pg-sui 0.2.3__py3-none-any.whl → 1.6.16a3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (128) hide show
  1. pg_sui-1.6.16a3.dist-info/METADATA +292 -0
  2. pg_sui-1.6.16a3.dist-info/RECORD +81 -0
  3. {pg_sui-0.2.3.dist-info → pg_sui-1.6.16a3.dist-info}/WHEEL +1 -1
  4. pg_sui-1.6.16a3.dist-info/entry_points.txt +4 -0
  5. {pg_sui-0.2.3.dist-info → pg_sui-1.6.16a3.dist-info/licenses}/LICENSE +0 -0
  6. pg_sui-1.6.16a3.dist-info/top_level.txt +1 -0
  7. pgsui/__init__.py +35 -54
  8. pgsui/_version.py +34 -0
  9. pgsui/cli.py +922 -0
  10. pgsui/data_processing/__init__.py +0 -0
  11. pgsui/data_processing/config.py +565 -0
  12. pgsui/data_processing/containers.py +1436 -0
  13. pgsui/data_processing/transformers.py +557 -907
  14. pgsui/{example_data/trees → electron/app}/__init__.py +0 -0
  15. pgsui/electron/app/__main__.py +5 -0
  16. pgsui/electron/app/extra-resources/.gitkeep +1 -0
  17. pgsui/electron/app/icons/icons/1024x1024.png +0 -0
  18. pgsui/electron/app/icons/icons/128x128.png +0 -0
  19. pgsui/electron/app/icons/icons/16x16.png +0 -0
  20. pgsui/electron/app/icons/icons/24x24.png +0 -0
  21. pgsui/electron/app/icons/icons/256x256.png +0 -0
  22. pgsui/electron/app/icons/icons/32x32.png +0 -0
  23. pgsui/electron/app/icons/icons/48x48.png +0 -0
  24. pgsui/electron/app/icons/icons/512x512.png +0 -0
  25. pgsui/electron/app/icons/icons/64x64.png +0 -0
  26. pgsui/electron/app/icons/icons/icon.icns +0 -0
  27. pgsui/electron/app/icons/icons/icon.ico +0 -0
  28. pgsui/electron/app/main.js +227 -0
  29. pgsui/electron/app/package-lock.json +6894 -0
  30. pgsui/electron/app/package.json +51 -0
  31. pgsui/electron/app/preload.js +15 -0
  32. pgsui/electron/app/server.py +157 -0
  33. pgsui/electron/app/ui/logo.png +0 -0
  34. pgsui/electron/app/ui/renderer.js +131 -0
  35. pgsui/electron/app/ui/styles.css +59 -0
  36. pgsui/electron/app/ui/ui_shim.js +72 -0
  37. pgsui/electron/bootstrap.py +43 -0
  38. pgsui/electron/launch.py +57 -0
  39. pgsui/electron/package.json +14 -0
  40. pgsui/example_data/__init__.py +0 -0
  41. pgsui/example_data/phylip_files/__init__.py +0 -0
  42. pgsui/example_data/phylip_files/test.phy +0 -0
  43. pgsui/example_data/popmaps/__init__.py +0 -0
  44. pgsui/example_data/popmaps/{test.popmap → phylogen_nomx.popmap} +185 -99
  45. pgsui/example_data/structure_files/__init__.py +0 -0
  46. pgsui/example_data/structure_files/test.pops.2row.allsites.str +0 -0
  47. pgsui/example_data/vcf_files/phylogen_subset14K.vcf.gz +0 -0
  48. pgsui/example_data/vcf_files/phylogen_subset14K.vcf.gz.tbi +0 -0
  49. pgsui/impute/__init__.py +0 -0
  50. pgsui/impute/deterministic/imputers/allele_freq.py +725 -0
  51. pgsui/impute/deterministic/imputers/mode.py +844 -0
  52. pgsui/impute/deterministic/imputers/nmf.py +221 -0
  53. pgsui/impute/deterministic/imputers/phylo.py +973 -0
  54. pgsui/impute/deterministic/imputers/ref_allele.py +669 -0
  55. pgsui/impute/supervised/__init__.py +0 -0
  56. pgsui/impute/supervised/base.py +343 -0
  57. pgsui/impute/{unsupervised/models/in_development → supervised/imputers}/__init__.py +0 -0
  58. pgsui/impute/supervised/imputers/hist_gradient_boosting.py +317 -0
  59. pgsui/impute/supervised/imputers/random_forest.py +291 -0
  60. pgsui/impute/unsupervised/__init__.py +0 -0
  61. pgsui/impute/unsupervised/base.py +1121 -0
  62. pgsui/impute/unsupervised/callbacks.py +92 -262
  63. {simulation → pgsui/impute/unsupervised/imputers}/__init__.py +0 -0
  64. pgsui/impute/unsupervised/imputers/autoencoder.py +1361 -0
  65. pgsui/impute/unsupervised/imputers/nlpca.py +1666 -0
  66. pgsui/impute/unsupervised/imputers/ubp.py +1660 -0
  67. pgsui/impute/unsupervised/imputers/vae.py +1316 -0
  68. pgsui/impute/unsupervised/loss_functions.py +261 -0
  69. pgsui/impute/unsupervised/models/__init__.py +0 -0
  70. pgsui/impute/unsupervised/models/autoencoder_model.py +215 -567
  71. pgsui/impute/unsupervised/models/nlpca_model.py +155 -394
  72. pgsui/impute/unsupervised/models/ubp_model.py +180 -1106
  73. pgsui/impute/unsupervised/models/vae_model.py +269 -630
  74. pgsui/impute/unsupervised/nn_scorers.py +255 -0
  75. pgsui/utils/__init__.py +0 -0
  76. pgsui/utils/classification_viz.py +608 -0
  77. pgsui/utils/logging_utils.py +22 -0
  78. pgsui/utils/misc.py +35 -480
  79. pgsui/utils/plotting.py +996 -829
  80. pgsui/utils/pretty_metrics.py +290 -0
  81. pgsui/utils/scorers.py +213 -666
  82. pg_sui-0.2.3.dist-info/METADATA +0 -322
  83. pg_sui-0.2.3.dist-info/RECORD +0 -75
  84. pg_sui-0.2.3.dist-info/top_level.txt +0 -3
  85. pgsui/example_data/phylip_files/test_n10.phy +0 -118
  86. pgsui/example_data/phylip_files/test_n100.phy +0 -118
  87. pgsui/example_data/phylip_files/test_n2.phy +0 -118
  88. pgsui/example_data/phylip_files/test_n500.phy +0 -118
  89. pgsui/example_data/structure_files/test.nopops.1row.10sites.str +0 -117
  90. pgsui/example_data/structure_files/test.nopops.2row.100sites.str +0 -234
  91. pgsui/example_data/structure_files/test.nopops.2row.10sites.str +0 -234
  92. pgsui/example_data/structure_files/test.nopops.2row.30sites.str +0 -234
  93. pgsui/example_data/structure_files/test.nopops.2row.allsites.str +0 -234
  94. pgsui/example_data/structure_files/test.pops.1row.10sites.str +0 -117
  95. pgsui/example_data/structure_files/test.pops.2row.10sites.str +0 -234
  96. pgsui/example_data/trees/test.iqtree +0 -376
  97. pgsui/example_data/trees/test.qmat +0 -5
  98. pgsui/example_data/trees/test.rate +0 -2033
  99. pgsui/example_data/trees/test.tre +0 -1
  100. pgsui/example_data/trees/test_n10.rate +0 -19
  101. pgsui/example_data/trees/test_n100.rate +0 -109
  102. pgsui/example_data/trees/test_n500.rate +0 -509
  103. pgsui/example_data/trees/test_siterates.txt +0 -2024
  104. pgsui/example_data/trees/test_siterates_n10.txt +0 -10
  105. pgsui/example_data/trees/test_siterates_n100.txt +0 -100
  106. pgsui/example_data/trees/test_siterates_n500.txt +0 -500
  107. pgsui/example_data/vcf_files/test.vcf +0 -244
  108. pgsui/example_data/vcf_files/test.vcf.gz +0 -0
  109. pgsui/example_data/vcf_files/test.vcf.gz.tbi +0 -0
  110. pgsui/impute/estimators.py +0 -1268
  111. pgsui/impute/impute.py +0 -1463
  112. pgsui/impute/simple_imputers.py +0 -1431
  113. pgsui/impute/supervised/iterative_imputer_fixedparams.py +0 -782
  114. pgsui/impute/supervised/iterative_imputer_gridsearch.py +0 -1024
  115. pgsui/impute/unsupervised/keras_classifiers.py +0 -697
  116. pgsui/impute/unsupervised/models/in_development/cnn_model.py +0 -486
  117. pgsui/impute/unsupervised/neural_network_imputers.py +0 -1440
  118. pgsui/impute/unsupervised/neural_network_methods.py +0 -1395
  119. pgsui/pg_sui.py +0 -261
  120. pgsui/utils/sequence_tools.py +0 -407
  121. simulation/sim_benchmarks.py +0 -333
  122. simulation/sim_treeparams.py +0 -475
  123. test/__init__.py +0 -0
  124. test/pg_sui_simtest.py +0 -215
  125. test/pg_sui_testing.py +0 -523
  126. test/test.py +0 -151
  127. test/test_pgsui.py +0 -374
  128. test/test_tkc.py +0 -185
@@ -1,322 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: pg-sui
3
- Version: 0.2.3
4
- Summary: Python machine and deep learning package to impute missing SNPs
5
- Home-page: https://github.com/btmartin721/PG-SUI
6
- Author: Bradley T. Martin and Tyler K. Chafin
7
- Author-email: evobio721@gmail.com
8
- Maintainer: Bradley T. Martin
9
- Maintainer-email: evobio721@gmail.com
10
- License: GNU General Public License v3 (GPLv3)
11
- Project-URL: Homepage, https://github.com/btmartin721/PG-SUI
12
- Project-URL: Documentation, https://pg-sui.readthedocs.io/en/latest/
13
- Project-URL: Source, https://github.com/btmartin721/PG-SUI.git
14
- Project-URL: Bug Tracker, https://github.com/btmartin721/PG-SUI/issues
15
- Keywords: python,impute,imputation,imputer,machine learning,neural network,api,IterativeImputer,vae,ubp,nlpca,autoencoder,deep learning,population genomics
16
- Platform: UNKNOWN
17
- Classifier: Programming Language :: Python :: 3
18
- Classifier: Programming Language :: Python :: 3
