piegy 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- piegy/__init__.py +96 -0
- piegy/__version__.py +17 -0
- piegy/analysis.py +222 -0
- piegy/data_tools.py +129 -0
- piegy/figures.py +503 -0
- piegy/model.py +1168 -0
- piegy/test_var.py +525 -0
- piegy/tools/__init__.py +15 -0
- piegy/tools/figure_tools.py +206 -0
- piegy/tools/file_tools.py +29 -0
- piegy/videos.py +322 -0
- piegy-1.0.0.dist-info/METADATA +104 -0
- piegy-1.0.0.dist-info/RECORD +16 -0
- piegy-1.0.0.dist-info/WHEEL +5 -0
- piegy-1.0.0.dist-info/licenses/LICENSE.txt +28 -0
- piegy-1.0.0.dist-info/top_level.txt +1 -0
piegy/model.py
ADDED
@@ -0,0 +1,1168 @@
|
|
1
|
+
'''
|
2
|
+
Main Module of Stochastic Model
|
3
|
+
-------------------------------
|
4
|
+
|
5
|
+
Contains all the necessary tools to build a model and run simulations based on Gillespie Algorithm.
|
6
|
+
|
7
|
+
Classes:
|
8
|
+
- patch: (Private) Simulates a single patch in the N x M space. Assume no spatial structure within a patch.
|
9
|
+
All spatial movements are based on patches.
|
10
|
+
- simulation: Stores input parameters and data generated during simulation.
|
11
|
+
|
12
|
+
|
13
|
+
Functions:
|
14
|
+
- find_nb_zero_flux: (Private) Return pointers to a patch's neighbors under zero-flux (no-boundary) boundary condition.
|
15
|
+
- find_nb_periodical: (Private) Return pointers to a patch's neighbors under periodical (with-booundary) boundary condition.
|
16
|
+
- find_event: (Private) Pick a random event to happen.
|
17
|
+
- make_signal_zero_flux: (Private) Expand event index (return value of find_event) to a detailed signal, under zero-flux boundary condition.
|
18
|
+
- make_signal_periodical: (Private) Expand event index (return value of find_event) to a detailed signal, under periodical boundary condition.
|
19
|
+
- single_init: (Private) Initialize a single simulation. Meaning of 'single': see single_test and run.
|
20
|
+
- single_test: (Private) Run a single simulation.
|
21
|
+
'single' means a single round of simulation. You can run many single rounds and then take the average --- that's done by <run> function.
|
22
|
+
- run: Run multiple simulations and then take the average. All the simulation will use the same parameters.
|
23
|
+
Set a seed for reproducible results.
|
24
|
+
- demo_model: Returns a demo model (a simulation object).
|
25
|
+
|
26
|
+
NOTE: Only simulation class and run function are intended for direct usages.
|
27
|
+
'''
|
28
|
+
|
29
|
+
|
30
|
+
import math
|
31
|
+
import numpy as np
|
32
|
+
from timeit import default_timer as timer
|
33
|
+
|
34
|
+
|
35
|
+
# data type used by simulation.U and simulation.V
|
36
|
+
UV_DTYPE = 'float32'
|
37
|
+
|
38
|
+
# data type used by simulation.U_pi and V_pi
|
39
|
+
PI_DTYPE = 'float64'
|
40
|
+
|
41
|
+
# data type for storing rates in single_test an single_init
|
42
|
+
RATES_DTYPE = 'float64'
|
43
|
+
|
44
|
+
# store e locally, slightly increases speed
|
45
|
+
MATH_E = math.e
|
46
|
+
|
47
|
+
|
48
|
+
class patch:
|
49
|
+
'''
|
50
|
+
A single patch in the N x M space.
|
51
|
+
Interacts with neighboring patches, assuming no spatial structure within a patch.
|
52
|
+
Initialized in single_init function.
|
53
|
+
|
54
|
+
Class Functions:
|
55
|
+
|
56
|
+
__init__:
|
57
|
+
Inputs:
|
58
|
+
U, V: initial value of U and V
|
59
|
+
matrix: payoff matrix for U and V. The canonical form is 2x2, here we ask for a flattened 1x4 form.
|
60
|
+
patch_var: np.array of [mu1, mu2, w1, w2, kappa1, kappa2]
|
61
|
+
|
62
|
+
__str__:
|
63
|
+
Print patch object in a nice way.
|
64
|
+
|
65
|
+
set_nb_pointers:
|
66
|
+
Set pointers to neighbors of this patch object.
|
67
|
+
|
68
|
+
update_pi:
|
69
|
+
Update U_pi, V_pi and payoff rates (payoff rates are the first two numbers in self.pi_death_rates).
|
70
|
+
|
71
|
+
update_k:
|
72
|
+
Update natural death rates (the last two numbers in self.pi_death_rates).
|
73
|
+
|
74
|
+
update_mig:
|
75
|
+
Update migration rates.
|
76
|
+
|
77
|
+
get_pi_death_rates, get_mig_rates:
|
78
|
+
Return respective members.
|
79
|
+
|
80
|
+
change_popu:
|
81
|
+
Change U, V based on input signal.
|
82
|
+
'''
|
83
|
+
|
84
|
+
def __init__(self, U, V, matrix = [-0.1, 0.4, 0, 0.2], patch_var = [0.5, 0.5, 100, 100, 0.001, 0.001]):
|
85
|
+
|
86
|
+
self.U = U # int, U population. Initialized upon creating object.
|
87
|
+
self.V = V # int, V population
|
88
|
+
self.U_pi = 0 # float, payoff
|
89
|
+
self.V_pi = 0
|
90
|
+
|
91
|
+
self.matrix = matrix # np.array or list, len = 4, payoff matrix
|
92
|
+
self.mu1 = patch_var[0] # float, how much proportion of the population migrates (U) each time
|
93
|
+
self.mu2 = patch_var[1]
|
94
|
+
self.w1 = patch_var[2] # float, strength of payoff-driven effect. Larger w <=> stronger payoff-driven motion
|
95
|
+
self.w2 = patch_var[3]
|
96
|
+
self.kappa1 = patch_var[4] # float, carrying capacity, determines death rates
|
97
|
+
self.kappa2 = patch_var[5]
|
98
|
+
|
99
|
+
self.nb = None # list of patch objects (pointers), point to neighbors, initialized seperatedly (after all patches are created)
|
100
|
+
self.pi_death_rates = [0 for _ in range(4)] # list, len = 4, rates of payoff & death
|
101
|
+
# first two are payoff rates, second two are death rates
|
102
|
+
self.mig_rates = [0 for _ in range(8)] # list, len = 8, migration rates, stored in an order: up, down, left, right,
|
103
|
+
# first 4 are U's mig_rate, the last 4 are V's
|
104
|
+
self.sum_pi_death_rates = 0 # float, sum of pi_death_rates
|
105
|
+
self.sum_mig_rates = 0 # float, sum of mig_rates
|
106
|
+
|
107
|
+
|
108
|
+
def __str__(self):
|
109
|
+
self_str = ''
|
110
|
+
self_str += 'U, V = ' + str(self.U) + ', ' + str(self.V) + '\n'
|
111
|
+
self_str += 'pi = ' + str(self.U_pi) + ', ' + str(self.V_pi) + '\n'
|
112
|
+
self_str += 'matrix = ' + str(self.matrix) + '\n'
|
113
|
+
