+ U_list = []
163
+ V_list = []
164
+
165
+ for i in range(10):
166
+ U_fig, V_fig = func(sim, start = i / 10, end = (i / 10 + 1 / frames))
167
+
168
+ U_ax = U_fig.get_axes()[0]
169
+ U_list.append(U_ax.collections[0].get_clim())
170
+ V_ax = V_fig.get_axes()[0]
171
+ V_list.append(V_ax.collections[0].get_clim())
172
+
173
+ plt.close(U_fig)
174
+ plt.close(V_fig)
175
+
176
+ U_clim = get_max_lim(U_list)
177
+ V_clim = get_max_lim(V_list)
178
+
179
+ return U_clim, V_clim
180
+
181
+
182
+
183
+ def sort_frames(images):
184
+ '''
185
+ Put frames in order.
186
+
187
+ Inputs:
188
+ images: A list of dirs (frame names)
189
+ '''
190
+ numeric_part, non_numeric_part = re.match(r'(\d+) (\D+)', images).groups()
191
+ return (int(numeric_part), non_numeric_part)
192
+
193
+
194
+
195
+ def make_mp4(dirs, frame_dirs, duration, video_name):
196
+ '''
197
+ Convert frames into a mp4 video.
198
+
199
+ Inputs:
200
+ dirs: where to store the video.
201
+ frame_dirs: where to find frames.
202
+ duration: how long the video should be.
203
+ video_name: name of the video.
204
+ '''
205
+
206
+ # png to gif
207
+ images = [img for img in os.listdir(frame_dirs) if img.endswith('.png')]
208
+ images.sort(key = sort_frames)
209
+
210
+ image_list = []
211
+ for img in images:
212
+ img_path = os.path.join(frame_dirs, img)
213
+ image_list.append(imageio.imread(img_path))
214
+ gif_dirs = dirs + '/temp.gif'
215
+ imageio.mimsave(gif_dirs, image_list, format = 'gif', duration = duration)
216
+
217
+ # gif to mp4
218
+ clip = VideoFileClip(gif_dirs)
219
+ clip.write_videofile(video_name, logger = None)
220
+ # delete gif
221
+ os.remove(gif_dirs)
222
+
223
+
224
+
225
+ def make_video(sim, func_name = 'UV_heatmap', frames = 100, speed = 1.25, dpi = 120, U_color = 'Greens', V_color = 'Purples', annot = False, fmt = '.3g', del_frames = False, dirs = 'videos'):
226
+ '''
227
+ Make a mp4 video based on simulation results.
228
+
229
+ Inputs:
230
+ - sim: a stochastic_model.simulation object, the simulation results.
231
+ - func_name: what function to use to make the frames. Should be one of the functions in figures.py
232
+ - frames: how many frames to make. Use more frames for more smooth evolutions.
233
+ - speed: how long every frame should last. Use larger number for slower video.
234
+ - dpi: dpi of frames
235
+ - U_color: color for U's videos. Color maps or regular colors, based on what function you use.
236
+ - V_color: color for V's videos.
237
+ - annot: used by heatmaps. Whether to show numbers.
238
+ - fmt: number format
239
+ - del_frames: whether to delete frames after making video.
240
+ - dirs: where to store the frames and videos.
241
+ '''
242
+
243
+ if func_name not in FUNC_DICT.keys():
244
+ raise ValueError(func_name + ' not supported for videos.')
