piegy 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- piegy/__init__.py +96 -0
- piegy/__version__.py +17 -0
- piegy/analysis.py +222 -0
- piegy/data_tools.py +129 -0
- piegy/figures.py +503 -0
- piegy/model.py +1168 -0
- piegy/test_var.py +525 -0
- piegy/tools/__init__.py +15 -0
- piegy/tools/figure_tools.py +206 -0
- piegy/tools/file_tools.py +29 -0
- piegy/videos.py +322 -0
- piegy-1.0.0.dist-info/METADATA +104 -0
- piegy-1.0.0.dist-info/RECORD +16 -0
- piegy-1.0.0.dist-info/WHEEL +5 -0
- piegy-1.0.0.dist-info/licenses/LICENSE.txt +28 -0
- piegy-1.0.0.dist-info/top_level.txt +1 -0
piegy/__init__.py
ADDED
@@ -0,0 +1,96 @@
|
|
1
|
+
'''
|
2
|
+
Payoff-Driven Stochastic Spatial Model for Evolutionary Game Theory
|
3
|
+
-----------------------------------------------------------
|
4
|
+
|
5
|
+
Provides:
|
6
|
+
1. A stochastic spatial model for simulating the interaction and evolution of two species in either 1D or 2D space
|
7
|
+
2. Plot & video functions to visualize simulation results.
|
8
|
+
3. Module to test influence of certain variables on results.
|
9
|
+
4. Data saving & reading module.
|
10
|
+
4. Additional analytical tools.
|
11
|
+
|
12
|
+
Websites:
|
13
|
+
- The *piegy* documentation: https://piegy.readthedocs.io/en/
|
14
|
+
- GitHub repository at: https://github.com/Chenning04/piegy.git
|
15
|
+
- PyPI page: https://pypi.org/project/piegy/
|
16
|
+
|
17
|
+
|
18
|
+
Last update: May 12, 2025
|
19
|
+
'''
|
20
|
+
|
21
|
+
from .__version__ import __version__
|
22
|
+
|
23
|
+
from .model import simulation, run, demo_model
|
24
|
+
from .videos import make_video, SUPPORTED_FIGURES
|
25
|
+
from .data_tools import save_data, read_data
|
26
|
+
|
27
|
+
from .analysis import rounds_expected, scale_maxtime, check_convergence, combine_sim
|
28
|
+
|
29
|
+
from .figures import (UV_heatmap, UV_bar, UV_dyna, UV_hist, UV_std, UV_expected_val, UV_expected,
|
30
|
+
pi_heatmap, pi_bar, pi_dyna, pi_hist, pi_std, UV_pi)
|
31
|
+
|
32
|
+
from .test_var import (test_var1, var_UV1, var_pi1, var_convergence1, get_dirs1,
|
33
|
+
test_var2, var_UV2, var_pi2, var_convergence2, get_dirs2)
|
34
|
+
|
35
|
+
|
36
|
+
model_members = ['simulation', 'run', 'get_demo_model']
|
37
|
+
|
38
|
+
videos_members = ['make_video', 'SUPPORTED_FIGURES']
|
39
|
+
|
40
|
+
data_members = ['save_data', 'read_data']
|
41
|
+
|
42
|
+
analysis_members = ['expected_rounds', 'scale_maxtime', 'check_convergence', 'combine_sim']
|
43
|
+
|
44
|
+
figures_members = ['UV_heatmap', 'UV_bar', 'UV_dyna', 'UV_hist', 'UV_std', 'UV_expected_val', 'UV_expected',
|
45
|
+
'pi_heatmap', 'pi_bar', 'pi_dyna', 'pi_hist', 'pi_std', 'UV_pi']
|
46
|
+
|
47
|
+
test_var_members = ['test_var1', 'var_UV1', 'var_pi1', 'var_convergence1', 'get_dirs1',
|
48
|
+
'test_var2', 'var_UV2', 'var_pi2', 'var_convergence2', 'get_dirs2']
|
49
|
+
|
50
|
+
|
51
|
+
__all__ = model_members + videos_members + data_members + figures_members + analysis_members + test_var_members
|
52
|
+
|
53
|
+
|
54
|
+
|
55
|
+
|
56
|
+
|
57
|
+
|
58
|
+
|
59
|
+
# Below might be better suited for documents
|
60
|
+
'''
|
61
|
+
To run a simulation, start by defining some parameter. Here is a complete set of params::
|
62
|
+
|
63
|
+
>>> N = 5
|
64
|
+
>>> M = 5
|
65
|
+
>>> maxtime = 300
|
66
|
+
>>> sim_time = 3
|
67
|
+
>>> I = [[[22, 44] for i in range(N)] for j in range(M)]
|
68
|
+
>>> X = [[[-0.1, 0.4, 0, 0.2] for i in range(N)] for j in range(M)]
|
69
|
+
>>> X[1][1] = [0.1, 0.6, 0.2, 0.4]
|
70
|
+
>>> P = [[[0.5, 0.5, 100, 100, 0.001, 0.001] for i in range(N)] for j in range(M)]
|
71
|
+
>>> boundary = True
|
72
|
+
>>> print_pct = 5
|
73
|
+
>>> seed = None
|
74
|
+
|
75
|
+
These parameters essentially define the spatial size, initial population, payoff matrices...