self_str += 'mu1, mu2 = ' + str(self.mu1) + ', ' + str(self.mu2) + '\n'
|
114
|
+
self_str += 'w1, w2 = ' + str(self.w1) + ', ' + str(self.w2) + '\n'
|
115
|
+
self_str += 'kappa1, kappa2 = ' + str(self.kappa1) + ', ' + str(self.kappa2) + '\n'
|
116
|
+
self_str += '\n'
|
117
|
+
self_str += 'nb = ' + str(self.nb)
|
118
|
+
self_str += 'pi_death_rates = ' + str(self.pi_death_rates) + '\n'
|
119
|
+
self_str += 'mig_rates = ' + str(self.mig_rates) + '\n'
|
120
|
+
self_str += 'sum_pi_death_rates = ' + str(self.sum_pi_death_rates) + '\n'
|
121
|
+
self_str += 'sum_mig_rates = ' + str(self.sum_mig_rates) + '\n'
|
122
|
+
|
123
|
+
return self_str
|
124
|
+
|
125
|
+
|
126
|
+
def set_nb_pointers(self, nb):
|
127
|
+
# nb is a list of pointers (point to patches)
|
128
|
+
# nb is passed from the simulation class
|
129
|
+
self.nb = nb
|
130
|
+
|
131
|
+
|
132
|
+
def update_pi_k(self):
|
133
|
+
# calculate payoff and natural death rates
|
134
|
+
|
135
|
+
U = self.U # bring the values to front
|
136
|
+
V = self.V
|
137
|
+
sum_minus_1 = U + V - 1 # this value is used several times
|
138
|
+
|
139
|
+
if sum_minus_1 > 0:
|
140
|
+
# interaction happens only if there is more than 1 individual
|
141
|
+
|
142
|
+
if U != 0:
|
143
|
+
# no payoff if U == 0
|
144
|
+
self.U_pi = (U - 1) / sum_minus_1 * self.matrix[0] + V / sum_minus_1 * self.matrix[1]
|
145
|
+
else:
|
146
|
+
self.U_pi = 0
|
147
|
+
|
148
|
+
if V != 0:
|
149
|
+
self.V_pi = U / sum_minus_1 * self.matrix[2] + (V - 1) / sum_minus_1 * self.matrix[3]
|
150
|
+
else:
|
151
|
+
self.V_pi = 0
|
152
|
+
|
153
|
+
else:
|
154
|
+
# no interaction, hence no payoff, if only 1 individual
|
155
|
+
self.U_pi = 0
|
156
|
+
self.V_pi = 0
|
157
|
+
|
158
|
+
# update payoff rates
|
159
|
+
self.pi_death_rates[0] = abs(U * self.U_pi)
|
160
|
+
self.pi_death_rates[1] = abs(V * self.V_pi)
|
161
|
+
|
162
|
+
# update natural death rates
|
163
|
+
self.pi_death_rates[2] = self.kappa1 * U * (sum_minus_1 + 1)
|
164
|
+
self.pi_death_rates[3] = self.kappa2 * V * (sum_minus_1 + 1)
|
165
|
+
|
166
|
+
# update sum of rates
|
167
|
+
self.sum_pi_death_rates = sum(self.pi_death_rates)
|
168
|
+
|
169
|
+
|
170
|
+
def update_mig(self):
|
171
|
+
# calculate migration rates
|
172
|
+
|
173
|
+
# store the 'weight' of migration, i.e. value of f/g functions for neighbors
|
174
|
+
U_weight = [0, 0, 0, 0]
|
175
|
+
V_weight = [0, 0, 0, 0]
|
176
|
+
|
177
|
+
for i in range(4):
|
178
|
+
if self.nb[i] != None:
|
179
|
+
U_weight[i] = 1 + pow(MATH_E, self.w1 * self.nb[i].U_pi) # use your own functions!
|
180
|
+
V_weight[i] = 1 + pow(MATH_E, self.w2 * self.nb[i].V_pi)
|
181
|
+
|
182
|
+
mu1_U = self.mu1 * self.U
|
183
|
+
mu2_V = self.mu2 * self.V
|
184
|
+
|
185
|
+
mu1_U_divide_sum = mu1_U / sum(U_weight)
|
186
|
+
mu2_V_divide_sum = mu2_V / sum(V_weight)
|
187
|
+
|
188
|
+
for i in range(4):
|
189
|
+
self.mig_rates[i] = mu1_U_divide_sum * U_weight[i]
|
190
|
+
self.mig_rates[i + 4] = mu2_V_divide_sum * V_weight[i]
|
191
|
+
|
192
|
+
# update sum of rates
|
193
|
+
self.sum_mig_rates = mu1_U + mu2_V
|
194
|
+
|
195
|
+
|
196
|
+
def get_sum_rates(self):
|
197
|
+
# return sum of all 12 rates
|
198
|
+
return self.sum_pi_death_rates + self.sum_mig_rates
|
199
|
+
|
200
|
+
|
201
|
+
def find_event(self, expected_sum):
|
202
|
+
# find the event within the 12 events based on expected sum-of-rates within this patch
|
203
|
+
|
204
|
+
if expected_sum < self.sum_pi_death_rates:
|
205
|
+
# in the first 4 events (payoff and death events)
|
206
|
+
event = 0
|
207
|
+
current_sum = 0
|
208
|
+
while current_sum < expected_sum:
|
209
|
+
current_sum += self.pi_death_rates[event]
|
210
|
+
event += 1
|
211
|
+
event -= 1
|
212
|
+
|
213
|
+
else:
|
214
|
+
# in the last 8 events (migration events):
|
215
|
+
event = 0
|
216
|
+
current_sum = self.sum_pi_death_rates
|
217
|
+
while current_sum < expected_sum:
|
218
|
+
current_sum += self.mig_rates[event]
|
219
|
+
event += 1
|
220
|
+
event += 3 # i.e., -= 1, then += 4 (to account for the first 4 payoff & death rates)
|
221
|
+
|
222
|
+
return event
|
223
|
+
|
224
|
+
|
225
|
+
def change_popu(self, s):
|
226
|
+
# convert s (a signal, passed from simulation class) to a change in population
|
227
|
+
|
228
|
+
# s = 0, 1, 2 are for U
|
229
|
+
# s = 0 for migration IN, receive an immigrant
|
230
|
+
if s == 0:
|
231
|
+
self.U += 1 # receive an immigrant
|
232
|
+
# s = 1 for migration OUT / death due to carrying capacity
|
233
|
+
elif s == 1:
|
234
|
+
if self.U > 0:
|
235
|
+
self.U -= 1
|
236
|
+
# s = 2 for natural birth / death, due to payoff
|
237
|
+
elif s == 2:
|
238
|
+
if self.U_pi > 0:
|
239
|
+
self.U += 1 # natural growth due to payoff
|
240
|
+
elif self.U > 0:
|
241
|
+
self.U -= 1 # natural death due to payoff
|
242
|
+
|
243
|
+
# s = 3, 4, 5 are for V
|
244
|
+
elif s == 3:
|
245
|
+
self.V += 1
|
246
|
+
elif s == 4:
|
247
|
+
if self.V > 0:
|
248
|
+
self.V -= 1
|
249
|
+
else:
|
250
|
+
if self.V_pi > 0:
|
251
|
+
self.V += 1
|
252
|
+
elif self.V > 0:
|
253
|
+
self.V -= 1
|
254
|
+
|
255
|
+
|
256
|
+
|
257
|
+
class simulation:
|
258
|
+
'''
|
259
|
+
Store simulation data and input parameters.
|
260
|
+
Initialize a simulation object to run simulations.
|
261
|
+
|
262
|
+
Public Class Functions:
|
263
|
+
|
264
|
+
__init__:
|
265
|
+
Create a simulation object. Also initialize data storage.
|
266
|
+
|
267
|
+
__str__:
|
268
|
+
Print simulation object in a nice way.
|
269
|
+
|
270
|
+
copy:
|
271
|
+
Return a deep copy of self. Can choose whether to copy data as well. Default is to copy.
|
272
|
+
|
273
|
+
clear:
|
274
|
+
clear all data stored, set U, V, U_pi, V_pi to zero arrays
|
275
|
+
|
276
|
+
change_maxtime:
|
277
|
+
Changes maxtime of self. Update data storage as well.
|
278
|
+
|
279
|
+
set_seed:
|
280
|
+
Set a new seed.
