passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-macosx_13_0_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/x86_64-apple-darwin22-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1082 -0
- gap/pkg/semigroups/config.status +1134 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,1488 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W extreme/monoid_pkg.tst
|
|
4
|
+
#Y Copyright (C) 2011-15 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
#
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
## a concatenation of relevant tests from the monoid/tst.
|
|
11
|
+
|
|
12
|
+
#@local BigMonoids, C, D, H, I, M, S, SmallMonoids, T, a, acting, b, c, c3, c4
|
|
13
|
+
#@local cs1, cs2, cs3, cs4, cs5, d, dc, dr, f, g, g1, g2, g3, g4, g5, g6, g7
|
|
14
|
+
#@local g8, g9, gens, gr, h, i, idem, iso, m, m1, m10, m11, m12, m13, m14, m15
|
|
15
|
+
#@local m16, m17, m18, m19, m2, m20, m21, m22, m23, m3, m4, m5, m6, m7, m8, m9
|
|
16
|
+
#@local mat, o, r, r2, rc, res, rms, s, semis, sizes, t, x
|
|
17
|
+
gap> START_TEST("Semigroups package: extreme/monoid_pkg.tst");
|
|
18
|
+
gap> LoadPackage("semigroups", false);;
|
|
19
|
+
|
|
20
|
+
#
|
|
21
|
+
gap> SEMIGROUPS.StartTest();
|
|
22
|
+
gap> SEMIGROUPS.DefaultOptionsRec.acting := true;;
|
|
23
|
+
|
|
24
|
+
# MonoidPkgTest2
|
|
25
|
+
gap> g := CyclicGroup(3);;
|
|
26
|
+
gap> r := GF(2);;
|
|
27
|
+
gap> gr := GroupRing(r, g);;
|
|
28
|
+
gap> iso := IsomorphismTransformationSemigroup(gr);;
|
|
29
|
+
gap> s := Range(iso);;
|
|
30
|
+
gap> Size(s);
|
|
31
|
+
8
|
|
32
|
+
gap> SmallGeneratingSet(s);;
|
|
33
|
+
gap> s := Semigroup(IrredundantGeneratingSubset(last));;
|
|
34
|
+
gap> NrDClasses(s);
|
|
35
|
+
4
|
|
36
|
+
gap> sizes := List(GreensDClasses(s), Size);;
|
|
37
|
+
gap> Sort(sizes);;
|
|
38
|
+
gap> sizes;
|
|
39
|
+
[ 1, 1, 3, 3 ]
|
|
40
|
+
gap> PartialOrderOfDClasses(s);
|
|
41
|
+
<immutable digraph with 4 vertices, 4 edges>
|
|
42
|
+
gap> IsRegularSemigroup(s);
|
|
43
|
+
true
|
|
44
|
+
gap> ForAll(s, x -> x in s);
|
|
45
|
+
true
|
|
46
|
+
gap> MultiplicativeNeutralElement(s);
|
|
47
|
+