|
76
|
+
For a detailed explanation, see simulation object.
|
77
|
+
|
78
|
+
Then create a 'simulation' object with those parameters::
|
79
|
+
|
80
|
+
>>> sim = simulation(N, M, maxtime, sim_time, I, X, P, boundary, print_pct, seed)
|
81
|
+
|
82
|
+
This 'sim' object will be the basis of our simulation. It carries all the necessary parameters
|
83
|
+
and storage bin for the results.
|
84
|
+
|
85
|
+
Now let's run the simulation (assuming you imported)::
|
86
|
+
|
87
|
+
>>> multi_test(sim)
|
88
|
+
|
89
|
+
And that's the simulation! It takes 30s ~ 1min. You can see the progress.
|
90
|
+
|
91
|
+
Now, to see the results, let's use figures::
|
92
|
+
|
93
|
+
>>> fig = UV_heatmap(sim)
|
94
|
+
|
95
|
+
|
96
|
+
'''
|
piegy/__version__.py
ADDED
@@ -0,0 +1,17 @@
|
|
1
|
+
__version__ = '1.0.0'
|
2
|
+
|
3
|
+
'''
|
4
|
+
version history:
|
5
|
+
|
6
|
+
0.1.0: first publishing, May 11, 2025
|
7
|
+
0.1.1: fix dependency errors
|
8
|
+
0.1.2: fixing module not find error
|
9
|
+
0.1.3: restructuring package
|
10
|
+
0.1.4 ~ 0.1.6: fixing moviepy import issue
|
11
|
+
0.1.7: changed name back to 'piegy'
|
12
|
+
0.1.8: updated installation in README
|
13
|
+
0.1.9: first round of full debugging
|
14
|
+
|
15
|
+
1.0.0: first version in PyPI
|
16
|
+
|
17
|
+
'''
|
piegy/analysis.py
ADDED
@@ -0,0 +1,222 @@
|
|
1
|
+
'''
|
2
|
+
This file contains pre-processing, post-processing, and analytical tools for simulations.
|
3
|
+
|
4
|
+
Public Funcions:
|
5
|
+
- check_convergence: Check whether a simulation result converges. i.e. whether U, V's fluctuation are very small.
|
6
|
+
- combine_sim: Combine two simulation objects and return a new one (the first two unchanged).
|
7
|
+
Intended usage: say you have sim1, sim2 with same parameters except for sim_time, say 10 and 20.
|
8
|
+
Then combine_sim takes a weighted average (with ratio 1:2) of results and return a new sim3.
|
9
|
+
So that you now have sim3 with 30 sim_time.
|
10
|
+
|
11
|
+
Private Functions:
|
12
|
+
- rounds_expected: Roughly calculates how many rounds are expected in a single simulation (which reflects runtime).
|
13
|
+
NOTE: Not well-developed. Not recommending to use.
|
14
|
+
- scale_maxtime: Given two simulation objects, scale first one's maxtime towards the second, so that the two have the same expected rounds.
|
15
|
+
Intended to possibly decrease maxtime and save runtime.
|
16
|
+
NOTE: Not well-developed. Not recommending to use.