|
281
|
+
|
282
|
+
compress:
|
283
|
+
compress data by only storing average values
|
284
|
+
'''
|
285
|
+
|
286
|
+
def __init__(self, N, M, maxtime, record_itv, sim_time, boundary, I, X, P, print_pct = 25, seed = None, UV_dtype = UV_DTYPE, pi_dtype = PI_DTYPE):
|
287
|
+
|
288
|
+
self.check_valid_input(N, M, maxtime, record_itv, sim_time, boundary, I, X, P, print_pct, seed)
|
289
|
+
|
290
|
+
self.N = N # int, N x M is spatial dimension
|
291
|
+
self.M = M # int, can't be 1. If want to make 1D space, use N = 1. And this model doesn't work for 1x1 space (causes NaN)
|
292
|
+
self.maxtime = maxtime # float or int, run simulation for how long time
|
293
|
+
self.record_itv = record_itv # float, record data every record_itv of time
|
294
|
+
self.sim_time = sim_time # int, run this many of rounds (of single_test)
|
295
|
+
self.boundary = boundary # bool, the N x M space have boundary or not (i.e., zero-flux (True) or periodical (False))
|
296
|
+
self.I = np.array(I) # N x M x 2 np.array, initial population. Two init-popu for every patch (U and V)
|
297
|
+
self.X = np.array(X) # N x M x 4 np.array, matrices. The '4' comes from 2x2 matrix flattened to 1D
|
298
|
+
self.P = np.array(P) # N x M x 6 np.array, 'patch variables', i.e., mu1&2, w1&2, kappa1&2
|
299
|
+
self.print_pct = print_pct # int, print how much percent is done, need to be non-zero
|
300
|
+
self.seed = seed # non-negative int, seed for random generator
|
301
|
+
self.UV_dtype = UV_dtype # what data type to store population, should be a float format. This value is passed to np.array.
|
302
|
+
# Default is 'float32', use lower accuracy to reduce data size.
|
303
|
+
self.pi_dtype = pi_dtype # what data type to store payoff, should be a float format. This value is passed to np.array.
|
304
|
+
# Default is 'float64'
|
305
|
+
|
306
|
+
self.init_storage() # initialize storage bins. Put in a separate function because might want to change maxtime
|
307
|
+
# and that doesn't need to initialze the whole object again
|
308
|
+
|
309
|
+
|
310
|
+
def init_storage(self):
|
311
|
+
# initialize storage bins
|
312
|
+
self.data_empty = True # whether data storage bins are empty. model.run will refuse to run (raise error) if not empty.
|
313
|
+
self.max_record = int(self.maxtime / self.record_itv) # int, how many data points to store sin total
|
314
|
+
self.compress_itv = 1 # int, intended to reduce size of data (if not 1). Updated by compress_data function
|
315
|
+
# if set to an int, say 20, sim will take average over every 20 data points and save them as new data.
|
316
|
+
# May be used over and over again to recursively reduce data size.
|
317
|
+
# Default is 1, not to take average.
|
318
|
+
self.U = np.zeros((self.N, self.M, self.max_record), dtype = self.UV_dtype) # N x M x max_record np.array, float32, stores population of U in every patch over tiem
|
319
|
+
self.V = np.zeros((self.N, self.M, self.max_record), dtype = self.UV_dtype)
|
320
|
+
self.U_pi = np.zeros((self.N, self.M, self.max_record), dtype = self.pi_dtype) # similar to U, but for U's payoff and float 64
|
321
|
+
self.V_pi = np.zeros((self.N, self.M, self.max_record), dtype = self.pi_dtype)
|
322
|
+
|
323
|
+
|
324
|
+
def check_valid_input(self, N, M, maxtime, record_itv, sim_time, boundary, I, X, P, print_pct, seed):
|
325
|
+
# check whether the inputs are valid
|
326
|
+
# seed, UV_dtype, pi_dtype is handled by numpy
|
327
|
+
|
328
|
+
if (N < 1) or (M < 1):
|
329
|
+
raise ValueError('N < 1 or M < 1')
|
330
|
+
if (N == 1) and (M == 1):
|
331
|
+
raise ValueError('Model fails for 1x1 space')
|
332
|
+
if (M == 1):
|
333
|
+
raise ValueError('Please set N = 1 for 1D space.')
|
334
|
+
if maxtime <= 0:
|
335
|
+
raise ValueError('Please set a positive number for maxtime')
|
336
|
+
if record_itv <= 0:
|
337
|
+
raise ValueError('Please set a positive number for record_itv')
|
338
|
+
if sim_time <= 0:
|
339
|
+
raise ValueError('Please set a positive number for sim_time')
|
340
|
+
if type(boundary) != bool:
|
341
|
+
raise TypeError('boundary not a bool. Please use True for zero-flux (with boundary) or False for periodical (no boundary)')
|
342
|
+
|
343
|
+
if (type(I) != list) and (type(I) != np.ndarray):
|
344
|
+
raise TypeError('Please set I as a list or np.ndarray')
|
345
|
+
if np.array(I).shape != (N, M, 2):
|
346
|
+
raise ValueError('Please set I as a N x M x 2 shape list or array. 2 is for init values of U, V at every patch')
|
347
|
+
|
348
|
+
if (type(X) != list) and (type(X) != np.ndarray):
|
349
|
+
raise TypeError('Please set X as a list or np.ndarray')
|
350
|
+
if np.array(X).shape != (N, M, 4):
|
351
|
+
raise ValueError('Please set X as a N x M x 4 shape list or array. 4 is for the flattened 2x2 payoff matrix')
|
352
|
+
|
353
|
+
if (type(P) != list) and (type(P) != np.ndarray):
|
354
|
+
raise TypeError('Please set P as a list or np.ndarray')
|
355
|
+
if np.array(P).shape != (N, M, 6):
|
356
|
+
raise ValueError('Please set P as a N x M x 6 shape list or array. 6 is for mu1, mu2, w1, w2, kappa1, kappa2')
|
357
|
+
|
358
|
+
if print_pct <= 0:
|
359
|
+
raise ValueError('Please use an int > 0 for print_pct or None for not printing progress.')
|
360
|
+
|
361
|
+
if type(seed) != int:
|
362
|
+
raise TypeError('Please use an int as seed')
|
363
|
+
if seed < 0:
|
364
|
+
raise ValueError('Please use a non-negative int as seed.')