IdentityTransformation
|
|
48
|
+
gap> h := List(s, x -> InversesOfSemigroupElement(s, x));;
|
|
49
|
+
gap> Sort(h);
|
|
50
|
+
gap> h;
|
|
51
|
+
[ [ Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1 ] ) ],
|
|
52
|
+
[ IdentityTransformation ], [ Transformation( [ 1, 3, 5, 1, 7, 7, 3, 5 ] ) ]
|
|
53
|
+
, [ Transformation( [ 1, 4, 1, 4, 1, 4, 1, 4 ] ) ],
|
|
54
|
+
[ Transformation( [ 1, 5, 7, 1, 3, 3, 5, 7 ] ) ],
|
|
55
|
+
[ Transformation( [ 1, 6, 7, 4, 3, 8, 5, 2 ] ) ],
|
|
56
|
+
[ Transformation( [ 1, 7, 3, 1, 5, 5, 7, 3 ] ) ],
|
|
57
|
+
[ Transformation( [ 1, 8, 5, 4, 7, 2, 3, 6 ] ) ] ]
|
|
58
|
+
gap> IsMonoidAsSemigroup(s);
|
|
59
|
+
true
|
|
60
|
+
gap> IsGroupAsSemigroup(s);
|
|
61
|
+
false
|
|
62
|
+
gap> i := MinimalIdeal(s);
|
|
63
|
+
<simple transformation semigroup ideal of degree 8 with 1 generator>
|
|
64
|
+
gap> Size(i);
|
|
65
|
+
1
|
|
66
|
+
gap> MultiplicativeZero(s);
|
|
67
|
+
Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1 ] )
|
|
68
|
+
gap> MultiplicativeZero(s) in i;
|
|
69
|
+
true
|
|
70
|
+
gap> h := List(GreensDClasses(s), GroupHClass);;
|
|
71
|
+
gap> h := List(h, StructureDescription);;
|
|
72
|
+
gap> Sort(h);
|
|
73
|
+
gap> h;
|
|
74
|
+
[ "1", "1", "C3", "C3" ]
|
|
75
|
+
gap> IsCliffordSemigroup(s);
|
|
76
|
+
true
|
|
77
|
+
|
|
78
|
+
# MonoidPkgTest3
|
|
79
|
+
gap> a := Idempotent([3, 5, 6, 7, 8], [1, 2, 1, 1, 2, 3, 4, 5]) * (3, 5);;
|
|
80
|
+
gap> b := a * (3, 5) * (3, 6, 7, 8);;
|
|
81
|
+
gap> s := Semigroup(a, b);;
|
|
82
|
+
gap> IsGroupAsSemigroup(s);
|
|
83
|
+
true
|
|
84
|
+
|
|
85
|
+
# MonoidPkgTest4
|
|
86
|
+
gap> gens := [Transformation([3, 5, 3, 3, 5, 6]),
|
|
87
|
+
> Transformation([6, 2, 4, 2, 2, 6])];;
|
|
88
|
+
gap> S := Semigroup(gens);;
|
|
89
|
+
gap> H := GroupHClass(GreensDClassOfElement(S, Elements(S)[1]));
|
|
90
|
+
<Green's H-class: Transformation( [ 6, 2, 2, 2, 2, 6 ] )>
|
|
91
|
+
gap> Transformation([6, 2, 2, 2, 2, 6]) in H;
|
|
92
|
+
true
|
|
93
|
+
gap> IsomorphismPermGroup(H);
|
|
94
|
+
MappingByFunction( <Green's H-class: Transformation( [ 6, 2, 2, 2, 2, 6 ] )>
|
|
95
|
+