|
17
|
+
|
18
|
+
'''
|
19
|
+
|
20
|
+
from . import model as model
|
21
|
+
from . import figures as figures
|
22
|
+
from .tools import figure_tools as figure_t
|
23
|
+
|
24
|
+
import numpy as np
|
25
|
+
import math
|
26
|
+
|
27
|
+
|
28
|
+
|
29
|
+
|
30
|
+
def rounds_expected(sim):
|
31
|
+
'''
|
32
|
+
NOTE: Not well-developed. Not recommending to use.
|
33
|
+
|
34
|
+
Predict how many rounds will run in single_test. i.e., how many for loops from time = 0 to sim.maxtime.
|
35
|
+
Calculated based on expected_UV.
|
36
|
+
'''
|
37
|
+
|
38
|
+
N = sim.N
|
39
|
+
M = sim.M
|
40
|
+
U_expected, V_expected = figures.UV_expected_val(sim)
|
41
|
+
|
42
|
+
rates = []
|
43
|
+
patch0 = None # simulate patch i, j
|
44
|
+
patch0_nb = [] # simulate neighbors of patch i, j
|
45
|
+
|
46
|
+
# loop through N, M, create a sample patch to calculate rates, store them
|
47
|
+
for i in range(N):
|
48
|
+
for j in range(M):
|
49
|
+
patch0 = model.patch(U_expected[i][j], V_expected[i][j], sim.X[i][j], sim.P[i][j])
|
50
|
+
|
51
|
+
nb_indices = None
|
52
|
+
if sim.boundary:
|
53
|
+
nb_indices = model.find_nb_zero_flux(N, M, i, j)
|
54
|
+
else:
|
55
|
+
nb_indices = model.find_nb_periodical(N, M, i, j)
|
56
|
+
|
57
|
+
for k in range(4):
|
58
|
+
if nb_indices[k] != None:
|
59
|
+
i_nb = nb_indices[k][0]
|
60
|
+
j_nb = nb_indices[k][1]
|
61
|
+
patch0_nb_k = model.patch(U_expected[i_nb][j_nb], V_expected[i_nb][j_nb], sim.X[i_nb][j_nb], sim.P[i_nb][j_nb])
|
62
|
+
patch0_nb_k.update_pi_k()
|
63
|
+
patch0_nb.append(patch0_nb_k)
|
64
|
+
|
65
|
+
else:
|
66
|
+
patch0_nb.append(None)
|
67
|
+
|
68
|
+
patch0.nb = patch0_nb
|
69
|
+
patch0.update_pi_k()
|
70
|
+
patch0.update_mig()
|
71
|
+
|
72
|
+
rates += patch0.pi_death_rates
|
73
|
+
rates += patch0.mig_rates
|
74
|
+
|
75
|
+
delta_t_expected = (1 / sum(rates)) * math.log(1 / 0.5)
|
76
|
+
r_expected = round(sim.maxtime / delta_t_expected)
|
77
|
+
|
78
|
+
return r_expected
|
79
|
+
|
80
|
+
|
81
|
+
|
82
|
+
|
83
|
+
def scale_maxtime(sim1, sim2, scale_interval = True):
|
84
|
+
'''
|
85
|
+
NOTE: Not well-developed. Not recommending to use.
|
86
|
+
|
87
|
+
Scale sim1's maxtime towards sim2's, so they will run similar number of rounds in single_test, and hence similar runtime.
|
88
|
+
Intended to reduce the effect of changing params on runtime.
|
89
|
+
|
90
|
+
Input:
|
91
|
+
- scale_interval decides whether to scale sim1's interval as well, so that the same number of data will be stored.
|
92
|
+
'''
|
93
|
+
|
94
|
+
r_expected1 = rounds_expected(sim1)
|
95
|
+
r_expected2 = rounds_expected(sim2)
|
96
|
+
ratio = r_expected2 / r_expected1
|
97
|
+
|
98
|
+
new_maxtime = sim1.maxtime * ratio
|
99
|
+
old_max_record = sim1.maxtime / sim1.interval
|
100
|
+
|
101
|
+
if scale_interval:
|
102
|
+
sim1.interval = new_maxtime / old_max_record
|
103
|
+
|
104
|
+
sim1.change_maxtime(new_maxtime)
|
105
|
+
|
106
|
+
|
107
|
+
|
108
|
+
|
109
|
+
def check_convergence(sim, interval = 20, start = 0.8, fluc = 0.07):
|
110
|
+
'''
|
111
|
+
Check whether a simulation converges or not.