|
365
|
+
|
366
|
+
|
367
|
+
def check_valid_data(self, data_empty, max_record, compress_itv, U, V, U_pi, V_pi):
|
368
|
+
# check whether a set of data is valid
|
369
|
+
if type(data_empty) != bool:
|
370
|
+
raise TypeError('data_empty not a bool')
|
371
|
+
|
372
|
+
if type(max_record) != int:
|
373
|
+
raise TypeError('max_record not an int')
|
374
|
+
if max_record < 0:
|
375
|
+
raise ValueError('max_record < 0')
|
376
|
+
|
377
|
+
if type(compress_itv) != int:
|
378
|
+
raise TypeError('compress_itv not an int')
|
379
|
+
if compress_itv < 0:
|
380
|
+
raise ValueError('compress_itv < 0')
|
381
|
+
|
382
|
+
|
383
|
+
def __str__(self):
|
384
|
+
# print this sim in a nice format
|
385
|
+
|
386
|
+
self_str = ''
|
387
|
+
self_str += 'N = ' + str(self.N) + '\n'
|
388
|
+
self_str += 'M = ' + str(self.M) + '\n'
|
389
|
+
self_str += 'maxtime = ' + str(self.maxtime) + '\n'
|
390
|
+
self_str += 'record_itv = ' + str(self.record_itv) + '\n'
|
391
|
+
self_str += 'sim_time = ' + str(self.sim_time) + '\n'
|
392
|
+
self_str += 'boundary = ' + str(self.boundary) + '\n'
|
393
|
+
self_str += 'print_pct = ' + str(self.print_pct) + '\n'
|
394
|
+
self_str += 'seed = ' + str(self.seed) + '\n'
|
395
|
+
self_str += 'UV_dtype = \'' + self.UV_dtype + '\'\n'
|
396
|
+
self_str += 'pi_dtype = \'' + self.pi_dtype + '\'\n'
|
397
|
+
self_str += 'compress_itv = ' + str(self.compress_itv) + '\n'
|
398
|
+
self_str += '\n'
|
399
|
+
|
400
|
+
# check whether I, X, P all same (compare all patches to (0, 0))
|
401
|
+
I_same = True
|
402
|
+
X_same = True
|
403
|
+
P_same = True
|
404
|
+
for i in range(self.N):
|
405
|
+
for j in range(self.M):
|
406
|
+
for k in range(2):
|
407
|
+
if self.I[i][j][k] != self.I[0][0][k]:
|
408
|
+
I_same = False
|
409
|
+
for k in range(4):
|
410
|
+
if self.X[i][j][k] != self.X[0][0][k]:
|
411
|
+
X_same = False
|
412
|
+
for k in range(6):
|
413
|
+
if self.P[i][j][k] != self.P[0][0][k]:
|
414
|
+
P_same = False
|
415
|
+
|
416
|
+
if I_same:
|
417
|
+
self_str += 'I all same: ' + str(self.I[0][0]) + '\n'
|
418
|
+
else:
|
419
|
+
self_str += 'I:\n'
|
420
|
+
for i in range(self.N):
|
421
|
+
for j in range(self.M):
|
422
|
+
self_str += str(self.I[i][j]) + ' '
|
423
|
+
self_str += '\n'
|
424
|
+
self_str += '\n'
|
425
|
+
|
426
|
+
if X_same:
|
427
|
+
self_str += 'X all same: ' + str(self.X[0][0]) + '\n'
|
428
|
+
else:
|
429
|
+
self_str += 'X:\n'
|
430
|
+
for i in range(self.N):
|
431
|
+
for j in range(self.M):
|
432
|
+
self_str += str(self.X[i][j]) + ' '
|
433
|
+
self_str += '\n'
|
434
|
+
self_str += '\n'
|
435
|
+
|
436
|
+
if P_same:
|
437
|
+
self_str += 'P all same: ' + str(self.P[0][0]) + '\n'
|
438
|
+
else:
|
439
|
+
self_str += 'P:\n'
|
440
|
+
for i in range(self.N):
|
441
|
+
for j in range(self.M):
|
442
|
+
self_str += str(self.P[i][j]) + ' '
|
443
|
+
self_str += '\n'
|
444
|
+
|
445
|
+
return self_str
|
446
|
+
|
447
|
+
|
448
|
+
def copy(self, copy_data = True):
|
449
|
+
# return deep copy of self
|
450
|
+
# copy_data decides whether to copy data as well
|
451
|
+
if type(copy_data) != bool:
|
452
|
+
raise TypeError('Please give a bool as argument: whether to copy data or not')
|
453
|
+
|
454
|
+
sim2 = simulation(N = self.N, M = self.M, maxtime = self.maxtime, record_itv = self.record_itv, sim_time = self.sim_time, boundary = self.boundary,
|
455
|
+
I = np.copy(self.I), X = np.copy(self.X), P = np.copy(self.P),
|
456
|
+
print_pct = self.print_pct, seed = self.seed, UV_dtype = self.UV_dtype, pi_dtype = self.pi_dtype)
|
457
|
+
|
458
|
+
if copy_data:
|
459
|
+
# copy data as well
|
460
|
+
sim2.set_data(self.data_empty, self.max_record, self.compress_itv, self.U, self.V, self.U_pi, self.V_pi)
|
461
|
+
|
462
|
+
return sim2
|
463
|
+
|
464
|
+
|
465
|
+
def calculate_ave(self):
|
466
|
+
# get the average value over sim_time many simulations
|
467
|
+
if self.sim_time != 1:
|
468
|
+
for i in range(self.N):
|
469
|
+
for j in range(self.M):
|
470
|
+
for t in range(self.max_record):
|
471
|
+
self.U[i][j][t] /= self.sim_time
|
472
|
+
self.V[i][j][t] /= self.sim_time
|
473
|
+
self.U_pi[i][j][t] /= self.sim_time
|
474
|
+
self.V_pi[i][j][t] /= self.sim_time
|
475
|
+
|
476
|
+
|
477
|
+
def change_maxtime(self, maxtime):
|
478
|
+
# change maxtime
|
479
|
+
if (type(maxtime) != float) and (type(maxtime) != int):
|
480
|
+
raise TypeError('Please pass in a float or int as the new maxtime.')
|
481
|
+
if maxtime <= 0:
|
482
|
+
raise ValueError('Please use a positive maxtime.')
|
483
|
+
self.maxtime = maxtime
|
484
|
+
self.init_storage()
|
485
|
+
|
486
|
+
|
487
|
+
def set_seed(self, seed):
|
488
|
+
# set seed
|
489
|
+
self.seed = seed
|
490
|
+
|
491
|
+
|
492
|
+
def reset_data(self):
|
493
|
+
# clear all data stored, set all to 0
|
494
|
+
self.init_storage()
|
495
|
+
|
496
|
+
|
497
|
+
def clear(self):
|
498
|
+
# clear data by simply reseting
|
499
|
+
self.reset_data()
|
500
|
+
|
501
|
+
|
502
|
+
def set_data(self, data_empty, max_record, compress_itv, U, V, U_pi, V_pi):
|
503
|
+
# set data to the given data values
|
504
|
+
# copies are made
|
505
|
+
self.check_valid_data(data_empty, max_record, compress_itv, U, V, U_pi, V_pi)
|
506
|
+
|
507
|
+
self.data_empty = data_empty
|
508
|
+
self.max_record = max_record
|
509
|
+
self.compress_itv = compress_itv
|
510
|
+
self.U = np.copy(U)
|
511
|
+
self.V = np.copy(V)
|
512
|
+
self.U_pi = np.copy(U_pi)
|
513
|
+
self.V_pi = np.copy(V_pi)
|
514
|
+
|
515
|
+
|
516
|
+
def compress(self, compress_itv = 5):
|
517
|
+
# compress data by only storing average values
|
518
|
+
|
519
|
+
if type(compress_itv) != int:
|
520
|
+
raise TypeError('Please use an int as compress_itv')
|
521
|
+
if compress_itv < 1:
|
522
|
+
raise ValueError('Please use record_itv >= 1')
|
523
|
+
if compress_itv == 1:
|
524
|
+
return
|
525
|
+
|
526
|
+
self.compress_itv *= compress_itv # may be reduced over and over again
|
527
|
+
self.max_record = int(self.max_record / compress_itv) # number of data points after reducing
|
528
|
+
|
529
|
+
U_reduced = np.zeros((self.N, self.M, self.max_record), dtype = self.UV_dtype)
|
530
|
+
V_reduced = np.zeros((self.N, self.M, self.max_record), dtype = self.UV_dtype)
|
531
|
+
U_pi_reduced = np.zeros((self.N, self.M, self.max_record), dtype = self.pi_dtype)
|
532
|
+
V_pi_reduced = np.zeros((self.N, self.M, self.max_record), dtype = self.pi_dtype)
|
533
|
+
|
534
|
+
for i in range(self.N):
|
535
|
+
for j in range(self.M):
|
536
|
+
for k in range(self.max_record):
|
537
|
+
lower = k * compress_itv # upper and lower bound of current record_itv
|
538
|
+
upper = lower + compress_itv
|
539
|
+
U_reduced[i][j][k] = np.mean(self.U[i, j, lower : upper])
|
540
|
+
V_reduced[i][j][k] = np.mean(self.V[i, j, lower : upper])
|
541
|
+
U_pi_reduced[i][j][k] = np.mean(self.U_pi[i, j, lower : upper])
|
542
|
+
V_pi_reduced[i][j][k] = np.mean(self.V_pi[i, j, lower : upper])
|
543
|
+
|
544
|
+
self.U = U_reduced
|
545
|
+
self.V = V_reduced
|
546
|
+
self.U_pi = U_pi_reduced
|
547
|
+
self.V_pi = V_pi_reduced
|
548
|
+
|
549
|
+
|
550
|
+
|
551
|
+
|
552
|
+
def find_nb_zero_flux(N, M, i, j):
|
553
|
+
'''
|
554
|
+
Find neighbors of patch (i, j) in zero-flux boundary condition. i.e., the space is square with boundary.