19
- Classifier: Programming Language :: Python :: 3.8
20
- Classifier: Programming Language :: Python :: 3.9
21
- Classifier: Programming Language :: Python :: 3.10
22
- Classifier: Programming Language :: Python :: 3.11
23
- Classifier: Development Status :: 4 - Beta
24
- Classifier: Intended Audience :: Science/Research
25
- Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
26
- Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
27
- Classifier: Operating System :: OS Independent
28
- Classifier: Natural Language :: English
29
- Requires-Python: >=3.8,<4
30
- Description-Content-Type: text/markdown
31
- Requires-Dist: importlib-resources (>=1.1.0)
32
- Requires-Dist: jupyterlab
33
- Requires-Dist: keras
34
- Requires-Dist: matplotlib
35
- Requires-Dist: numpy (==1.24.3)
36
- Requires-Dist: pandas
37
- Requires-Dist: pyvolve
38
- Requires-Dist: scikeras
39
- Requires-Dist: scikit-learn (>=1.0)
40
- Requires-Dist: scipy
41
- Requires-Dist: seaborn
42
- Requires-Dist: sklearn-genetic-opt[all] (>=0.6.0)
43
- Requires-Dist: snpio
44
- Requires-Dist: tensorflow
45
- Requires-Dist: toytree
46
- Requires-Dist: tqdm
47
- Requires-Dist: typing-extensions (<4.6.0)
48
- Requires-Dist: urllib3 (<2.0.0,>=1.26.7)
49
- Requires-Dist: xgboost
50
- Provides-Extra: docs
51
- Requires-Dist: sphinx-rtd-theme ; extra == 'docs'
52
- Requires-Dist: sphinx (<7) ; extra == 'docs'
53
- Requires-Dist: sphinx-autodoc-typehints ; extra == 'docs'
54
- Provides-Extra: intel
55
- Requires-Dist: scikit-learn-intelex ; extra == 'intel'
56
-
57
-
58
- <img src="https://github.com/btmartin721/PG-SUI/blob/master/img/pgsui-logo-faded.png" alt="PG-SUI Logo" width="50%" height="50%">
59
-
60
-
61
- # PG-SUI
62
-
63
- Population Genomic Supervised and Unsupervised Imputation.
64
-
65
- ## About PG-SUI
66
-
67
- PG-SUI is a Python 3 API that uses machine learning to impute missing values from population genomic SNP data. There are several supervised and unsupervised machine learning algorithms available to impute missing data, as well as some non-machine learning imputers that are useful.
68
-
69
- Below is some general information and a basic tutorial. For more detailed information, see our [API Documentation](https://pg-sui.readthedocs.io/en/latest/).
70
-
71
- ### Supervised Imputation Methods
72
-
73
- Supervised methods utilze the scikit-learn's IterativeImputer, which is based on the MICE (Multivariate Imputation by Chained Equations) algorithm ([1](#1)), and iterates over each SNP site (i.e., feature) while uses the N nearest neighbor features to inform the imputation. The number of nearest features can be adjusted by users. IterativeImputer currently works with any of the following scikit-learn classifiers:
74
-
75
- + K-Nearest Neighbors
76
- + Random Forest
77
- + XGBoost
78
-
79
- See the scikit-learn documentation (https://scikit-learn.org) for more information on IterativeImputer and each of the classifiers.
80
-
81
- ### Unsupervised Imputation Methods
82
-
83
- Unsupervised imputers include three custom neural network models:
84
-
85
- + Variational Autoencoder (VAE) ([2](#2))
86
- + Standard Autoencoder (SAE) ([3](#3))
87
- + Non-linear Principal Component Analysis (NLPCA) ([4](#4))
88
- + Unsupervised Backpropagation (UBP) ([5](#5))
89
-
90
- VAE models train themselves to reconstruct their input (i.e., the genotypes). To use VAE for imputation, the missing values are masked and the VAE model gets trained to reconstruct only on known values. Once the model is trained, it is then used to predict the missing values.
91
-
92
- SAE is a standard autoencoder that trains the input to predict itself. As with VAE, missing values are masked and the model gets trained only on known values. Predictions are then made on the missing values.
93
-
94
- NLPCA initializes random, reduced-dimensional input, then trains itself by using the known values (i.e., genotypes) as targets and refining the random input until it accurately predicts the genotype output. The trained model can then predict the missing values.
95
-
96
- UBP is an extension of NLPCA that runs over three phases. Phase 1 refines the randomly generated, reduced-dimensional input in a single layer perceptron neural network to obtain good initial input values. Phase 2 uses the refined reduced-dimensional input from phase 1 as input into a multi-layer perceptron (MLP), but in Phase 2 only the neural network weights are refined. Phase three uses an MLP to refine both the weights and the reduced-dimensional input. Once the model is trained, it can be used to predict the missing values.
97
-
98
- ### Non-Machine Learning Methods
99
-
100
- We also include several non-machine learning options for imputing missing data, including:
101
-
102
- + Per-population mode per SNP site
103
- + Global mode per SNP site
104
- + Using a phylogeny as input to inform the imputation
105
- + Matrix Factorization
106
-
107
- These four "simple" imputation methods can be used as standalone imputers, as the initial imputation strategy for IterativeImputer (at least one method is required to be chosen), and to validate the accuracy of both IterativeImputer and the neural network models.
108
-
109
- ## Installing PG-SUI
110
-
111
- The easiest way to install PG-SUI is to use pip:
112
-
113
- ```
114
- pip install pg-sui
115
- ```
116
-
117
- If you have an Intel CPU and want to use the sklearn-genetic-intelex package to speed up scikit-learn computations, you can do:
118
-
119
- ```
120
- pip install pg-sui[intel]
121
- ```
122
-
123
- ## Manual Installation
124
-
125
- ### Dependencies
126
-
127
- + python >= 3.8
128
- + pandas
129
- + numpy==1.24.3
130
- + scipy
131
- + matplotlib
132
- + seaborn
133
- + plotly
134
- + kaleido
135
- + jupyterlab
136
- + tqdm
137
- + toytree
138
- + pyvolve
139
- + scikit-learn
140
- + tensorflow >= 2.7
141
- + keras >= 2.7
142
- + xgboost
143
- + scikeras >= 0.6.0
144
- + snpio
145
-
146
-
147
- ### Manual Install
148
-
149
- If you want to install everything manually, the requirements can be installed with conda and pip. sklearn-genetic-opt and scikeras are only avaiable via pip, and scikeras requires tensorflow >= 2.7 and scikit-learn >= 1.0.
150
-
151
- ```
152
- conda create -n pg-sui python
153
- conda activate pg-sui
154
-
155
- conda install matplotlib seaborn jupyterlab scikit-learn tqdm pandas numpy scipy xgboost lightgbm kaleido
156
-
157
- # Only works if using Intel CPUs; speeds up processing
158
- conda install scikit-learn-intelex
159
-
160
- conda install -c conda-forge toytree kaleido
161
-
162
- conda install -c bioconda pyvolve
163
-
164
- conda install -c plotly plotly
165
-
166
- pip install sklearn-genetic-opt[all]
167
-
168
- pip install scikeras snpio
169
-
170
- pip install tensorflow-cpu
171
- ```
172
-
173
- #### Installation troubleshooting
174
-
175
- ##### "use_2to3 is invalid" error
176
-
177
- Users running setuptools v58 may encounter this error during the last step of installation, using pip to install sklearn-genetic-opt:
178
-
179
- ```
180
- ERROR: Command errored out with exit status 1:
181
- command: /Users/tyler/miniforge3/envs/pg-sui/bin/python3.8 -c 'import io, os, sys, setuptools, tokenize; sys.argv[0] = '"'"'/private/var/folders/6x/t6g4kn711z5cxmc2_tvq0mlw0000gn/T/pip-install-6y5g_mhs/deap_1d32f65d60a44056bd7031f3aad44571/setup.py'"'"'; __file__='"'"'/private/var/folders/6x/t6g4kn711z5cxmc2_tvq0mlw0000gn/T/pip-install-6y5g_mhs/deap_1d32f65d60a44056bd7031f3aad44571/setup.py'"'"';f = getattr(tokenize, '"'"'open'"'"', open)(__file__) if os.path.exists(__file__) else io.StringIO('"'"'from setuptools import setup; setup()'"'"');code = f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' egg_info --egg-base /private/var/folders/6x/t6g4kn711z5cxmc2_tvq0mlw0000gn/T/pip-pip-egg-info-7hg3hcq2
182
- cwd: /private/var/folders/6x/t6g4kn711z5cxmc2_tvq0mlw0000gn/T/pip-install-6y5g_mhs/deap_1d32f65d60a44056bd7031f3aad44571/
183
- Complete output (1 lines):
184
- error in deap setup command: use_2to3 is invalid.