245
+ func = FUNC_DICT[func_name]
246
+
247
+ # convert color if invalid colors are given
248
+ U_color, V_color = convert_color(func_name, U_color, V_color)
249
+
250
+ # print progress
251
+ one_progress = frames / 100
252
+ current_progress = one_progress
253
+
254
+ if 'heatmap' in func_name:
255
+ # make sure a fixed color bar for all frames
256
+ U_clim, V_clim = frame_heatmap_lim(sim, func, frames)
257
+ else:
258
+ # make sure y axis not changing if not making heatmaps
259
+ U_xlim, U_ylim, V_xlim, V_ylim = frame_lim(sim, func, frames)
260
+
261
+
262
+ U_frame_dirs = dirs + '/U-' + func_name
263
+ V_frame_dirs = dirs + '/V-' + func_name
264
+
265
+ if os.path.exists(U_frame_dirs):
266
+ file_t.del_dirs(U_frame_dirs)
267
+ os.makedirs(U_frame_dirs)
268
+ if os.path.exists(V_frame_dirs):
269
+ file_t.del_dirs(V_frame_dirs)
270
+ os.makedirs(V_frame_dirs)
271
+
272
+
273
+ #### for loop ####
274
+
275
+ for i in range(frames):
276
+ if i > current_progress:
277
+ print('making frames', round(i / frames * 100), '%', end = '\r')
278
+ current_progress += one_progress
279
+
280
+ if 'heatmap' in func_name:
281
+ U_fig, V_fig = func(sim, U_color, V_color, start = i / frames, end = (i + 1) / frames, annot = annot, fmt = fmt)
282
+ else:
283
+ U_fig, V_fig = func(sim, U_color, V_color, start = i / frames, end = (i + 1) / frames)
284
+ U_ax = U_fig.get_axes()[0]
285
+ V_ax = V_fig.get_axes()[0]
286
+
287
+ if 'heatmap' in func_name:
288
+ U_ax.collections[0].set_clim(U_clim)
289
+ V_ax.collections[0].set_clim(V_clim)
290
+ else:
291
+ # make sure y axis not changing if not heatmap and not UV_pi
292
+ U_ax.set_ylim(U_ylim)
293
+ V_ax.set_ylim(V_ylim)
294
+ if ('hist' in func_name) or (func_name == 'UV_pi'):
295
+ # need to set xlim as well for UV_pi and histograms
296
+ U_ax.set_xlim(U_xlim)
297
+ V_ax.set_xlim(V_xlim)
298
+
299
+ U_fig.savefig(U_frame_dirs + '/' + str(i) + ' U' + '.png', dpi = dpi)
300
+ V_fig.savefig(V_frame_dirs + '/' + str(i) + ' V' + '.png', dpi = dpi)
301
+
302
+ plt.close(U_fig)
303
+ plt.close(V_fig)
304
+
305
+ #### for loop ends ####
306
+
307
+ # frames done
308
+ print('making mp4... ', end = '\r')
309
+
310
+ # make videos based on frames
311
+ make_mp4(dirs, U_frame_dirs, frames * speed, dirs + '/U-' + func_name + '.mp4')
312
+ make_mp4(dirs, V_frame_dirs, frames * speed, dirs + '/V-' + func_name + '.mp4')
313
+
314
+ if del_frames:
315
+ file_t.del_dirs(U_frame_dirs)
316
+ file_t.del_dirs(V_frame_dirs)
317
+ print('video saved: ' + dirs + ', frames deleted')
318
+ else:
319
+ print('video saved: ' + dirs + ' ')
320
+
321
+
322
+
@@ -0,0 +1,104 @@
1
+ Metadata-Version: 2.4
2
+ Name: piegy
3
+ Version: 1.0.0
4
+ Summary: Payoff-Driven Stochastic Spatial Model for Evolutionary Game Theory
5
+ Author-email: Chenning Xu <cxu7@caltech.edu>
6
+ License: BSD 3-Clause License
7
+
8
+ Copyright (c) 2025, Chenning Xu
9
+
10
+ Redistribution and use in source and binary forms, with or without
11
+ modification, are permitted provided that the following conditions are met:
12
+
13
+ 1. Redistributions of source code must retain the above copyright notice, this
14
+ list of conditions and the following disclaimer.
15
+
16
+ 2. Redistributions in binary form must reproduce the above copyright notice,
17
+ this list of conditions and the following disclaimer in the documentation
18
+ and/or other materials provided with the distribution.
19
+
20
+ 3. Neither the name of the copyright holder nor the names of its
21
+ contributors may be used to endorse or promote products derived from
22
+ this software without specific prior written permission.
23
+
24
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
27
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
28
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34
+
35
+ Project-URL: Source, https://github.com/Chenning04/piegy.git
36
+ Project-URL: Documentation, https://piegy.readthedocs.io/en/
37
+ Keywords: Game Theory,Evolutionary Game Theory,Spatial Model,Stochastic Model,Payoff Driven
38
+ Classifier: Development Status :: 4 - Beta
39
+ Classifier: Intended Audience :: Developers
40
+ Classifier: Intended Audience :: Science/Research
41
+ Classifier: Intended Audience :: Education
42
+ Classifier: License :: OSI Approved :: BSD License
43
+ Classifier: Programming Language :: Python :: 3
44
+ Classifier: Programming Language :: Python :: 3.10
45
+ Classifier: Programming Language :: Python :: 3.11
46
+ Classifier: Operating System :: OS Independent
47
+ Requires-Python: >=3.6
48
+ Description-Content-Type: text/markdown
49
+ License-File: LICENSE.txt
50
+ Requires-Dist: numpy
51
+ Requires-Dist: matplotlib
52
+ Requires-Dist: imageio>=2.37.0
53
+ Requires-Dist: moviepy>=2.1.1
54
+ Requires-Dist: seaborn>=0.13.2
55
+ Dynamic: license-file
56
+
57
+ # piegy
58
+
59
+ The package full name is: Payoff-Driven Stochastic Spatial Model for Evolutionary Game Theory
60
+
61
+ Provides a stochastic spatial model for simulating the interaction and evolution of two species in either 1D or 2D space, as well as analytic tools.