|
555
|
+
Return neighbors' indices in an order: up, down, left, right.
|
556
|
+
Index will be None if no neighbor exists in that direction.
|
557
|
+
'''
|
558
|
+
nb_indices = []
|
559
|
+
|
560
|
+
if i != 0:
|
561
|
+
nb_indices.append([i - 1, j]) # up
|
562
|
+
else:
|
563
|
+
nb_indices.append(None) # neighbor doesn't exist
|
564
|
+
|
565
|
+
if i != N - 1:
|
566
|
+
nb_indices.append([i + 1, j]) # down
|
567
|
+
else:
|
568
|
+
nb_indices.append(None)
|
569
|
+
|
570
|
+
if j != 0:
|
571
|
+
nb_indices.append([i, j - 1]) # left
|
572
|
+
else:
|
573
|
+
nb_indices.append(None)
|
574
|
+
|
575
|
+
if j != M - 1:
|
576
|
+
nb_indices.append([i, j + 1]) # right
|
577
|
+
else:
|
578
|
+
nb_indices.append(None)
|
579
|
+
|
580
|
+
return nb_indices
|
581
|
+
|
582
|
+
|
583
|
+
|
584
|
+
|
585
|
+
def find_nb_periodical(N, M, i, j):
|
586
|
+
'''
|
587
|
+
Find neighbors of patch (i, j) in periodical boundary condition. i.e., the space is a sphere.
|
588
|
+
Return neighbors' indices in an order: up, down, left, right.
|
589
|
+
If space not 1D, a neighbor always exists.
|
590
|
+
If space is 1D, say N = 1, we don't allow (0, j) to migrate up & down (self-self migration is considered invalid)
|
591
|
+
'''
|
592
|
+
nb_indices = []
|
593
|
+
|
594
|
+
# up
|
595
|
+
if N != 1:
|
596
|
+
if i != 0:
|
597
|
+
nb_indices.append([i - 1, j])
|
598
|
+
else:
|
599
|
+
nb_indices.append([N - 1, j])
|
600
|
+
else:
|
601
|
+
nb_indices.append(None) # can't migrate to itself
|
602
|
+
|
603
|
+
# down
|
604
|
+
if N != 1:
|
605
|
+
if i != N - 1:
|
606
|
+
nb_indices.append([i + 1, j])
|
607
|
+
else:
|
608
|
+
nb_indices.append([0, j])
|
609
|
+
else:
|
610
|
+
nb_indices.append(None)
|
611
|
+
|
612
|
+
# left
|
613
|
+
# No need to check M == 1 because we explicitly asked for M > 1
|
614
|
+
if j != 0:
|
615
|
+
nb_indices.append([i, j - 1])
|
616
|
+
else:
|
617
|
+
nb_indices.append([i, M - 1])
|
618
|
+
|
619
|
+
# right
|
620
|
+
if j != M - 1:
|
621
|
+
nb_indices.append([i, j + 1])
|
622
|
+
else:
|
623
|
+
nb_indices.append([i, 0])
|
624
|
+
|
625
|
+
return nb_indices
|
626
|
+
|
627
|
+
|
628
|
+
|
629
|
+
|
630
|
+
def find_patch(expected_sum, patch_rates, sum_rates_by_row, sum_rates):
|
631
|
+
'''
|
632
|
+
Find which patch the event is in. Only patch index is found, patch.find_event find which event it is exactly.
|
633
|
+
|
634
|
+
Inputs:
|
635
|
+
expected_sum: a random number * sum of all rates. Essentially points to a random event.
|
636
|
+
We want to find the patch that contains this pointer.
|
637
|
+
patch_rates: a N x M np.array. Stores sum of the 12 rates in every patch.
|
638
|
+
sum_rates_by_row: a 1D np.array with len = N. Stores the sum of the M x 12 rates in every row.
|
639
|
+
sum_rates: sum of all N x M x 12 rates.
|
640
|
+
|
641
|
+
Returns:
|
642
|
+
row, col: row and column number of where the patch.
|
643
|
+
'''
|
644
|
+
|
645
|
+
# Find row first
|
646
|
+
if expected_sum < sum_rates / 2:
|
647
|
+
# search row forwards if in the first half of rows
|
648
|
+
current_sum = 0
|
649
|
+
row = 0
|
650
|
+
while current_sum < expected_sum:
|
651
|
+
current_sum += sum_rates_by_row[row]
|
652
|
+
row += 1
|
653
|
+
row -= 1
|
654
|
+
current_sum -= sum_rates_by_row[row] # need to subtract that row (which caused current sum to exceed expected_sum)
|
655
|
+
else:
|
656
|
+
# search row backwards if in the second half of rows
|
657
|
+
current_sum = sum_rates
|
658
|
+
row = len(patch_rates) - 1
|
659
|
+
while current_sum > expected_sum:
|
660
|
+
current_sum -= sum_rates_by_row[row]
|
661
|
+
row -= 1
|
662
|
+
row += 1
|
663
|
+
# don't need subtraction here, as current_sum is already < expected same
|
664
|
+
|
665
|
+
# Find col in that row
|
666
|
+
if (expected_sum - current_sum) < sum_rates_by_row[row] / 2:
|
667
|
+
# search col forwards if in the first half of that row
|
668
|
+
col = 0
|
669
|
+
while current_sum < expected_sum:
|
670
|
+
current_sum += patch_rates[row][col]
|
671
|
+
col += 1
|
672
|
+
col -= 1
|
673
|
+
current_sum -= patch_rates[row][col] # need a subtraction
|
674
|
+
else:
|
675
|
+
# search col backwards if in the second half of that row
|
676
|
+
current_sum += sum_rates_by_row[row]
|
677
|
+
col = len(patch_rates[0]) - 1
|
678
|
+
while current_sum > expected_sum:
|
679
|
+
current_sum -= patch_rates[row][col]
|
680
|
+
col -= 1
|
681
|
+
col += 1
|
682
|
+
# don't need subtraction
|
683
|
+
|
684
|
+
return row, col, current_sum
|
685
|
+
|
686
|
+
|
687
|
+
|
688
|
+
|
689
|
+
def make_signal_zero_flux(i, j, e):
|
690
|
+
'''
|
691
|
+
Find which patch to change what based on i, j, e (event number) value, for the zero-flux boundary condition
|
692
|
+
|
693
|
+
Inputs:
|
694
|
+
i, j is the position of the 'center' patch, e is which event to happen there.
|
695
|
+
Another patch might be influenced as well if a migration event was picked.
|
696
|
+
|
697
|
+
Possible values for e:
|
698
|
+
e = 0 or 1: natural change of U/V due to payoff.
|
699
|
+
Can be either brith or death (based on payoff is positive or negative).
|
700
|
+
Cooresponds to s = 2 or 5 in the patch class
|
701
|
+
e = 2 or 3: death of U/V due to carrying capacity.
|
702
|
+
Cooresponds to s = 1 or 4 in patch: make U/V -= 1
|
703
|
+
e = 4 ~ 7: migration events of U, patch (i, j) loses an individual, and another patch receives one.
|
704
|
+
we use the up-down-left-right rule for the direction. 4 means up, 5 means down, ...
|
705
|
+
Cooresponds to s = 0 for the mig-in patch (force U += 1), and s = 1 for the mig-out patch (force U -= 1)
|
706
|
+
e = 8 ~ 11: migration events of V.