185
- ```
186
-
187
- This occurs during the installation of DEAP, one of the dependencies for sklearn-genetic-opt. As a workaround, first downgrade setuptools, and then proceed with the installation as normal:
188
- ```
189
- pip install setuptools==57
190
- pip install sklearn-genetic-opt[all]
191
-
192
- ```
193
-
194
- ##### Mac ARM architecture
195
-
196
- PG-SUI has been tested on the new Mac M1 chips and is working fine, but some changes to the installation process were necessary as of 9-December-21. Installation was successful using the following:
197
-
198
- ```
199
- ### Install Miniforge3 instead of Miniconda3
200
- ### Download: https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
201
- bash ~/Downloads/Miniforge3-MacOSX-arm64.sh
202
-
203
- # Close and re-open terminal #
204
-
205
- #create and activate conda environment
206
- conda create -n pg-sui python
207
-
208
- #activate environment
209
- conda activate pg-sui
210
-
211
- #install packages
212
- conda install -c conda-forge matplotlib seaborn jupyterlab scikit-learn tqdm pandas numpy scipy xgboost lightgbm tensorflow keras sklearn-genetic-opt toytree
213
- conda install -c bioconda pyvolve
214
-
215
- #downgrade setuptools (may or may not be necessary)
216
- pip install setuptools==57
217
-
218
- #install sklearn-genetic-opt and mlflow
219
- pip install sklearn-genetic-opt mlflow
220
-
221
- ```
222
-
223
- Any other problems we run into testing on the Mac ARM architecture will be adjusted here. Note that the step installing scikit-learn-intelex was skipped here. PG-SUI will automatically detect the CPU architecture you are running, and forgo importing this package (which will only work on Intel processors)
224
-
225
- ## Input Data
226
-
227
- You can read your input files as a GenotypeData object from the [SNPio](https://snpio.readthedocs.io/en/latest/) package:
228
-
229
- ```
230
-
231
- # Import snpio. Automatically installed with pgsui when using pip.
232
- from snpio import GenotypeData
233
-
234
- # Read in PHYLIP, VCF, or STRUCTURE-formatted alignments.
235
- data = GenotypeData(
236
- filename="example_data/phylip_files/phylogen_nomx.u.snps.phy",
237
- popmapfile="example_data/popmaps/phylogen_nomx.popmap",
238
- force_popmap=True,
239
- filetype="auto",
240
- qmatrix_iqtree="example_data/trees/test.qmat",
241
- siterates_iqtree="example_data/trees/test.rate",
242
- guidetree="example_data/trees/test.tre",
243
- include_pops=["EA", "TT", "GU"], # Only include these populations. There's also an exclude_pops option that will exclude the provided populations.
244
- )
245
- ```
246
-
247
- ## Supported Imputation Methods
248
-
249
- There are numerous supported algorithms to impute missing data. Each one can be run by calling the corresponding class. You must provide a GenotypeData instance as the first positional argument.
250
-
251
- You can import all the supported methods with:
252
-
253
- ```
254
- from pgsui import *
255
- ```
256
-
257
- Or you can import them one at a time.
258
-
259
- ```
260
- from pgsui import ImputeVAE
261
- ```
262
-
263
- ### Supervised Imputers
264
-
265
- Various supervised imputation options are supported:
266
-
267
- ```
268
- # Supervised IterativeImputer classifiers
269
- knn = ImputeKNN(data) # K-Nearest Neighbors
270
- rf = ImputeRandomForest(data) # Random Forest or Extra Trees
271
- xgb = ImputeXGBoost(data) # XGBoost
272
- ```
273
-
274
- ### Non-machine learning methods
275
-
276
- Use phylogeny to inform imputation:
277
-
278
- ```
279
- phylo = ImputePhylo(data)
280
- ```
281
-
282
- Use by-population or global allele frequency to inform imputation
283
-
284
- ```
285
- pop_af = ImputeAlleleFreq(data, by_populations=True)
286
- global_af = ImputeAlleleFreq(data, by_populations=False)
287
- ref_af = ImputeRefAllele(data)
288
- ```
289
-
290
- Non-matrix factorization:
291
-
292
- ```
293
- mf = ImputeMF(*args) # Matrix factorization
294
- ```
295
-
296
- ### Unsupervised Neural Networks
297
-
298
- ```
299
- vae = ImputeVAE(data) # Variational autoencoder
300
- nlpca = ImputeNLPCA(data) # Nonlinear PCA
301
- ubp = ImputeUBP(data) # Unsupervised backpropagation
302
- sae = ImputeStandardAutoEncoder(data) # standard autoencoder
303
- ```
304
-
305
- ## To-Dos
306
-
307
- - simulations
308
- - Documentation
309
-
310
- ## References:
311
-
312
- <a name="1">1. </a>Stef van Buuren, Karin Groothuis-Oudshoorn (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software 45: 1-67.
313
-
314
- <a name="2">2. </a>Kingma, D.P. & Welling, M. (2013). Auto-encoding variational bayes. In: Proceedings of the International Conference on Learning Representations (ICLR). arXiv:1312.6114 [stat.ML].
315
-
316
- <a name="3">3. </a>Hinton, G.E., & Salakhutdinov, R.R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
317
-
318
- <a name="4">4. </a>Scholz, M., Kaplan, F., Guy, C. L., Kopka, J., & Selbig, J. (2005). Non-linear PCA: a missing data approach. Bioinformatics, 21(20), 3887-3895.
319
-
320
- <a name="5">5. </a>Gashler, M. S., Smith, M. R., Morris, R., & Martinez, T. (2016). Missing value imputation with unsupervised backpropagation. Computational Intelligence, 32(2), 196-215.