|
112
|
+
Based on whether the fluctuation of U, V, pi all < 'fluc' in the later 'tail' portion of time.
|
113
|
+
|
114
|
+
Essentially find the max and min values (of population) in every small interval, and then check whether their difference > min * fluc.
|
115
|
+
|
116
|
+
Inputs:
|
117
|
+
- sim: a simulation object
|
118
|
+
- interval: int, how many records to take average over,
|
119
|
+
and then compare this "local mean" with "whole-tail mean" and expect the difference to be less than fluc.
|
120
|
+
- start: (0, 1) float, decides where you expect to check convergence from. Smaller start needs earlier convergence.
|
121
|
+
- fluc: (0, 1) float. How much fluctuation is allowed between the average value of a small interval and the mean.
|
122
|
+
'''
|
123
|
+
|
124
|
+
if (start < 0) or (start > 1):
|
125
|
+
raise ValueError("start should be a float in (0, 1)")
|
126
|
+
if (fluc < 0) or (fluc > 1):
|
127
|
+
raise ValueError("fluc should be a float in (0, 1)")
|
128
|
+
if (type(interval) != int) or (interval < 1):
|
129
|
+
raise ValueError("interval should be an int >= 1")
|
130
|
+
|
131
|
+
interval = figure_t.scale_interval(interval, sim.compress_itv)
|
132
|
+
|
133
|
+
start_index = int(sim.max_record * start) # where the tail starts
|
134
|
+
num_interval = int((sim.max_record - start_index) / interval) # how many intervals in total
|
135
|
+
|
136
|
+
# find the max and min value of the small intervals
|
137
|
+
# initiate as average of the first interval
|
138
|
+
min_U = np.mean(sim.U[:, :, start_index : start_index + interval])
|
139
|
+
max_U = np.mean(sim.U[:, :, start_index : start_index + interval])
|
140
|
+
min_V = np.mean(sim.V[:, :, start_index : start_index + interval])
|
141
|
+
max_V = np.mean(sim.V[:, :, start_index : start_index + interval])
|
142
|
+
|
143
|
+
for i in range(1, num_interval):
|
144
|
+
# lower and upper bound of current interval
|
145
|
+
lower = start_index + i * interval
|
146
|
+
upper = lower + interval
|
147
|
+
|
148
|
+
ave_U = np.mean(sim.U[:, :, lower : upper])
|
149
|
+
ave_V = np.mean(sim.V[:, :, lower : upper])
|
150
|
+
|
151
|
+
# Compare with min, max
|
152
|
+
if ave_U > max_U:
|
153
|
+
max_U = ave_U
|
154
|
+
if ave_U < min_U:
|
155
|
+
min_U = ave_U
|
156
|
+
|
157
|
+
if ave_V > max_V:
|
158
|
+
max_V = ave_V
|
159
|
+
if ave_V < min_V:
|
160
|
+
min_V = ave_V
|
161
|
+
|
162
|
+
# check whether (max - min) > min * fluc
|
163
|
+
if (max_U - min_U) > min_U * fluc:
|
164
|
+
return False
|
165
|
+
if (max_V - min_V) > min_V * fluc:
|
166
|
+
return False
|
167
|
+
|
168
|
+
return True
|
169
|
+
|
170
|
+
|
171
|
+
|
172
|
+
|
173
|
+
def combine_sim(sim1, sim2):
|
174
|
+
'''
|
175
|
+
Combine data of sim1 and sim2.
|
176
|
+
Intended usage: assume sim1 and sim2 has the same N, M, maxtime, interval, boundary, max_record, and I, X, P
|
177
|
+
combine_sim then combines the two results and calculate a new weighted average of the two data, return a new sim object.
|
178
|
+
Essentially allows breaking up many rounds of simulations into several smaller pieces, and then put together.
|
179
|
+
|
180
|
+
Inputs:
|
181
|
+
- sim1, sim2: both stochastic_model.simulation object. All input parameters the same except for sim_time, print_pct and seed.
|
182
|
+
Raises error if not.
|
183
|
+
|
184
|
+
Returns:
|
185
|
+
|
186
|
+
- sim3: a new simulation object whose U, V, U_pi, V_pi are weighted averages of sim1 and sim2
|
187
|
+
(weighted by sim_time).