, Group(()), function( x ) ... end, function( x ) ... end )
|
|
96
|
+
|
|
97
|
+
# MonoidPkgTest5
|
|
98
|
+
gap> gens := [Transformation([4, 4, 8, 8, 8, 8, 4, 8]),
|
|
99
|
+
> Transformation([8, 2, 8, 2, 5, 5, 8, 8]),
|
|
100
|
+
> Transformation([8, 8, 3, 7, 8, 3, 7, 8]),
|
|
101
|
+
> Transformation([8, 6, 6, 8, 6, 8, 8, 8])];;
|
|
102
|
+
gap> S := Semigroup(gens);;
|
|
103
|
+
gap> Size(S);
|
|
104
|
+
30
|
|
105
|
+
gap> NrDClasses(S);
|
|
106
|
+
6
|
|
107
|
+
gap> List(GreensDClasses(S), Size);
|
|
108
|
+
[ 9, 1, 1, 9, 1, 9 ]
|
|
109
|
+
gap> IsRegularSemigroup(S);
|
|
110
|
+
false
|
|
111
|
+
gap> NrRClasses(S);
|
|
112
|
+
12
|
|
113
|
+
gap> NrLClasses(S);
|
|
114
|
+
12
|
|
115
|
+
gap> IsBlockGroup(S);
|
|
116
|
+
false
|
|
117
|
+
gap> NrIdempotents(S);
|
|
118
|
+
15
|
|
119
|
+
gap> List(GreensDClasses(S), IsRegularDClass);
|
|
120
|
+
[ true, true, true, true, true, false ]
|
|
121
|
+
gap> d := GreensDClasses(S)[2];;
|
|
122
|
+
gap> GreensRClasses(d);;
|
|
123
|
+
gap> GreensLClasses(d);;
|
|
124
|
+
gap> SchutzenbergerGroup(d);
|
|
125
|
+
Group(())
|
|
126
|
+
gap> h := List(GreensDClasses(S), function(d) if IsRegularDClass(d)
|
|
127
|
+
> then return GroupHClass(d); else return fail; fi; end);;
|
|
128
|
+
gap> MultiplicativeNeutralElement(S);
|
|
129
|
+
fail
|
|
130
|
+
gap> IsMonoidAsSemigroup(S);
|
|
131
|
+
false
|
|
132
|
+
gap> GroupOfUnits(S);
|
|
133
|
+
fail
|
|
134
|
+
gap> MultiplicativeZero(S);
|
|
135
|
+
Transformation( [ 8, 8, 8, 8, 8, 8, 8, 8 ] )
|
|
136
|
+
gap> h := Filtered(h, x -> not x = fail);
|
|
137
|
+
[ <Green's H-class: Transformation( [ 2, 2, 8, 8, 8, 8, 2, 8 ] )>,
|
|
138
|
+
<Green's H-class: Transformation( [ 8, 2, 8, 2, 5, 5, 8, 8 ] )>,
|
|
139
|
+
<Green's H-class: Transformation( [ 8, 8, 3, 7, 8, 3, 7, 8 ] )>,
|
|
140
|
+
<Green's H-class: Transformation( [ 8, 5, 5, 8, 5, 8, 8, 8 ] )>,
|
|
141
|
+
<Green's H-class: Transformation( [ 8, 8, 8, 8, 8, 8, 8, 8 ] )> ]
|
|
142
|
+
gap> List(h, StructureDescription);
|
|
143
|
+
[ "1", "1", "1", "1", "1" ]
|
|
144
|
+
gap> IsHTrivial(S);
|
|
145
|
+
true
|
|
146
|
+
gap> IsLTrivial(S);
|
|
147