321
-
322
-
@@ -1,75 +0,0 @@
1
- pgsui/__init__.py,sha256=x9qoV6vULdMKnvpieT2OTwykUj1JlMn9F9WOtnuSq6s,1449
2
- pgsui/pg_sui.py,sha256=TKc_5XAOoAjUEVYZm4UmKkIccgnY9cgooOJAPmcq3Hk,7471
3
- pgsui/data_processing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- pgsui/data_processing/transformers.py,sha256=2ZdsFU7OtxUrlwjPk6P7pu0he9TBiAJ1meiYLpfPWJo,42452
5
- pgsui/example_data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- pgsui/example_data/phylip_files/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
- pgsui/example_data/phylip_files/test.phy,sha256=LEq2Q3hjmPVDP2uF1Ai8OH2If5Y58ny-GRfuXa3l61c,238537
8
- pgsui/example_data/phylip_files/test_n10.phy,sha256=sgrpekxj0wIlbJymWjULqoPdrY5ehKW5nzHnK710NkU,2897
9
- pgsui/example_data/phylip_files/test_n100.phy,sha256=LqXLINViOlDpmer2QWyu_Rd_GrCxAnsg6NgogKatnY4,13428
10
- pgsui/example_data/phylip_files/test_n2.phy,sha256=cQxEWCeiuxQluvAt1xG-G06UcNgJH2ibaabJJMD019o,1960
11
- pgsui/example_data/phylip_files/test_n500.phy,sha256=C1_y8CxP6Z5vYfY4nwckxdOL2pXKjLEoYmB_FIPW0xY,60228
12
- pgsui/example_data/popmaps/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
- pgsui/example_data/popmaps/test.popmap,sha256=20sFUh3toDNO5wnNuv3FUEBUDkHosMeSclECCDtW354,1954
14
- pgsui/example_data/structure_files/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
- pgsui/example_data/structure_files/test.nopops.1row.10sites.str,sha256=BxlTqWRXjVJFAkA3mnmicMK69AjoBY57R2gkDDo2dwQ,6375
16
- pgsui/example_data/structure_files/test.nopops.2row.100sites.str,sha256=BzYura7k1O1Qv_FPz57IuuiWMwPV5DU6RPkJhKYdbhs,50808
17
- pgsui/example_data/structure_files/test.nopops.2row.10sites.str,sha256=q0fkZJN9vvHbUsUnTaNLWA4eEYqcZo_4VRNDAhEqACg,7978
18
- pgsui/example_data/structure_files/test.nopops.2row.30sites.str,sha256=OIkbvM9GDvp9ZVbmRS6QE1xkTLjsP6NlWALy9u4nCDo,17512
19
- pgsui/example_data/structure_files/test.nopops.2row.allsites.str,sha256=A4oa4lNQicJmmLpsIwEFCOxJ08_jVusHQjEjIBot7ks,967410
20
- pgsui/example_data/structure_files/test.pops.1row.10sites.str,sha256=bg3n0oMIj8eXTbZn4T89kv0Jb6mWDIHB5jQIrwVGbZA,6609
21
- pgsui/example_data/structure_files/test.pops.2row.10sites.str,sha256=DDTnKtLVIJzaUL9ufab4cw1OySnkQ0-4nQD_x051OeI,8446
22
- pgsui/example_data/structure_files/test.pops.2row.allsites.str,sha256=fbmLcOUQSKyy71A77NPtJJMLSOkquPky0WiPlV4qHhA,967878
23
- pgsui/example_data/trees/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
- pgsui/example_data/trees/test.iqtree,sha256=vcWGWdXys6v5zmCogS761W1AplkqDuXD9f3gzzcLxOw,25575
25
- pgsui/example_data/trees/test.qmat,sha256=WDFO2YboGWYMKJeOq5etBRvB19IHsBQhNzWoi7Z3irg,134
26
- pgsui/example_data/trees/test.rate,sha256=5ROH2y26oWTveeEEx4UVKeTd6SuNN5jIo2HBaOdgH-U,46013
27
- pgsui/example_data/trees/test.tre,sha256=ZwH7j5hJidraGfjttBNOZ_AyDm6flTesONs4cfT8gbQ,4696
28
- pgsui/example_data/trees/test_n10.rate,sha256=QntpWWt0nS3LmAIdnKMv501rJ2nwoIaBFRL9hiwdfgw,678
29
- pgsui/example_data/trees/test_n100.rate,sha256=OSsJsWVwfw1e_LE16BFbFppIrXYyC19mNjk3XYQaC6s,2577
30
- pgsui/example_data/trees/test_n500.rate,sha256=ZtROaOo93eQ4AWi8dR_5blBMoQ2kcK-hfQ7iEIWHaLA,11387
31
- pgsui/example_data/trees/test_siterates.txt,sha256=90GBD6ay6G-e-PMPGRZv9oihViwTjtRPycbmlekxKTI,16235
32
- pgsui/example_data/trees/test_siterates_n10.txt,sha256=sBH770qAI5x-8aN-o4EGP784UFRcSvIBMUC8oUrFiwI,80
33
- pgsui/example_data/trees/test_siterates_n100.txt,sha256=9kmDNbjHBQIFVrdmwTmU0bTqIFj4KfgWzsVjR2PZwYI,804
34
- pgsui/example_data/trees/test_siterates_n500.txt,sha256=cqLjXZtYSiK5j3vVhX6tMKbR9ngxhOw9Q6FtRCDRAko,4008
35
- pgsui/example_data/vcf_files/test.vcf,sha256=xF7VaqnmHSNauW3xCIMpWw1yIXa6RRAbizg66SzVUHM,380243
36
- pgsui/example_data/vcf_files/test.vcf.gz,sha256=g49C0ycJ4HAjT7oqlq9sV2q1NmZdCYkp5jT33RRveio,72705
37
- pgsui/example_data/vcf_files/test.vcf.gz.tbi,sha256=zxitJWi7Vw1AdO4yiX5y-3NCRxiTUi0TfOcxR8RVzpI,2581
38
- pgsui/impute/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
39
- pgsui/impute/estimators.py,sha256=-V5gnNtkUr9-uUDpfgcfLXlNqe4nnrlwPTFR5DcNbug,125036
40
- pgsui/impute/impute.py,sha256=12zEX_-R5OLXEkhnfsqmZWvM3TB4HHun5XF-z8wN1rw,51210
41
- pgsui/impute/simple_imputers.py,sha256=4fxM9l7310y07fUcXyneesmNUh3eYbPvFWFRZom_3HU,53283
42
- pgsui/impute/supervised/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
- pgsui/impute/supervised/iterative_imputer_fixedparams.py,sha256=PH6Mc7J8LJmUhnW8x43WudhorBSNg1Uxa7ZKBkMp5BQ,35075
44
- pgsui/impute/supervised/iterative_imputer_gridsearch.py,sha256=ELW4cWX3QTU_1dI_eqMZoVG8vqFnLCqy41WQ0C1o4wU,45443
45
- pgsui/impute/unsupervised/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
46
- pgsui/impute/unsupervised/callbacks.py,sha256=qmHrIyYL_YBdntrhlZMAED29JGjmgZFsnB1ydkyVjnQ,9682
47
- pgsui/impute/unsupervised/keras_classifiers.py,sha256=dSM7CrH86s6xTvVmdyEmTjch1g9aRszspgxExTRptjM,29483
48
- pgsui/impute/unsupervised/neural_network_imputers.py,sha256=Hkj8rdo_G1HbYrKbJJ9oeYXAsOH1PLJYZKJt_eQuFYw,52292
49
- pgsui/impute/unsupervised/neural_network_methods.py,sha256=ueFUQ9eh9xUUfep3myTuEz1ZDrdDZ5R_4bpQnwK-GsQ,50830
50