|
188
|
+
sim3.print_pct is set to sim1's, seed set to None, sim_time set to sum of sim1's and sim2's. All other params same as sim1
|
189
|
+
'''
|
190
|
+
if not (sim1.N == sim2.N and
|
191
|
+
sim1.M == sim2.M and
|
192
|
+
sim1.maxtime == sim2.maxtime and
|
193
|
+
sim1.record_itv == sim2.record_itv and
|
194
|
+
sim1.boundary == sim2.boundary and
|
195
|
+
sim1.max_record == sim2.max_record and
|
196
|
+
np.array_equal(sim1.I, sim2.I) and
|
197
|
+
np.array_equal(sim1.X, sim2.X) and
|
198
|
+
np.array_equal(sim1.P, sim2.P)):
|
199
|
+
|
200
|
+
raise ValueError('sim1 and sim2 have different input parameters (N, M, maxtime, interval, boundary, max_record, or I, X, P).')
|
201
|
+
|
202
|
+
if sim1.seed == sim2.seed:
|
203
|
+
raise ValueError('Cannot combine two simulations with the same seed.')
|
204
|
+
|
205
|
+
# copy sim1, except for no data and a different sim_time
|
206
|
+
combined_sim_time = sim1.sim_time + sim2.sim_time
|
207
|
+
sim3 = sim1.copy(copy_data = False)
|
208
|
+
sim3.sim_time = combined_sim_time
|
209
|
+
sim3.seed = None
|
210
|
+
|
211
|
+
for i in range(sim3.N):
|
212
|
+
for j in range(sim3.M):
|
213
|
+
for k in range(sim3.max_record):
|
214
|
+
sim3.U[i][j][k] = (sim1.U[i][j][k] * sim1.sim_time + sim2.U[i][j][k] * sim2.sim_time) / combined_sim_time
|
215
|
+
sim3.V[i][j][k] = (sim1.V[i][j][k] * sim1.sim_time + sim2.V[i][j][k] * sim2.sim_time) / combined_sim_time
|
216
|
+
sim3.U_pi[i][j][k] = (sim1.U_pi[i][j][k] * sim1.sim_time + sim2.U_pi[i][j][k] * sim2.sim_time) / combined_sim_time
|
217
|
+
sim3.V_pi[i][j][k] = (sim1.V_pi[i][j][k] * sim1.sim_time + sim2.V_pi[i][j][k] * sim2.sim_time) / combined_sim_time
|
218
|
+
|
219
|
+
return sim3
|
220
|
+
|
221
|
+
|
222
|
+
|
piegy/data_tools.py
ADDED
@@ -0,0 +1,129 @@
|
|
1
|
+
'''
|
2
|
+
Stores and reads a simulation object.
|
3
|
+
|
4
|
+
Functions:
|
5
|
+
- save_data: save a simulation object.
|
6
|
+
- read_data: read a simulation object.
|
7
|
+
'''
|
8
|
+
|
9
|
+
|
10
|
+
from . import model as model
|
11
|
+
|
12
|
+
import json
|
13
|
+
import gzip
|
14
|
+
import os
|
15
|
+
|
16
|
+
|
17
|
+
def save_data(sim, dirs = '', print_msg = True):
|
18
|
+
'''
|
19
|
+
Saves a simulation object. Data will be stored at dirs/data.json.gz
|
20
|
+
|
21
|
+
Inputs:
|
22
|
+
- sim: Your simulation object.
|
23
|
+
- dirs: Where to save it.
|
24
|
+
- print_msg: Whether to print message after saving.