|
707
|
+
Cooresponds to s = 3 for the mig-in patch (force V += 1), and s = 4 for the mig-out patch (force V -= 1)
|
708
|
+
'''
|
709
|
+
if e < 6:
|
710
|
+
if e == 0:
|
711
|
+
return [[i, j, 2]]
|
712
|
+
elif e == 1:
|
713
|
+
return [[i, j, 5]]
|
714
|
+
elif e == 2:
|
715
|
+
return [[i, j, 1]]
|
716
|
+
elif e == 3:
|
717
|
+
return [[i, j, 4]]
|
718
|
+
elif e == 4:
|
719
|
+
return [[i, j, 1], [i - 1, j, 0]]
|
720
|
+
else:
|
721
|
+
return [[i, j, 1], [i + 1, j, 0]]
|
722
|
+
else:
|
723
|
+
if e == 6:
|
724
|
+
return [[i, j, 1], [i, j - 1, 0]]
|
725
|
+
elif e == 7:
|
726
|
+
return [[i, j, 1], [i, j + 1, 0]]
|
727
|
+
elif e == 8:
|
728
|
+
return [[i, j, 4], [i - 1, j, 3]]
|
729
|
+
elif e == 9:
|
730
|
+
return [[i, j, 4], [i + 1, j, 3]]
|
731
|
+
elif e == 10:
|
732
|
+
return [[i, j, 4], [i, j - 1, 3]]
|
733
|
+
elif e == 11:
|
734
|
+
return [[i, j, 4], [i, j + 1, 3]]
|
735
|
+
else:
|
736
|
+
raise RuntimeError('A bug in code: invalid event number encountered:', e) # debug line
|
737
|
+
|
738
|
+
|
739
|
+
|
740
|
+
def make_signal_periodical(N, M, i, j, e):
|
741
|
+
'''
|
742
|
+
Find which patch to change what based on i, j, e value, for the periodical boundary condition
|
743
|
+
Similar to make_signal_zero_flux.
|
744
|
+
'''
|
745
|
+
|
746
|
+
if e < 6:
|
747
|
+
if e == 0:
|
748
|
+
return [[i, j, 2]]
|
749
|
+
elif e == 1:
|
750
|
+
return [[i, j, 5]]
|
751
|
+
elif e == 2:
|
752
|
+
return [[i, j, 1]]
|
753
|
+
elif e == 3:
|
754
|
+
return [[i, j, 4]]
|
755
|
+
elif e == 4:
|
756
|
+
if i != 0:
|
757
|
+
return [[i, j, 1], [i - 1, j, 0]]
|
758
|
+
else:
|
759
|
+
return [[i, j, 1], [N - 1, j, 0]]
|
760
|
+
else:
|
761
|
+
if i != N - 1:
|
762
|
+
return [[i, j, 1], [i + 1, j, 0]]
|
763
|
+
else:
|
764
|
+
return [[i, j, 1], [0, j, 0]]
|
765
|
+
else:
|
766
|
+
if e == 6:
|
767
|
+
if j != 0:
|
768
|
+
return [[i, j, 1], [i, j - 1, 0]]
|
769
|
+
else:
|
770
|
+
return [[i, j, 1], [i, M - 1, 0]]
|
771
|
+
elif e == 7:
|
772
|
+
if j != M - 1:
|
773
|
+
return [[i, j, 1], [i, j + 1, 0]]
|
774
|
+
else:
|
775
|
+
return [[i, j, 1], [i, 0, 0]]
|
776
|
+
elif e == 8:
|
777
|
+
if i != 0:
|
778
|
+
return [[i, j, 4], [i - 1, j, 3]]
|
779
|
+
else:
|
780
|
+
return [[i, j, 4], [N - 1, j, 3]]
|
781
|
+
elif e == 9:
|
782
|
+
if i != N - 1:
|
783
|
+
return [[i, j, 4], [i + 1, j, 3]]
|
784
|
+
else:
|
785
|
+
return [[i, j, 4], [0, j, 3]]
|
786
|
+
elif e == 10:
|
787
|
+
if j != 0:
|
788
|
+
return [[i, j, 4], [i, j - 1, 3]]
|
789
|
+
else:
|
790
|
+
return [[i, j, 4], [i, M - 1, 3]]
|
791
|
+
elif e == 11:
|
792
|
+
if j != M - 1:
|
793
|
+
return [[i, j, 4], [i, j + 1, 3]]
|
794
|
+
else:
|
795
|
+
return [[i, j, 4], [i, 0, 3]]
|
796
|
+
else:
|
797
|
+
raise RuntimeError('A bug in code: invalid event number encountered:', e) # debug line
|
798
|
+
|
799
|
+
|
800
|
+
|
801
|
+
|
802
|
+
def nb_need_change(ni, signal):
|
803
|
+
'''
|
804
|
+
Check whether a neighbor needs to change.
|
805
|
+
Two cases don't need change: either ni is None (doesn't exist) or in signal (is a last-change patch and already updated)
|
806
|
+
|
807
|
+
Inputs:
|
808
|
+
ni: index of a neighbor, might be None if patch doesn't exist.
|
809
|
+
signal: return value of make_signal_zero_flux or make_signal_periodical.
|
810
|
+
|
811
|
+
Returns:
|
812
|
+
True or False, whether the neighboring patch specified by ni needs change
|
813
|
+
'''
|
814
|
+
|
815
|
+
if ni == None:
|
816
|
+
return False
|
817
|
+
|
818
|
+
for si in signal:
|
819
|
+
if ni[0] == si[0] and ni[1] == si[1]:
|
820
|
+
return False
|
821
|
+
|
822
|
+
return True
|
823
|
+
|
824
|
+
|
825
|
+
|
826
|
+
|
827
|
+
def single_init(sim, rng):
|
828
|
+
'''
|
829
|
+
The first major function for the model.
|
830
|
+
Initialize all variables and run 1 round, then pass variables and results to single_test.
|
831
|
+
|
832
|
+
Input:
|
833
|
+
sim is a simulation object
|
834
|
+
rng is random number generator (np.random.default_rng), initialized by model.run
|
835
|
+
'''
|
836
|
+
|
837
|
+
#### Initialize Data Storage ####
|
838
|
+
|
839
|
+
world = [[patch(sim.I[i][j][0], sim.I[i][j][1], sim.X[i][j], sim.P[i][j]) for j in range(sim.M)] for i in range(sim.N)] # N x M patches
|
840
|
+
patch_rates = np.zeros((sim.N, sim.M), dtype = RATES_DTYPE) # every patch's sum-of-12-srates
|
841
|
+
sum_rates_by_row = np.zeros((sim.N), dtype = RATES_DTYPE) # every row's sum-of-patch, i.e., sum of 12 * M rates in every row.