- pgsui/impute/unsupervised/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
- pgsui/impute/unsupervised/models/autoencoder_model.py,sha256=5HXqNr4d86Or1el_1eKw4PTKsik3t9K2dQ2M95a-VY0,20161
52
- pgsui/impute/unsupervised/models/nlpca_model.py,sha256=6yRDO6aCkjGjdbrI2FOJvyDdksArsRwCSunb2NSXd1k,14501
53
- pgsui/impute/unsupervised/models/ubp_model.py,sha256=CEVvGusqONpTdF4HpyOSA_WQLH0sNQ2lGfUKLL5NHPY,37879
54
- pgsui/impute/unsupervised/models/vae_model.py,sha256=ZLfLqLIsYqV2_nHJ3WXAWk4v_mzqD0p8oiS-jm3legY,22338
55
- pgsui/impute/unsupervised/models/in_development/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
- pgsui/impute/unsupervised/models/in_development/cnn_model.py,sha256=nNMmGev5PmLcUUm44_bnDcx1iO0_FeaqllSCpuL2ykU,15036
57
- pgsui/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
58
- pgsui/utils/misc.py,sha256=dXPmjH0boW9f5HY0l17v_u42xl_ZGHKmLEL3efsMVWA,15705
59
- pgsui/utils/plotting.py,sha256=WIoPoFGR4sqKNvjF9ZBehRLdKWt5H6LUr0QxnOTJ8V8,33748
60
- pgsui/utils/scorers.py,sha256=UrX3gM5FkK4UAUqd9JNNAWPBUWvIDmImIrPm8pRO6fM,26862
61
- pgsui/utils/sequence_tools.py,sha256=5WY_gEov2AVSG5j4PEPLtI8OFDaBmGi7U6SDqK_dplc,10143
62
- simulation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
63
- simulation/sim_benchmarks.py,sha256=lA5o1qIqG7lbN56RYhx1crc73e0c-z2C5FtuNDntFBM,11345
64
- simulation/sim_treeparams.py,sha256=Crgt9SxuBLzrqsnuVFlvPvU5g7tIt3q0Sv_-nge7tfc,13793
65
- test/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
66
- test/pg_sui_simtest.py,sha256=yeQA8kEvGUisvGGYUuv47zK8aw6wTkEScjfjQiociMc,6024
67
- test/pg_sui_testing.py,sha256=zJLeUiE-swFI-NrUfpsNaxBoWIQCDNnj09RsLOigqNw,15871
68
- test/test.py,sha256=FEylSUFKXGPusNYF34y5xqPCXeV-d94TLyB2LR8njNU,5034
69
- test/test_pgsui.py,sha256=rcAoFQSvCAEe0ADXZ7xDUQt-PuvEGEizWFu3mqV3728,14310
70
- test/test_tkc.py,sha256=P9O956q9Gt_nnJ3CLBpq4cSXLNmN94oA-mUjRngkFgg,5867
71
- pg_sui-0.2.3.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
72
- pg_sui-0.2.3.dist-info/METADATA,sha256=ORxQjOBL8SrDxXZ3ViOTTquvK0GqQCvkITCk8Uc3-3g,12725
73
- pg_sui-0.2.3.dist-info/WHEEL,sha256=AtBG6SXL3KF_v0NxLf0ehyVOh0cold-JbJYXNGorC6Q,92
74
- pg_sui-0.2.3.dist-info/top_level.txt,sha256=jxcAQq4Ov-ynoE-TOLYXKd8OJv4gQjZ59ssYt3tbANA,22
75
- pg_sui-0.2.3.dist-info/RECORD,,
@@ -1,3 +0,0 @@
1
- pgsui
2
- simulation
3
- test
@@ -1,118 +0,0 @@
1
- 117 10
2
- GUFL_BXGU36_AA14 TGTTACCGAT
3
- GUFL_BX626 YGTNACCGRN
4
- GUFL_BXGU65_AA39 TGTWACCGAT
5
- GUFL_BX684 TGTTACCGAT
6
- GUFL_BX504 TGTTACCNAT
7
- GUFL_BX503 NGTTACCGRT
8
- GUFL_BXGU32 CGTTACCGAT
9
- GUFL_BXGU63_AA37 YGTTACCART
10
- GUFL_BXGU35_AA13 TGTTACCAAT
11
- GUFL_BXGU61_U57 TGTTACCNAT
12
- GUFL_BXGU62_AA36 TGTTACCAAT
13
- GUFL_BX685 TGTTACCGAK
14
- GUFL_BXGU33 TGTTACCGAT
15
- DSAZ_BX1213 TGTTACCGGT
16
- DSNM_BXDS02 TGTTACCGGT
17
- ONWI_BX489 TGTTACCGAT
18
- ONWI_BX493 TGTTACCGGT
19
- ONTX_BXON46_153 TRTTNCCAGT
20
- ONNE_BXON58_433x2 TGTTACCGGT
21
- ONWI_BX495 TGTTACCGGT
22
- ONWI_BX491 TGTTACCGRT
23
- ONWI_BX497 TGTTACCGGT
24
- ONCO_BX601 TGTTACCGGT
25
- ONCO_BX588 TGTTACCGGT
26
- ONWI_BX486 TGTTACCGGT
27
- ONTX_BXON45_150 TRTTACCGGT
28
- ONCO_BX580 TNNTACCGGT
29
- ONWI_BX490 TGTTACCGGT
30
- ONCO_BX602 TGTTACCGGT
31
- ONKS_BXON61_133 TGYTACCGGT
32
- FLFL_BXFL01 TGTTACCGRT
33
- FLFL_BX683 TGTTACCGAT
34
- TTLA_BXTT35_1486 TGTTGCCGGT
35
- TTAR_BX507 TGTTACCGGT
36
- TTTX_BX227 TGTTRCYGGT
37
- TTTX_BX225 TGTTACCGGT
38
- TTLA_BXTT34_1482 TGTTACCGGT
39
- TTLA_BXTT36_1491 TGYTRCCAGN
40
- TTLA_BXTT37_1492 TGTTRCCGGT
41
- TTAR_BX987 TGNTACCNGT
42
- TTLA_BXTT38_1493 TGTTRCCGGT
43
- TTTX_BX222 NGYTRYYGGT
44
- TTLA_BX421 TGTTACCRGT
45
- TTKS_BXTT20_78 TGYTGCCAGT
46
- TTLA_BXTT13 TGTTRCCRGT
47
- TTAR_BX984 TNTTACCGGT
48
- TTLA_BX422 TGTTACCGGT
49
- TTLA_BXTT39_1498 TNTTACCRGT
50
- TTTX_BX223 TGTTACCGGT
51
- TTTX_BX228 TRNTACCRGT
52
- MXMX_BX1195 TGYTACCGAT
53
- MXMX_BX1194 TGTTACCGAT
54
- MXMX_BX1196 TGYTACCGAT
55
- GUMS_BXGU68_AA42 TGTTACCGGT
56
- GUMS_BXGU53_T72 TGTTACCAGT
57
- GUMS_BXGU78_AA52 TGTTACCRRT
58
- GUMS_BXGU75_AA49 NGTTACCGRT
59
- GUMS_BXGU76_AA50 TGTTACCRGT
60
- GUMS_BXGU69_AA43 YGTTACCRRT
61
- GUMS_BXGU77_AA51 TGTTACCGGT
62
- GUMS_BXGU67_AA41 TGTTACCNRT
63
- GUMS_BXGU74_AA48 TGTTACCANT
64
- GUMS_BXGU73_AA47 TGTTACCNGT
65
- GUMS_BXGU50_T69 TGTTACCGGT
66
- GUMS_BXGU48_T62 YGTTACCGGT
67
- GUMS_BXGU56_T83 TGNTACCGRT
68
- GUMS_BXGU58_T92 TGNTACCNGT
69
- GUMS_BXGU54_T73 TGTTACCGGT
70
- GUMS_BXGU44_T56 TGTTACCGGT
71
- GUMS_BX200 YGNTACCGGT
72
- GUMS_BXGU79_AA73 TGTTACCAGT
73
- GUMS_BXGU49_T66 TGTTACCGGT
74
- GUMS_BXGU72_AA46 TGTTACCGGT
75
- GUMS_BXGU71_AA45 TGNTACCGGT
76
- GUMS_BXGU43_T55 TGYTAYCGRT
77
- GUMS_BXGU47_T61 TGTTRCCRGT
78
- GUMS_BXGU45_T59 TGTTACCRGT
79
- EASC_BXEA43_1307 TGTTACCGAN
80
- EAGA_BXEA49_564 TGNTANCGGT
81
- EAGA_BX660 YGTTACCGGT
82
- EAAL_BXEA27 TGTTACCGAT
83
- TCAL_BXTC63 TGTTRCCGGT
84
- TCAL_BX612 TGTTACCRNN
85
- TCAL_BXTC93 TGTTACCNAT
86
- EAGA_BXEA35_666 NNTTACCGGT
87
- EASC_BX1108 TGTTACCAGT
88
- EAGA_BXEA17 TGTTAYCRGT
89
- EAGA_BXEA34_665 TGTTACCGAT
90
- EASC_BXEA42_1306 TGTTACCGGT
91
- TCAL_BX279 TGTTACCGGT
92
- EAVA_BX320 NGTWACCAAT
93