62
+
63
+ ## Installation
64
+
65
+ ```bash
66
+ pip install piegy
67
+ ```
68
+
69
+ ## Documentation and Source
70
+
71
+ See source code at: [GitHub-piegy repo](https://github.com/Chenning04/piegy.git).
72
+ The *piegy* documentation at: [piegy docs](https://piegy.readthedocs.io/en/).
73
+
74
+ ## How the Model Works
75
+
76
+ Our model can be summarized as "classical game theory endowed with a spatial structure and payoff-driven migration rules". Consider two species, predators and preys (denote by *U* and *V*), in a rectangular region. We divide the region into N by M patches and simulate their interaction within a patch by classical game theory (i.e., payoff matrices and carrying capacity). Interactions across patches are simulated by payoff-driven migration rules. An individual migrates to a neighboring patch with probability weighted by payoff in the neighbors.
77
+
78
+ We use the Gillepie algorithm as the fundamental event-selection algorithm. At each time step, one event is selected and let happen; and step sizes are continuous, dependent on the current state in the space. Data are recorded every some specified time interval.
79
+
80
+ ## Analytic Tools
81
+
82
+ The *piegy* package also provides a wide range of analytic and supportive tools alongside the main model, such as plotting, numerical tools, data saving & reading, etc. We also provide the *piegy.videos* module for more direct visualizations like how population distribution change over time.
83
+
84
+ ## Examples
85
+
86
+ To get started, simply get our demo model and run simulation:
87
+
88
+ ```python
89
+ from piegy import model, figures
90
+
91
+ sim = model.demo_model()
92
+ model.run(sim)
93
+
94
+ dynamics = figures.UV_dyna(sim)
95
+ U_hmap, V_hmap = figures.UV_heatmap(sim)
96
+ ```
97
+
98
+ The figures reveal the population dynamics and steady state distribution.
99
+
100
+
101
+ ## Acknowledgments
102
+
103
+ - Thanks Professor Daniel Cooney at University of Illinois Urbana-Champaign. This package is developed alongside a project with Prof. Cooney and received enormous help from him.
104
+ - Special thanks to the open-source community for making this package possible.
@@ -0,0 +1,16 @@
1
+ piegy/__init__.py,sha256=Lrh6NegSvo6LOCXg_tBTu804eicnHpQY2zmE0FchjKE,3241
2
+ piegy/__version__.py,sha256=H58EUm6wBWYw2Q4gXk5PznfRrEry4c4zk7c--daUx_8,365
3
+ piegy/analysis.py,sha256=1cF06igQMGJGVjLiyhtgepGk8fYhzvL0orI48tOK1qY,8713
4
+ piegy/data_tools.py,sha256=dXESWglAXN4q79ZG8wtpZftJoiiaOJFU7NSaip1ZTq0,3518
5
+ piegy/figures.py,sha256=46Vg6AsWswF-juGbyndaRaChrdVuzPbpRQQd9grTWfk,17842
6
+ piegy/model.py,sha256=2Y49NDzdtog9effo9Lr_-psu5NMBF3iH9BeE8zhCHZ8,45700
7
+ piegy/test_var.py,sha256=fk_e0Hko6zNfsOx-SMnnEcsgeu6fx0rQcdfuXGceY7U,20892
8
+ piegy/videos.py,sha256=vW0F9WYDvPVJM0fHM_0Vi9Y8ZSVfJBcuCLJ2lLXeZ2U,10410
9
+ piegy/tools/__init__.py,sha256=eYOl_HJHDonYexfrmKh3koOlxvtSo46vH6jHvCEEB4k,300
10
+ piegy/tools/figure_tools.py,sha256=qhuMPZn2krEzjhjmAd6ac9QVBeCWUkSdCGOz7RASAhA,5931
11
+ piegy/tools/file_tools.py,sha256=ncxFWeHfIE-GYLQlOrahFlhBgqPyuY3R5_93fpQeCEs,630
12
+ piegy-1.0.0.dist-info/licenses/LICENSE.txt,sha256=wfzEht_CxOcfGGmg3f3at4mWJb9rTBjA51mXLl_3O3g,1498
13
+ piegy-1.0.0.dist-info/METADATA,sha256=hn5JGkA5jBMN2toZ0xPdJ-0munvYBE-BzcOMKWb-d-g,5035
14
+ piegy-1.0.0.dist-info/WHEEL,sha256=DnLRTWE75wApRYVsjgc6wsVswC54sMSJhAEd4xhDpBk,91
15
+ piegy-1.0.0.dist-info/top_level.txt,sha256=k4QLYL8PqdqDuy95-4NZD_FVLqJDsmq67tpKkBn4vMw,6
16
+ piegy-1.0.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.4.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+