|
+
false
|
|
148
|
+
gap> IsRTrivial(S);
|
|
149
|
+
false
|
|
150
|
+
gap> NrIdempotents(S);
|
|
151
|
+
15
|
|
152
|
+
gap> IsIdempotentGenerated(S);
|
|
153
|
+
true
|
|
154
|
+
gap> IsSemiband(S);
|
|
155
|
+
true
|
|
156
|
+
gap> IsCommutative(S);
|
|
157
|
+
false
|
|
158
|
+
gap> IsBand(S);
|
|
159
|
+
false
|
|
160
|
+
|
|
161
|
+
# MonoidPkgTest6: from greens.tst
|
|
162
|
+
gap> gens := [Transformation([4, 5, 7, 1, 8, 6, 1, 7]),
|
|
163
|
+
> Transformation([5, 5, 3, 8, 3, 7, 4, 6]),
|
|
164
|
+
> Transformation([5, 7, 4, 4, 1, 4, 4, 4]),
|
|
165
|
+
> Transformation([7, 1, 4, 3, 6, 1, 3, 7])];;
|
|
166
|
+
gap> m := Semigroup(gens);;
|
|
167
|
+
gap> o := LambdaOrb(m);; Enumerate(o);;
|
|
168
|
+
gap> AsSet(o);
|
|
169
|
+
[ [ 0 ], [ 1 ], [ 1, 3 ], [ 1, 3, 4 ], [ 1, 3, 4, 6, 7 ], [ 1, 3, 4, 7 ],
|
|
170
|
+
[ 1, 3, 6 ], [ 1, 3, 6, 7 ], [ 1, 3, 7 ], [ 1, 4 ], [ 1, 4, 5 ],
|
|
171
|
+
[ 1, 4, 5, 6, 7, 8 ], [ 1, 4, 5, 7 ], [ 1, 4, 6 ], [ 1, 4, 6, 7 ],
|
|
172
|
+
[ 1, 4, 6, 7, 8 ], [ 1, 4, 7 ], [ 1, 4, 8 ], [ 1, 6 ], [ 1, 6, 7 ],
|
|
173
|
+
[ 1, 6, 7, 8 ], [ 1, 6, 8 ], [ 1, 7 ], [ 1, 7, 8 ], [ 1, 8 ], [ 3 ],
|
|
174
|
+
[ 3, 4 ], [ 3, 4, 5 ], [ 3, 4, 5, 6, 7, 8 ], [ 3, 4, 5, 7 ],
|
|
175
|
+
[ 3, 4, 5, 7, 8 ], [ 3, 4, 5, 8 ], [ 3, 4, 6 ], [ 3, 4, 6, 7 ],
|
|
176
|
+
[ 3, 4, 6, 7, 8 ], [ 3, 4, 6, 8 ], [ 3, 4, 7 ], [ 3, 4, 7, 8 ],
|
|
177
|
+
[ 3, 4, 8 ], [ 3, 5 ], [ 3, 5, 7 ], [ 3, 5, 8 ], [ 3, 6 ], [ 3, 6, 7 ],
|
|
178
|
+
[ 3, 6, 7, 8 ], [ 3, 6, 8 ], [ 3, 7 ], [ 3, 7, 8 ], [ 3, 8 ], [ 4 ],
|
|
179
|
+
[ 4, 5 ], [ 4, 5, 6 ], [ 4, 5, 6, 7 ], [ 4, 5, 6, 7, 8 ], [ 4, 5, 7 ],
|
|
180
|
+
[ 4, 5, 7, 8 ], [ 4, 5, 8 ], [ 4, 6 ], [ 4, 6, 7 ], [ 4, 6, 8 ], [ 4, 7 ],
|
|
181
|
+
[ 4, 7, 8 ], [ 4, 8 ], [ 5 ], [ 5, 6 ], [ 5, 6, 7 ], [ 5, 6, 8 ], [ 5, 7 ],
|
|
182
|
+
[ 5, 7, 8 ], [ 5, 8 ], [ 6 ], [ 6, 7 ], [ 6, 7, 8 ], [ 6, 8 ], [ 7 ],
|
|
183
|
+
[ 7, 8 ], [ 8 ] ]
|
|
184
|
+
gap> gens := [Transformation([1, 5, 2, 2, 3, 5, 2]),
|
|
185
|
+
> Transformation([7, 3, 6, 5, 2, 4, 1]),
|
|
186
|
+
> Transformation([7, 5, 3, 2, 5, 5, 6])];;
|
|
187
|
+
gap> m := Monoid(gens);;
|
|
188
|
+