- EAGA_BXEA21 TGTTACCRNT
94
- EATN_BXEA02_36x2 TGTTACCNAT
95
- EAVA_BX101 TGTTACCRGT
96
- EASC_BXEA41_1305 TGTTACCNAT
97
- EAGA_BXEA25 TGTTACCGAK
98
- TCAL_BXTC92 TGTTAYCGGT
99
- EAGA_BX346 TGTTACCAGT
100
- EAVA_BX321 TGTTACCRAT
101
- EAGA_BX472 YGTTRCCGAT
102
- EASC_BXEA40_1304 TGTTAYCRAT
103
- EASC_BX1115 TGTTRCCGAT
104
- EAGA_BXEA32_662 TGTTAYCGAT
105
- TCAL_BX273 TGTTACCGNN
106
- EASC_BX1109 TGTTACCNNT
107
- TCAL_BXTC80 TGTTACCNAN
108
- EASC_BX1110 TGYTACCGAT
109
- TCAL_BXTC110 TGTTACCGNT
110
- EAGA_BXEA31_659 TGTTACCGRT
111
- EASC_BX1112 TGTTACCGGT
112
- EAGA_BX301 TGTTACCGGT
113
- EAGA_BXEA15_654 YGTTACCGGN
114
- EASC_BX1114 TGTTACCGRN
115
- TCGA_BX344 YGTWACCART
116
- EAGA_BXEA33_663 TNTTACCRAT
117
- CHCH_BX1191 TGTTACCGGT
118
- CHCH_BX1193 TGTTACCGGT
@@ -1,118 +0,0 @@
1
- 117 100
2
- GUFL_BXGU36_AA14 GCGRGCCTCACCGGGTTGCSCNGAGACAGAKRAAGACCAGCGCCGATCCTGGNTCTNCNCCTGGAGAGTTAGCACCCCCACCCGTARTGATGTTACCGAT
3
- GUFL_BX626 GCGGGCCTNGCCGGGTTGCCCGGAGACAGANRARGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTNGCANCCCCACCCGTAGTGAYGTNACCGRN
4
- GUFL_BXGU65_AA39 GCGGGCCTCGGCGGGTTGCCCGGAGNNAGATGAGGACCAGYGMCGATCCTGGCTCTGCCCCTGGANAGTTAGCACCCCCAYCCGTAGTGATGTWACCGAT
5
- GUFL_BX684 GCNGGCCTCNSCGGGTTGCNCGGAGACAGAKGAGGACCAGCGCCGATCCTGGCTCTGCCNCTGGAGAGTTNGCACCCCCAYCCGNAGTGATGTTACCGAT
6
- GUFL_BX504 GCGGGCCTCGSCGGGTTGCCCGGAGACAGATGAGGACCANCGMCGATNCTGGCTCNGCCCCTGGAGAGTTAGCACCCCCAYCCNTAGTGATGTTACCNAT
7
- GUFL_BX503 GCGGGCCTNGSCNGGTTGCCCKGAGACAGAGGAGGACCAGCGCCGATCCTGGCTCTGCCNCTGGAGANTTAGCACNCCCAYCCGTAGKGANGTTACCGRT
8
- GUFL_BXGU32 GCGGGCCTNGSCGGGTTGCCNGGAGACAGAKGAGGACCANCGCCGATCCTGGCTCTGCCCCTGGAGAGTTNGYACCCCCAYCCGTAGTGACGTTACCGAT
9
- GUFL_BXGU63_AA37 GCGGGCCTCGCCNGGTTNCCCKGAGACAGATGAGGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGTACCCCCACCCGTAGTGAYGTTACCART
10
- GUFL_BXGU35_AA13 GCRGGCCTCGCCGGGNNGCCCGGAGACAGAKGAGGACCAGCGCCGATCCTGGCTCTGCCCCTRGANAGTTAGYACNCCCATCCGTAGTGATGTTACCAAT
11
- GUFL_BXGU61_U57 GCGGGCCTCGSCGGGTNGCCCGGAGANAGATGAGGACCAGCGCCGATNNNGGCTCNGCCCCTGGAGAGTTAGCACCCNCAYCCGTARTGATGTTACCNAT
12
- GUFL_BXGU62_AA36 GCGGGCCTCGNCGGGTTGCNCGGAKACAGAKGAGGACCAGCNCCGATCCNGGCTCNGCCCCTGGAGAGTTAGYACCCCCACCCGTANKGATGTTACCAAT
13
- GUFL_BX685 GNGRGCCTCNCCGGGTYGCCCKGAGACAGAKGAGGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGANTTAGCACCCCCACCCGTAGTGATGTTACCGAK
14
- GUFL_BXGU33 GCGGGCCTCNCCGGGTTGCCCGGAGACAGATGAGGACCAGCGCCGATCCTGGCTCTGCCCNTGGAGANTTAGCACCCCCAYCCGTAGTGATGTTACCGAT
15
- DSAZ_BX1213 GCGGGCCTCGCTGGTTTGCCCGGAGACAKATGAGAACCAGCGCCGATCCTGGTWCTGCCCCTGGAGAGTTAGCACCCCYATCCGTAGTGATGTTACCGGT
16
- DSNM_BXDS02 GCGGGCCTCGCTGGTTTGCCCGGAGACAKMTGARAACCAGCGCCGATCCTGGYTCTGCCCCTGGAGAGTTAGCACCCCCATCCGTAGTGMTGTTACCGGT
17
- ONWI_BX489 GCGGGCTTCGCTGGTTNGCCCGGAGANMGATGAAAACCAGCGCCGATCCTRGTTCTGCCCCTGGAGAGTTAGNACCCCCATCCGTAGTGATGTTACCGAT
18
- ONWI_BX493 RCGGGCYTCGCTGNTTTGCCCGGAGACAGMTGAAAACCAGCGCCGATCCTGNTTCTGCCCCTGGNGAGTTAGCACCCCCATCCGTAGTGATGTTACCGGT
19
- ONTX_BXON46_153 GCGGGCCTCGCTGGTTTGCCCGGAGACAGMTRAGAACCAGCGCCGATCCTGGTTCTRCCCCTGGAGAGTTAGCACCCCCATCCGTAGTGATRTTNCCAGT
20
- ONNE_BXON58_433x2 GCGGGCCTCGCNGGTNNGCCCGGAGACMGCTGAGAACCAGCGCCGATCCTGGTTCTGCNCCTGGAGAGTTNGCANCCCCATCCGTAGTGATGTTACCGGT
21
- ONWI_BX495 GCGGGCYTCGCTGGTTTGCCCGGAGACAGATGAAAACCAGCGCCGATCCTGGTTCTGCCCCTGGRGAGTTAGCACCCCCATCCGTAGTGATGTTACCGGT
22
- ONWI_BX491 GCGGGCYTCGCTGGTTTGCCCGGAGACAGMTGAAAACCAGCGCCGNTCCTRGTWCTGCCCCTGGANAGTTAGCACCCCCATCCGTAGTGATGTTACCGRT
23
- ONWI_BX497 RCGGGCCTCGCTGGTTTGCCCGGAGACAKMTRARAACCAGCGCCGATCCTGGTTCTGCCCCTGGRGAGTTAGNACCNCCATCCGTAGTGATGTTACCGGT
24
- ONCO_BX601 GCGGGCCTCGCTGGTTTGCCCGGAGNCAGCTGAGAACCAGCGCCRATCCTGGTTCTGCCCCTNGAGAGTTAGCACCCCCATCCGTAGTGATGTTACCGGT
25
- ONCO_BX588 RCGGGCCTCGCTGNTTNGNCCGGAGACAGATGAGAACCAGCGCCAATCCTGGTTCTGCCCCTGGAGAGNTAGCACCCCCAYCCGTAGTGATGTTACCGGT
26
- ONWI_BX486 GNGGGCCTCGCTGGTTTGCCCGNAGACAGMTGARAACCAGCGCCGATCCTGGTTCTGNCCCTGGAGAGTTAGCACCCCCATCCGTAGTGATGTTACCGGT
27
- ONTX_BXON45_150 ACGGGCCTCGCTGGTTTGCCCGGAGACMGANGAAAACCAGCGCCGATCCTNNTTCTGCCCCTGGANAGTTAGCACCCCCANCCGTAGTGMTRTTACCGGT
28
- ONCO_BX580 GCGGGCCTCNCTGGTTTGCCCGGAGACAKMTGAGAACCAGCGCCRATYCTGGTTCTGCCCCTGGAGAGTTAGCACCCCCATCCGTAGTGATNNTACCGGT
29
- ONWI_BX490 RCGGGCCTCGNTGNTTTGCCCGGAGACAGMTGAAAACCAGCGCCGATCCTAGTWCTRCCCCTGGRGAGTTAGNNCCCCCATCCGTAGTGATGTTACCGGT
30
- ONCO_BX602 RNGGGCCTCGCTGGTTTGCCCGNAGACAKMTGAGAACCAGCGCCGATYCTGGTTCTGCCCCTGGAGAGTTAGCACCCCCATCCGTAGTGATGTTACCGGT
31
- ONKS_BXON61_133 GCGGGCYTCGCTGGTTTGCCCGGAGACMGMTGARAACCAGCGCCGATCCTGGTWCTGCCCCTGGAGAGTTAGCACCCCYAYCCGTAGTGATGYTACCGGT
32
- FLFL_BXFL01 GCRGGCCCCGCCGGGTTGCCCGGAGACAGATGARGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACTCCCACMCGTAGTGATGTTACCGRT
33
- FLFL_BX683 GCRGGCCCCGCCGGGTTGCCCGGAGACAGATGARGACCAGCGCCGATCTTGGCTCTGCCCCTGGAGAGTTAGCACTCCCACMCGTAGTGATGTTACCGAT
34
- TTLA_BXTT35_1486 GNGGGCCTCGNCGGGTTGNSCGGAGACAGATGAGGACCASYGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCATCYCCATCCNTAGKGNTGTTGCCGGT
35
- TTAR_BX507 GCGGGCCTCGNCGGGNTGCCCGGAGACAGATRAGGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCAYCCGNAGTGATGTTACCGGT
36
- TTTX_BX227 GCGGGCCTCGCCGGGTTGCSCGGAGACAGATRARGWCCAGCGCYGATCCTGGCWCTGCCCCTRGAGAGTTARCACCCCCATCCGTAGTGATGTTRCYGGT