|
25
|
+
'''
|
26
|
+
|
27
|
+
try:
|
28
|
+
_ = sim.N
|
29
|
+
except AttributeError:
|
30
|
+
raise ValueError('sim is not a simulation object')
|
31
|
+
|
32
|
+
if dirs != '':
|
33
|
+
# add slash '/'
|
34
|
+
if dirs[:-1] != '/':
|
35
|
+
dirs += '/'
|
36
|
+
if not os.path.exists(dirs):
|
37
|
+
os.makedirs(dirs)
|
38
|
+
|
39
|
+
data = []
|
40
|
+
|
41
|
+
inputs1 = []
|
42
|
+
inputs1.append(sim.N)
|
43
|
+
inputs1.append(sim.M)
|
44
|
+
inputs1.append(sim.maxtime)
|
45
|
+
inputs1.append(sim.record_itv)
|
46
|
+
inputs1.append(sim.sim_time)
|
47
|
+
inputs1.append(sim.boundary)
|
48
|
+
inputs1.append(sim.I.tolist())
|
49
|
+
inputs1.append(sim.X.tolist())
|
50
|
+
inputs1.append(sim.P.tolist())
|
51
|
+
data.append(inputs1)
|
52
|
+
|
53
|
+
inputs2 = []
|
54
|
+
inputs2.append(sim.print_pct)
|
55
|
+
inputs2.append(sim.seed)
|
56
|
+
inputs2.append(sim.UV_dtype)
|
57
|
+
inputs2.append(sim.pi_dtype)
|
58
|
+
data.append(inputs2)
|
59
|
+
|
60
|
+
# skipped rng
|
61
|
+
|
62
|
+
outputs = []
|
63
|
+
outputs.append(sim.max_record)
|
64
|
+
outputs.append(sim.compress_itv)
|
65
|
+
outputs.append(sim.U.tolist())
|
66
|
+
outputs.append(sim.V.tolist())
|
67
|
+
outputs.append(sim.U_pi.tolist())
|
68
|
+
outputs.append(sim.V_pi.tolist())
|
69
|
+
# H&V_pi_total are not saved, will be calculated when reading the data
|
70
|
+
data.append(outputs)
|
71
|
+
|
72
|
+
data_json = json.dumps(data)
|
73
|
+
data_bytes = data_json.encode('utf-8')
|
74
|
+
data_dirs = dirs + 'data.json.gz'
|
75
|
+
|
76
|
+
with gzip.open(data_dirs, 'w') as f:
|
77
|
+
f.write(data_bytes)
|
78
|
+
|
79
|
+
if print_msg:
|
80
|
+
print('data saved: ' + data_dirs)
|
81
|
+
|
82
|
+
|
83
|
+
|
84
|
+
def read_data(dirs):
|
85
|
+
'''
|
86
|
+
Reads and returns a simulation object.
|
87
|
+
|
88
|
+
Inputs:
|
89
|
+
- dirs: where to read from, just provide the folder-subfolder names. Don't include 'data.json.gz'
|
90
|
+
- print_msg: this function prints a message when the sim.compress_itv != None. Setting print_msg = False will skip ignore this message.
|
91
|
+
|
92
|
+
Returns:
|
93
|
+
- sim: a piegy.model.simulation object read from the data.
|
94
|
+
'''
|
95
|
+
|
96
|
+
if dirs != '':
|
97
|
+
# add slash '/'
|
98
|
+
if dirs[:-1] != '/':
|
99
|
+
dirs += '/'
|
100
|
+
if not os.path.exists(dirs):
|
101
|
+
raise FileNotFoundError('dirs not found: ' + dirs)
|
102
|
+
|
103
|
+
if not os.path.isfile(dirs + 'data.json.gz'):
|
104
|
+
raise FileNotFoundError('data not found in ' + dirs)
|
105
|
+
|
106
|
+
with gzip.open(dirs + 'data.json.gz', 'r') as f:
|
107
|
+
data_bytes = f.read()
|
108
|
+
data_json = data_bytes.decode('utf-8')
|
109
|
+
data = json.loads(data_json)
|
110
|
+
|
111
|
+
# inputs
|
112
|
+
try:
|
113
|
+
sim = model.simulation(N = data[0][0], M = data[0][1], maxtime = data[0][2], record_itv = data[0][3],
|
114
|
+
sim_time = data[0][4], boundary = data[0][5], I = data[0][6], X = data[0][7], P = data[0][8],
|
115
|
+
print_pct = data[1][0], seed = data[1][1], UV_dtype = data[1][2], pi_dtype = data[1][3])
|
116
|
+
except:
|
117
|
+
raise ValueError('Invalid input parameters saved in data')
|
118
|
+
|
119
|
+
# outputs
|
120
|
+
try:
|
121
|
+
sim.set_data(False, data[2][0], data[2][1], data[2][2], data[2][3], data[2][4], data[2][5])
|
122
|
+
except:
|
123
|
+
raise ValueError('Invalid simulation results saved in data')
|
124
|
+
|
125
|
+
return sim
|
126
|
+
|
127
|
+
|
128
|
+
|
129
|
+
|