|
842
|
+
sum_rates = 0 # sum of all N x M x 12 rates
|
843
|
+
|
844
|
+
signal = None
|
845
|
+
|
846
|
+
nb_indices = None
|
847
|
+
if sim.boundary:
|
848
|
+
nb_indices = [[find_nb_zero_flux(sim.N, sim.M, i, j) for j in range(sim.M)] for i in range(sim.N)]
|
849
|
+
else:
|
850
|
+
nb_indices = [[find_nb_periodical(sim.N, sim.M, i, j) for j in range(sim.M)] for i in range(sim.N)]
|
851
|
+
|
852
|
+
for i in range(sim.N):
|
853
|
+
for j in range(sim.M):
|
854
|
+
nb = []
|
855
|
+
for k in range(4):
|
856
|
+
if nb_indices[i][j][k] != None:
|
857
|
+
# append a pointer to the patch
|
858
|
+
nb.append(world[nb_indices[i][j][k][0]][nb_indices[i][j][k][1]])
|
859
|
+
else:
|
860
|
+
# nb doesn't exist
|
861
|
+
nb.append(None)
|
862
|
+
# pass it to patch class and store
|
863
|
+
world[i][j].set_nb_pointers(nb)
|
864
|
+
|
865
|
+
|
866
|
+
#### Begin Running ####
|
867
|
+
|
868
|
+
# initialize payoff & natural death rates
|
869
|
+
for i in range(sim.N):
|
870
|
+
for j in range(sim.M):
|
871
|
+
world[i][j].update_pi_k()
|
872
|
+
|
873
|
+
# initialize migration rates & the rates list
|
874
|
+
for i in range(sim.N):
|
875
|
+
for j in range(sim.M):
|
876
|
+
world[i][j].update_mig()
|
877
|
+
# store rates & sum of rates
|
878
|
+
patch_rates[i][j] = world[i][j].get_sum_rates()
|
879
|
+
sum_rates_by_row[i] = sum(patch_rates[i])
|
880
|
+
|
881
|
+
sum_rates = sum(sum_rates_by_row)
|
882
|
+
|
883
|
+
# pick the first random event
|
884
|
+
expected_sum = rng.random() * sum_rates
|
885
|
+
# find patch first
|
886
|
+
i0, j0, current_sum = find_patch(expected_sum, patch_rates, sum_rates_by_row, sum_rates)
|
887
|
+
# then find which event in that patch
|
888
|
+
e0 = world[i0][j0].find_event(expected_sum - current_sum)
|
889
|
+
|
890
|
+
# initialize signal
|
891
|
+
if sim.boundary:
|
892
|
+
signal = make_signal_zero_flux(i0, j0, e0) # walls around world
|
893
|
+
else:
|
894
|
+
signal = make_signal_periodical(sim.N, sim.M, i0, j0, e0) # no walls around world
|
895
|
+
|
896
|
+
# change U&V based on signal
|
897
|
+
for si in signal:
|
898
|
+
world[si[0]][si[1]].change_popu(si[2])
|
899
|
+
|
900
|
+
# time increment
|
901
|
+
time = (1 / sum_rates) * math.log(1 / rng.random())
|
902
|
+
|
903
|
+
# record
|
904
|
+
if time > sim.record_itv:
|
905
|
+
record_index = int(time / sim.record_itv)
|
906
|
+
for i in range(sim.N):
|
907
|
+
for j in range(sim.M):
|
908
|
+
for k in range(record_index):
|
909
|
+
sim.U[i][j][k] += world[i][j].U
|
910
|
+
sim.V[i][j][k] += world[i][j].V
|
911
|
+
sim.U_pi[i][j][k] += world[i][j].U_pi
|
912
|
+
sim.V_pi[i][j][k] += world[i][j].V_pi
|
913
|
+
# we simply add to that entry, and later divide by sim_time to get the average (division in run function)
|
914
|
+
|
915
|
+
return time, world, nb_indices, patch_rates, sum_rates_by_row, sum_rates, signal
|
916
|
+
|
917
|
+
|
918
|
+
|
919
|
+
|
920
|
+
def single_test(sim, front_info, end_info, update_sum_frequency, rng):
|
921
|
+
'''
|
922
|
+
Runs a single simulation, from time = 0 to sim.maxtime.
|
923
|
+
run recursively calls single_test to get the average data.
|
924
|
+
|
925
|
+
Inputs:
|
926
|
+
sim: a simulation object, created by user and carries all parameters & storage bins.
|
927
|
+
front_info, end_info: passed by run to show messages, like the current round number in run. Not intended for direct usages.
|
928
|
+
update_sum_frequency: re-calculate sums this many times in simulation.
|
929
|
+
Our sums are gradually updated over time. So might have precision errors for large maxtime.
|
930
|
+
rng: np.random.default_rng. Initialized by model.run
|
931
|
+
'''
|
932
|
+
|
933
|
+
# initialize helper variables
|
934
|
+
# used to print progress, i.e., how much percent is done
|
935
|
+
one_time = sim.maxtime / max(100, update_sum_frequency)
|
936
|
+
one_progress = 0
|
937
|
+
if sim.print_pct != None:
|
938
|
+
# print progress, x%
|
939
|
+
print(front_info + ' 0%' + end_info, end = '\r')
|
940
|
+
one_progress = sim.maxtime * sim.print_pct / 100
|
941
|
+
else:
|
942
|
+
one_progress = 2 * sim.maxtime # not printing
|
943
|
+
|
944
|
+
# our sums (sum_rates_by_row and sum_rates) are gradually updated over time. This may have precision errors for large maxtime.
|
945
|
+
# So re-sum everything every some percentage of maxtime.
|
946
|
+
one_update_sum = sim.maxtime / update_sum_frequency
|
947
|
+
|
948
|
+
current_time = one_time
|
949
|
+
current_progress = one_progress
|
950
|
+
current_update_sum = one_update_sum
|
951
|
+
|
952
|
+
max_record = int(sim.maxtime / sim.record_itv)
|
953
|
+
|
954
|
+
|
955
|
+
# initialize
|
956
|
+
time, world, nb_indices, patch_rates, sum_rates_by_row, sum_rates, signal = single_init(sim, rng)
|
957
|
+
record_index = int(time / sim.record_itv)
|
958
|
+
# record_time is how much time has passed since the last record
|
959
|
+
# if record_time > record_itv:
|
960
|
+
# we count how many record_itvs are there in record_time, denote the number by multi_records
|
961
|
+
# then store the current data in multi_records number of cells in the list
|
962
|
+
# and subtract record_time by the multiple of record_itv, so that record_time < record_itv
|
963
|
+
record_time = time - record_index * sim.record_itv
|
964
|
+
|
965
|
+
### Large while loop ###
|
966
|
+
|
967
|
+
while time < sim.maxtime:
|
968
|
+
|
969
|
+
# print progress & correct error of sum_rates
|
970
|
+
if time > current_time:
|
971
|
+
# a new 1% of time
|
972
|
+
current_time += one_time
|
973
|
+
if time > current_progress:
|
974
|
+
# print progress
|
975
|
+
print(front_info + ' ' + str(round(time / sim.maxtime * 100)) + '%' + end_info, end = '\r')
|
976
|
+
current_progress += one_progress
|
977
|
+
|
978
|
+
if time > current_update_sum:
|
979
|
+
current_update_sum += one_update_sum
|
980
|
+
for i in range(sim.N):
|
981
|
+
sum_rates_by_row[i] = sum(patch_rates[i])
|
982
|
+
sum_rates = sum(sum_rates_by_row)
|
983
|
+
|
984
|
+
|
985
|
+
# before updating last-changed patches, subtract old sum of rates (so as to update sum of rates by adding new rates later)
|
986
|
+
for si in signal:
|
987
|
+
# si[0] is row number, si[1] is col number
|
988
|
+
old_patch_rate = world[si[0]][si[1]].get_sum_rates()
|
989
|
+
sum_rates_by_row[si[0]] -= old_patch_rate
|
990
|
+
sum_rates -= old_patch_rate
|
991
|
+
|
992
|
+
# update last-changed patches
|
993
|
+
# update payoff and death rates first
|
994
|
+
for si in signal:
|
995
|
+
world[si[0]][si[1]].update_pi_k()
|
996
|
+
# then update migration rates, as mig_rates depend on neighbor's payoff
|
997
|
+
for si in signal:
|
998
|
+
world[si[0]][si[1]].update_mig()
|
999
|
+
|
1000
|
+
# update rates stored
|
1001
|
+
new_patch_rate = world[si[0]][si[1]].get_sum_rates()
|
1002
|
+
# update patch_rates
|
1003
|
+
patch_rates[si[0]][si[1]] = new_patch_rate
|
1004
|
+
# update sum_rate_by_row and sum_rates_by_row by adding new rates
|
1005
|
+
sum_rates_by_row[si[0]] += new_patch_rate
|
1006
|
+
sum_rates += new_patch_rate
|
1007
|
+
|
1008
|
+
# update neighbors of last-changed patches
|
1009
|
+
for si in signal:
|
1010
|
+
for ni in nb_indices[si[0]][si[1]]:
|
1011
|
+
# don't need to update if the patch is a last-change patch itself or None
|
1012
|
+
# use helper function to check
|
1013
|
+
if nb_need_change(ni, signal):
|
1014
|
+
# update migratino rates
|
1015
|
+
world[ni[0]][ni[1]].update_mig()