37
- TTTX_BX225 GTGGGNCTCGCCGGGTTGCCCGGAGACAGATGARGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCATCCGTAGTGATGTTACCGGT
38
- TTLA_BXTT34_1482 GCGRGCYTCGCCGGGTTGCSMKGAGACAGNTGAGGWCCAGCGCCGANCCTGGCTCNGCCCCTGGARAGTTAGCACYCCCMTCCGTAGTGATGTTACCGGT
39
- TTLA_BXTT36_1491 GNGGGCCTCGCCGGGTTGCCCGGAGACAGATGAAGACCAGCGCCGATCCTGGCTCTGCNCCTGGAGAGTTAGCANCYCCMTCCGTAGTGATGYTRCCAGN
40
- TTLA_BXTT37_1492 GNGAGCCTCGCCGGGTTGCCCTGAGACAGATGAGGWCCAGCGCCGATCCTGNCTCTGCCCCTRGAGAGTTAGCACCCCCACCCGTAGTGATGTTRCCGGT
41
- TTAR_BX987 GCGGGCCTCNCCGGGTTGCCCGGAGACAGATGAAGACCAGCGCCGATYCTGGCTCTGCCCCTGGAGAGTTARCACCCCCAYCCGTAGTGATGNTACCNGT
42
- TTLA_BXTT38_1493 GCGRGCYTSGCCGGGTTGCCCGGAGACAGATGAGGACCAGCGCCGWWCCTGGNTCTGCCCCTGGAGAGTTNGNACCCCCATCCGTAGTGATGTTRCCGGT
43
- TTTX_BX222 GCGRGCYTCGCCGGGTTGCCCGGAGACAGATGAAGACCASCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCATCCGTAGTGANGYTRYYGGT
44
- TTLA_BX421 GCGRGCCTCNCCGGGTTGCCCKGAGACAGATGAGGWCYAGCGCCGATCCTGNCTCTGYCCCTGGAGAGTTAGCACCNCCMTCCGNAGTGATGTTACCRGT
45
- TTKS_BXTT20_78 GCGGGCCTCGCCGGGTTGCCCNGAGACAGATGAGGWCCAGCGCCGWTCCTGGCTCTGCCCCTGRAGAGTTAGCACCCCCACCCGTAGTGATGYTGCCAGT
46
- TTLA_BXTT13 GCGAGCCTSGCNRGGTTRCCCGGAGACANATGAGGACYAGCGCCGATCCTGGCTCTGYCCCTRGAGAGTTARCACCYCCAYCCSTAGTGATGTTRCCRGT
47
- TTAR_BX984 GCGGGCCTCGNCGGGTTGCCCGGAGNCANATGAAGACYAGCGCCGATNCTGGCWCTGCCNCTGGAGAGTTAGCACCCCCACCCGTAGTGATNTTACCGGT
48
- TTLA_BX422 GCGRGCCTCGCCGGGTTGCCCGGAGACANATGAGGACCAGCGCCGATCCTGGCTCTGCCNCTRGAGAGTTAGCACCYNCATCCGTAGTGATGTTACCGGT
49
- TTLA_BXTT39_1498 GCGGGNCTCGCCGGGTTGCGCKGAGACAGATGAGGACCASCGCCGATCCTGGCWCTGCCCCTGGAGANTTWGCACNYCCAYCCGTAGTGATNTTACCRGT
50
- TTTX_BX223 GCGGGCCTCGCCGGGTTGCGCGGAGACAGATGANGACCAGCGCCGATCCTGGCTCTGCCCCTRGARAGTTAGCACCCCCNYCCGTAGTGATGTTACCGGT
51
- TTTX_BX228 GCGGGCCTCGCCGGGTTGCCCGGAGACAGATGAGGACCASCGCCGNACCTGGCACTGYCCCTGGAGAGTTWRCACNCCCACCCGTAGTGATRNTACCRGT
52
- MXMX_BX1195 GCGGGCCTCGCCGGGTTGYCCGGAGACAGATGAGGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCAYCCGTAGTGATGYTACCGAT
53
- MXMX_BX1194 GCGGGCCTCGCCGGGTTGYCCGGAGACAGATGAGGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCACCCGTAGTGATGTTACCGAT
54
- MXMX_BX1196 GCGGGCCTCGCCGGGTTGCCCGGAGACAGATGAGGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCACCCGTAGTGATGYTACCGAT
55
- GUMS_BXGU68_AA42 GCGGGCCTCGCCGRGTTGCCCKGAGWCAGATGAGGACYAGCGCCGNTCCTGGCTCTGCCCCTGGAGAGNTAGCACCCCCAYCCGTAGTGATGTTACCGGT
56
- GUMS_BXGU53_T72 GCGGGCCTCGSCGGGTTNCCCGGAGACAGATGRGGACCAGCGCYGATCCWGGCTCNGCNCCTGGAGAKTTWGCACCCNCACCYGTAGTGATGTTACCAGT
57
- GUMS_BXGU78_AA52 GCGGGCCTCGCCGGGTTGCCCGGAGACAGATGAGGACYAGCGCCGATCCWGGCTCTGNNCCTGRAGAGTTAGCACNCCCATCCGCAGTGATGTTACCRRT
58
- GUMS_BXGU75_AA49 GCGGGCCTCGCCRGGTTGCCCTGAGACAGATGARGACCAGCGCCGATCCNGGCTCWGCCCCTGGAGAGTTAGCACCCCCACCCGTAGTGANGTTACCGRT
59
- GUMS_BXGU76_AA50 GCGGGCCTCGCCGRGTTGCCCKRAGACAGATGAGGACYAGCGCCGATCCAGGCTCTGCCCCTGGAGAKNTAGCACCCCCATCCGTAGTGATGTTACCRGT
60
- GUMS_BXGU69_AA43 GCGGGCCTCNCCGGGTTGCCCKGRGACAGATGARGACCAGCGCCGATCCWGGCTCNGNCCYTRGAGAGTTAGCACNCCCAYCCGTAGKGAYGTTACCRRT
61
- GUMS_BXGU77_AA51 GCGGGCCTCGCCGGGTTGCNCKGRGACAGATGAGGACCAGCGCCGATCCWGGCTCTGCCCCTGRAGAGTKAGNACCCCCATCCGYAGTGATGTTACCGGT
62
- GUMS_BXGU67_AA41 GCGGGCCTCGCCGGGTTGCCCKGAGACAGAKGAGGACCAGCGCCGATNCWGGCTCNGCCCCTGGAGAGTTAGCACNCNCACCCGTAGTGATGTTACCNRT
63
- GUMS_BXGU74_AA48 GCGGNCCTCGCCGGGTTGCCNTGAGANAGATGAGGACCAGCGCCGATCCNGGCTCTGNCCCTGGANAGTTAGCANCCCCATCCGTAGKGATGTTACCANT
64
- GUMS_BXGU73_AA47 GCGGGCCTCGCCGGGTTGCCCKAAGACAGAKGAGGACCAGCGCCGATCCWGGCTCTGCCCCTRGAGAGTKAGNACCCCCAYCCGTAGKGATGTTACCNGT
65
- GUMS_BXGU50_T69 GCGGGCCTCGSCGGGTTGCCCKGAGACAGATGARGACCAGCGCCGATCNWGGCTCTGCCYCTGGANAGTTAGCACCCCCACCCGTAGTGATGTTACCGGT
66
- GUMS_BXGU48_T62 GCGGGCCTCGCCGGGYNGCCCKGAGAMAGAKGARGACCAGCGCCGANCNAGGNTCAGCCCCTGGAGAGTTAGCACCCCCACCYGTAGTGAYGTTACCGGT
67
- GUMS_BXGU56_T83 GCGGGCCTCGCCGGGTTGCCCKGAGACNGATGARGACYAGCGCCGATCCTGGCTCTGCCYCTGGAGAGTTAGCACCCNCAYCCGTAGTGATGNTACCGRT
68
- GUMS_BXGU58_T92 GCGGGCCTCGCCGGGTTGCNCKGAGACAGATGAGGACCAGCNCCGATCCNGGCTCTGCCCCTGGAGAGTTNGCNCCCCCACCCGTAGTGATGNTACCNGT
69
- GUMS_BXGU54_T73 GCGGGCCTCNCCRGGTNGCCMKGAGANAGNTGAGGNCCAGCGCCGATCCNGGCTCTGCCCCTGGANAGTTNGNANCCCCATCCGTAGTGATGTTACCGGT
70
- GUMS_BXGU44_T56 GCGGGCCTCGCCGGGTTGCCCKGAGACAGAKGRRGAYCAGCGCCGATCCNGGCTCTGCCCCTGGAGAGTKAGCACCCNCAYCCGTAGTCATGTTACCGGT
71
- GUMS_BX200 GCGGGCCTCGCCGGGTTGCCCTGAGACAGATGAGGACCAGCGCCGATCCWGGCTCTGCCCCTGGANAGTTNGCACCCCCAYCCGTAGTGAYGNTACCGGT
72
- GUMS_BXGU79_AA73 GCGGGCCTCGCCGGGTTGCCMKGAGACAGAGNAGGACCAGCGCCGATNCWGGCTCTGCCCCTRRAGAGTKNGNACCCCCAYCCGTAGTGATGTTACCAGT
73
- GUMS_BXGU49_T66 GCGGGCCTCGCCGRGTTGCCCNGAGAMAGATRARGACCAGCGCCGWNCCWGGCTCTGCCCCTGGAGAGTTAGCACCCCCACCCGTAGTGATGTTACCGGT
74
- GUMS_BXGU72_AA46 GCGGRCCTCGCCGGGTTGCCMKGAGACAGATGARGACCAGCGCCGATCCWGCCTCTGCCCCTGGAGAGTKAGCACCCCCAYCCGTAGTGATGTTACCGGT
75
- GUMS_BXGU71_AA45 GCGGGCCTCGCCGRGTNGCCNKGRGACAGATGAGGACYAGCGCCGATCCWGGCTCTGCCCCTGGAGAGNTAGCACCCNCATCCSTAGTGATGNTACCGGT
76
- GUMS_BXGU43_T55 GCGGGCCTCGNCGGGTTGCCCTGAGWCAGATGARGACCAGCNCCGANCCAGGCTCWGCCCCTGGNNAGTTAGNACCCCCNCCCGTAGKGATGYTAYCGRT
77
- GUMS_BXGU47_T61 GCGGGCCTCGCCGGGTTGCCCKGAGACAGAKGRRGAYYAGCGCCGATCCTGGCWCTGCCCCTGGAGAGTTAGCACCCCCACCCGTAGTGATGTTRCCRGT
78