|
1016
|
+
# Note: no need to update patch_rates and sum of rates, as update_mig doesn't change total rates in a patch.
|
1017
|
+
# sum_mig_rate is decided by mu1 * U + mu2 * V, and pi_death_rate is not changed.
|
1018
|
+
|
1019
|
+
# pick the first random event
|
1020
|
+
expected_sum = rng.random() * sum_rates
|
1021
|
+
# find patch first
|
1022
|
+
i0, j0, current_sum = find_patch(expected_sum, patch_rates, sum_rates_by_row, sum_rates)
|
1023
|
+
# then find which event in that patch
|
1024
|
+
e0 = world[i0][j0].find_event(expected_sum - current_sum)
|
1025
|
+
|
1026
|
+
# make signal
|
1027
|
+
if sim.boundary:
|
1028
|
+
signal = make_signal_zero_flux(i0, j0, e0)
|
1029
|
+
else:
|
1030
|
+
signal = make_signal_periodical(sim.N, sim.M, i0, j0, e0)
|
1031
|
+
|
1032
|
+
# let the event happen
|
1033
|
+
for si in signal:
|
1034
|
+
world[si[0]][si[1]].change_popu(si[2])
|
1035
|
+
|
1036
|
+
# increase time
|
1037
|
+
r1 = rng.random()
|
1038
|
+
dt = (1 / sum_rates) * math.log(1 / r1)
|
1039
|
+
time += dt
|
1040
|
+
record_time += dt
|
1041
|
+
|
1042
|
+
if time < sim.maxtime:
|
1043
|
+
# if not exceeds maxtime
|
1044
|
+
if record_time > sim.record_itv:
|
1045
|
+
multi_records = int(record_time / sim.record_itv)
|
1046
|
+
record_time -= multi_records * sim.record_itv
|
1047
|
+
|
1048
|
+
for i in range(sim.N):
|
1049
|
+
for j in range(sim.M):
|
1050
|
+
for k in range(record_index, record_index + multi_records):
|
1051
|
+
sim.U[i][j][k] += world[i][j].U
|
1052
|
+
sim.V[i][j][k] += world[i][j].V
|
1053
|
+
sim.U_pi[i][j][k] += world[i][j].U_pi
|
1054
|
+
sim.V_pi[i][j][k] += world[i][j].V_pi
|
1055
|
+
record_index += multi_records
|
1056
|
+
else:
|
1057
|
+
# if already exceeds maxtime
|
1058
|
+
for i in range(sim.N):
|
1059
|
+
for j in range(sim.M):
|
1060
|
+
for k in range(record_index, max_record):
|
1061
|
+
sim.U[i][j][k] += world[i][j].U
|
1062
|
+
sim.V[i][j][k] += world[i][j].V
|
1063
|
+
sim.U_pi[i][j][k] += world[i][j].U_pi
|
1064
|
+
sim.V_pi[i][j][k] += world[i][j].V_pi
|
1065
|
+
|
1066
|
+
### Large while loop ends ###
|
1067
|
+
|
1068
|
+
if sim.print_pct != None:
|
1069
|
+
print(front_info + ' 100%' + ' ' * 20, end = '\r') # empty spaces to overwrite predicted runtime
|
1070
|
+
|
1071
|
+
|
1072
|
+
|
1073
|
+
|
1074
|
+
def run(sim, predict_runtime = False, message = ''):
|
1075
|
+
'''
|
1076
|
+
Main function. Recursively calls single_test to run many simulations and then takes the average.
|
1077
|
+
|
1078
|
+
Inputs:
|
1079
|
+
- sim is a simulation object.
|
1080
|
+
- predict_runtime = False will not predict how much time still needed, set to True if you want to see.
|
1081
|
+
- message is used by some functions in figures.py to print messages.
|
1082
|
+
'''
|
1083
|
+
|
1084
|
+
if not sim.data_empty:
|
1085
|
+
raise RuntimeError('sim has non-empty data')
|
1086
|
+
|
1087
|
+
start = timer() # runtime
|
1088
|
+
|
1089
|
+
sim.data_empty = False
|
1090
|
+
rng = np.random.default_rng(sim.seed)
|
1091
|
+
|
1092
|
+
# passed to single_test to print progress
|
1093
|
+
if sim.print_pct == 0:
|
1094
|
+
sim.print_pct = 5 # default print_pct
|
1095
|
+
|
1096
|
+
update_sum_frequency = 4 # re-calculate sums this many times. See input desciption of single_test
|
1097
|
+
|
1098
|
+
### simulations ###
|
1099
|
+
i = 0
|
1100
|
+
|
1101
|
+
while i < sim.sim_time:
|
1102
|
+
# use while loop so that can go backwards if got numerical issues
|
1103
|
+
|
1104
|
+
end_info = ''
|
1105
|
+
if predict_runtime:
|
1106
|
+
if i > 0:
|
1107
|
+
time_elapsed = timer() - start
|
1108
|
+
pred_runtime = time_elapsed / i * (sim.sim_time - i)
|
1109
|
+
end_info = ', ~' + str(round(pred_runtime, 2)) + 's left'
|
1110
|
+
|
1111
|
+
front_info = ''
|
1112
|
+
if sim.print_pct != None:
|
1113
|
+
front_info = message + 'round ' + str(i) + ':'
|
1114
|
+
print(front_info + ' ' * 30, end = '\r') # the blank spaces are to overwrite percentages, e.g. 36 %
|
1115
|
+
|
1116
|
+
try:
|
1117
|
+
single_test(sim, front_info, end_info, update_sum_frequency, rng)
|
1118
|
+
i += 1
|
1119
|
+
except IndexError:
|
1120
|
+
update_sum_frequency *= 4
|
1121
|
+
print('Numerical issue at round ' + str(i) + '. Trying higher precision now. See doc if err repeats')
|
1122
|
+
# not increasing i: redo current round.
|
1123
|
+
|
1124
|
+
### simulations end ###
|
1125
|
+
|
1126
|
+
sim.calculate_ave()
|
1127
|
+
|
1128
|
+
stop = timer()
|
1129
|
+
print(' ' * 30, end = '\r') # overwrite all previous prints
|
1130
|
+
print(message + 'runtime: ' + str(round(stop - start, 2)) + ' s')
|
1131
|
+
return
|
1132
|
+
|
1133
|
+
|
1134
|
+
|
1135
|
+
|
1136
|
+
def demo_model():
|
1137
|
+
'''
|
1138
|
+
Returns a demo model.simulation object
|
1139
|
+
'''
|
1140
|
+
|
1141
|
+
N = 10 # Number of rows
|
1142
|
+
M = 10 # Number of cols
|
1143
|
+
maxtime = 300 # how long you want the model to run
|
1144
|
+
record_itv = 0.1 # how often to record data.
|
1145
|
+
sim_time = 1 # repeat simulation to reduce randomness
|
1146
|
+
boundary = True # boundary condition.
|
1147
|
+
|
1148
|
+
# initial population for the N x M patches.
|
1149
|
+
I = [[[44, 22] for _ in range(M)] for _ in range(N)]
|
1150
|
+
|
1151
|
+
# flattened payoff matrices, total resource is 0.4, cost of fighting is 0.1
|
1152
|
+
X = [[[-0.1, 0.4, 0, 0.2] for _ in range(M)] for _ in range(N)]
|
1153
|
+
|
1154
|
+
# patch variables
|
1155
|
+
P = [[[0.5, 0.5, 200, 200, 0.001, 0.001] for _ in range(M)] for _ in range(N)]
|
1156
|
+
|
1157
|
+
print_pct = 5 # print progress
|
1158
|
+
seed = 36 # seed for random number generation
|
1159
|
+
UV_dtype = 'float32' # data type for population
|
1160
|
+
pi_dyna = 'float64' # data type for payoff
|
1161
|
+
|
1162
|
+
# create a simulation object
|
1163
|
+
sim = simulation(N, M, maxtime, record_itv, sim_time, boundary, I, X, P,
|
1164
|
+
print_pct = print_pct, seed = seed, UV_dtype = UV_dtype, pi_dtype = pi_dyna)
|
1165
|
+
|
1166
|
+
return sim
|
1167
|
+
|
1168
|
+
|