- GUMS_BXGU45_T59 GCGGGCCTCNCCGGGTTGNCCNGAGACAGATGRGGACCAGCGCYGATCCAGGCWCNGNCCCTGGANAGTTAGCACCCCCACCYGTAGTGNTGTTACCRGT
79
- EASC_BXEA43_1307 GNGGGNCTCNNCGGGTTNNCCNGAGNNAGATGAGGACCAGCGCCGATCCTGGCTCTGNCCCTGGANAGTTNGCACCCCCACCCGTAGTGATGTTACCGAN
80
- EAGA_BXEA49_564 GYGRGCCTCRCCGGGTTGCCCGGAGANAGATGARGACNRGCRCCGNTCCTGGCTCTGCCCCTGNAGAGTTAGCACCCSCAYCCGTRGTGATGNTANCGGT
81
- EAGA_BX660 GNGGGCCTCNCCGGGTTNNCCGGAGACAGATGAGGACCAGCGCCGATCCTGGCWCTGCCCCTNGAGAGTTAGCACCCCCAYCCGTAGTNNYGTTACCGGT
82
- EAAL_BXEA27 GCGRGNCTCGCCGGGYTGCCCKGAKACAGATGAGGACCAGCGCCGATCCTGGCWCTGCCCCTGGAGANTTNGCACCCSCAYCCGTAGTGATGTTACCGAT
83
- TCAL_BXTC63 GCGGGCCTCGCCGGGTTGCCCKGAGACAGATGAGGACCAGCGCCGANCCTGGCTCTGNCCCTGGAGAGTTAGCACCCGCACCCGTAGTGATGTTRCCGGT
84
- TCAL_BX612 GNGGGCCTCNCCGGGTTNNCCKGAGACAGAKGAGGACCAGCNCNGATCCTGGCTCTGCCCCTGGAGANTTAGCACCCSCAYCCGTAGKGNTGTTACCRNN
85
- TCAL_BXTC93 GCRGRCCTCNCCGGGTTGCCCGGAGACAGATRAGGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCACCYGTAGTGATGTTACCNAT
86
- EAGA_BXEA35_666 GCGRGCCTCNSCGGGNNNCCCNGAGACAGNTGAAGACCAGCGCCGATCCTGGCWCNNNCCCTGGAGAGTTAGCANNCNCACCCGTAGTNANNTTACCGGT
87
- EASC_BX1108 GCGRGCCTCGCCGGGTTGCCCGGAGACAGATRARGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCAYCCSTRNTGATGTTACCAGT
88
- EAGA_BXEA17 GCGRGCCTCGSCGGGTTGCCCGGAGACAGATGARGACCAGCGCCGNTCCTGGCTCTGNCCCKGGAGAGTTAGCACCCCCAYCYGTAGTGATGTTAYCRGT
89
- EAGA_BXEA34_665 GCGRGCCTCGSCGGGTTGCCCGGAGACAGATGAGGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGNTNRCACCCCCAYCCGTRGTGATGTTACCGAT
90
- EASC_BXEA42_1306 GCGGGCCTCGCCGGGTTGCCCGGAGACAGATGARGACCAGCGCCGATCCTGGCTCTGCCCCTGGANAGTTAGCANNCSCAYCCGTAGTGATGTTACCGGT
91
- TCAL_BX279 GCGRGCCTCRCCGGGTTGCCCGGAGACAGATGARGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCWCCCSCATCCGTAGTGNTGTTACCGGT
92
- EAVA_BX320 GNGGGCCTCGCCGGGTTGCNCGGAGANAGATGAGGACCAGCGCCGATCCTGGCTYTGNCCCTGGAGAGTTAGCACCCCCACCCGTAGTGANGTWACCAAT
93
- EAGA_BXEA21 GCGGGCCTCGCCGGGTTGCCMGGAGACAGATGARGACCAGCGCCGATCCTGNCTNTGCCCCKGGAGAGTTAGCACCCCCAYCCGTAGTGATGTTACCRNT
94
- EATN_BXEA02_36x2 GCGGGCCTCGCCGGGTYNCCCGGAGACAGATGNGGACCAGCNCNGATCCTGGNTCTGNCCNTGGAGAGTTNGCNCCCNCANCCGTAGTGATGTTACCNAT
95
- EAVA_BX101 GCGGGCCTCGSCGGGTTGCCCGGAGACAGATGAGGACCAGCGCCGATCCTGGCTCTGCYCCTGGAGAGTTAGCACCCCCAYCYGTAGTGATGTTACCRGT
96
- EASC_BXEA41_1305 GCRRGCCTCNCCGGGTNGCCCGGAGACAGATGARGNCCAGCGCCGATCCTGGCWCTGCCCYTGGANAGTTAGCACCCCCATCCGTAGTGATGTTACCNAT
97
- EAGA_BXEA25 GCGGGNCTNNNCGGGTTGCCCKGAGACAGATGAGNACCAGCGCCGWTNCTGGCTNTGNCCCTGGAGAGTTAGCACCCCCACCCGTAGTGATGTTACCGAK
98
- TCAL_BXTC92 GCGRGNCTCGCCGGGTTGCCCGGAGACAGATGARGACCAGCNCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCACCCGTAGTGATGTTAYCGGT
99
- EAGA_BX346 GCGGGCCTCGCCGGGTTGCCCGGAKACAGATGAGGACCRGCGCCGATCCTGGCTYNGNCCCTGGANAGTTAGCWCCCCCACCCGTAGTGATGTTACCAGT
100
- EAVA_BX321 GCGGGCCTCGCCGGGTTGCCCGGAGACAGATGARGACCAGCGCCGATCCTGGCTCTGCYCCTGGAGAGTTAGCACCCSCAYCCGTAGTGATGTTACCRAT
101
- EAGA_BX472 GCGRGCCTCGCCGGGTTGCNCGGAGACAGATGAGGACCAGCNCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCATCCGTAGKGAYGTTRCCGAT
102
- EASC_BXEA40_1304 GCGRGCCTCGCCGGGTTGCCCNGAGACAGATGAGGACCAGCGCCGATCCNGGCTCTGCCCCTGGANAGTTAGCACCCSCACCCGTAGTGATGTTAYCRAT
103
- EASC_BX1115 GCGGGCCTNGCCGGGTTGCCCGGAGACAGATGRRGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGRGTTAGCACCCCCACCCSTAGTNATGTTRCCGAT
104
- EAGA_BXEA32_662 GCGAGCCTCGSCGGGTTGCCCGGAGACAGATGARGACCAGCGCCGATCCTGGCTCTGCNCCTGGNGAGGTAGCACCCCCACCCGTAGTGATGTTAYCGAT
105
- TCAL_BX273 GCGGGCCTNGSCGGGTTGCCCGGAGACANATGAGGACCAGCACCGATCCTGGCTCTGCCNCTGGAGAGTTAGCANCCCCACCCGTAGTGATGTTACCGNN
106
- EASC_BX1109 GCGGGNCTNNCCGGGTTNCCCKGAGACAGATGAGGACCAGCNCCGWTCCTGGCWNTGCCCCTGGAGAGTTNGCACCCCCATCCGNAGTGATGTTACCNNT
107
- TCAL_BXTC80 GCARGCCTCGCCGGGTTGCCCGGAGACAGAKNAGGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCATCCGTAGTGATGTTACCNAN
108
- EASC_BX1110 GCGGRCCTCGCCGGGTTGCCCGGAGANAGAKGARGACCAGCGCCGATCCTGGCTCNGCCCCTGGANAGTTAGCACCCCCMYCCGTAGTGATGYTACCGAT
109
- TCAL_BXTC110 GCGRGCCTCGCCGGGTTGCNCGGAGACAGAKGAAGACCAGCGCCGATCCTGGCTCTGCCNCTGGAGAGTTAGCACCCCCACCCGTAGTGATGTTACCGNT
110
- EAGA_BXEA31_659 GCGRGCCTCGNCGGGTTGCCCGGAGACAGATGAGGACCAGCGCCGATCCTGGCTNTGCCCCTGGAGAGTTWGCACCCSCACCCGTAGTGATGTTACCGRT
111
- EASC_BX1112 GCGRGCCTCGCCGGGTTGCCCGGAGACAGATGRGGACCNGCGCCGWTNCTGGCWCTGTCCCTGGAGRGTTAGCACCCCCATCCSTAGTGATGTTACCGGT
112
- EAGA_BX301 GCGRGCCTCGCCGGGTTGCGCGGAGACAGATGARGACCAGCGCCGATCCTGGCTCTGCCCCTGGANAGTTAGCACCCCCACCCGTAGTGATGTTACCGGT
113
- EAGA_BXEA15_654 GCGRGNCTCNSCRGGTTGCCCGGAGACAGAKGAGGACCAGCGCCGATCCTGGCTCTGCCCCTGGANAGNTAGCACCCCCACCCGTAGTGAYGTTACCGGN
114
- EASC_BX1114 GCGRGCCTCGCCGGGTTGCCCGGAGACAGATRRGGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGRGTTAGCACCCCCAYCCCTAGTGATGTTACCGRN
115
- TCGA_BX344 GNGRGCCTCGCCGGGTTRCCCGGAGACAGAKGRAGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCAYCCGTAGTGAYGTWACCART
116
- EAGA_BXEA33_663 GCGGGCCTCGNCGGGTNGCNCKGAGACAGATGAGGACCAGCGCCGATNCTGGCTNTGCCNCTGGANAGTTAGCACNNCCACCCGTANTGATNTTACCRAT
117
- CHCH_BX1191 GCGGGACTCGCCGGGTTGCCCGGAGACAGATGAGGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCACCCGTRGTGATGTTACCGGT
118
- CHCH_BX1193 GCGGGACTCGCCGGGTTGCCCGGAGACAGATGAGGACCAGCGCCGATCCTGGCTCTGCCCCTGGAGAGTTAGCACCCCCACCCGTRGTGATGTTACCGGT