gap> o := LambdaOrb(m);; Enumerate(o);; AsSet(o);
|
|
189
|
+
[ [ 0 ], [ 1, 2 ], [ 1, 2, 3 ], [ 1, 2, 3, 4, 5 ], [ 1, 2, 3, 4, 5, 6, 7 ],
|
|
190
|
+
[ 1, 2, 3, 4, 6 ], [ 1, 2, 3, 5 ], [ 1, 2, 3, 5, 6 ], [ 1, 2, 3, 6 ],
|
|
191
|
+
[ 1, 2, 4 ], [ 1, 2, 4, 5 ], [ 1, 2, 4, 5, 6 ], [ 1, 2, 5 ], [ 1, 2, 6 ],
|
|
192
|
+
[ 1, 3 ], [ 1, 3, 4 ], [ 1, 3, 4, 5, 6 ], [ 1, 3, 4, 6 ], [ 1, 3, 5 ],
|
|
193
|
+
[ 1, 3, 6 ], [ 1, 4 ], [ 1, 4, 5 ], [ 1, 4, 5, 6 ], [ 1, 4, 6 ], [ 1, 5 ],
|
|
194
|
+
[ 1, 5, 6 ], [ 1, 6 ], [ 2 ], [ 2, 3 ], [ 2, 3, 4 ], [ 2, 3, 4, 5 ],
|
|
195
|
+
[ 2, 3, 4, 5, 7 ], [ 2, 3, 4, 6 ], [ 2, 3, 4, 6, 7 ], [ 2, 3, 5 ],
|
|
196
|
+
[ 2, 3, 5, 6 ], [ 2, 3, 5, 6, 7 ], [ 2, 3, 5, 7 ], [ 2, 3, 6 ],
|
|
197
|
+
[ 2, 3, 6, 7 ], [ 2, 3, 7 ], [ 2, 4 ], [ 2, 4, 5 ], [ 2, 4, 5, 6 ],
|
|
198
|
+
[ 2, 4, 5, 6, 7 ], [ 2, 4, 5, 7 ], [ 2, 4, 6 ], [ 2, 4, 7 ], [ 2, 5 ],
|
|
199
|
+
[ 2, 5, 6 ], [ 2, 5, 7 ], [ 2, 6 ], [ 2, 6, 7 ], [ 2, 7 ], [ 3 ], [ 3, 4 ],
|
|
200
|
+
[ 3, 4, 5 ], [ 3, 4, 5, 6 ], [ 3, 4, 5, 6, 7 ], [ 3, 4, 6 ],
|
|
201
|
+
[ 3, 4, 6, 7 ], [ 3, 4, 7 ], [ 3, 5 ], [ 3, 5, 6 ], [ 3, 5, 7 ], [ 3, 6 ],
|
|
202
|
+
[ 3, 6, 7 ], [ 3, 7 ], [ 4 ], [ 4, 5 ], [ 4, 5, 6 ], [ 4, 5, 6, 7 ],
|
|
203
|
+
[ 4, 5, 7 ], [ 4, 6 ], [ 4, 6, 7 ], [ 4, 7 ], [ 5 ], [ 5, 6 ], [ 5, 6, 7 ],
|
|
204
|
+
[ 5, 7 ], [ 6 ], [ 6, 7 ] ]
|
|
205
|
+
gap> Length(Enumerate(RhoOrb(m)));
|
|
206
|
+
207
|
|
207
|
+
gap> gens := [[Transformation([3, 4, 4, 3, 1, 1, 5])],
|
|
208
|
+
> [Transformation([1, 1, 4, 3]), Transformation([2, 2, 2, 2]),
|
|
209
|
+
> Transformation([3, 3, 1, 4])], [Transformation([4, 4, 2, 3, 3]),
|
|
210
|
+
> Transformation([5, 2, 4, 3, 1])],
|
|
211
|
+
> [Transformation([1, 5, 4, 1, 5]), Transformation([2, 4, 1, 3, 1])],
|
|
212
|
+
> [Transformation([4, 1, 2, 3]), Transformation([4, 3, 4, 1])],
|
|
213
|
+
> [Transformation([2, 1, 3, 1, 4, 3]),
|
|
214
|
+
> Transformation([2, 2, 2, 2, 1, 2]),
|
|
215
|
+
> Transformation([5, 3, 4, 3, 5, 6]),
|
|
216
|
+
> Transformation([6, 4, 1, 4, 5, 3]),
|
|
217
|
+
> Transformation([6, 5, 2, 6, 3, 4])],
|
|
218
|
+
> [Transformation([3, 5, 5, 1, 4, 7, 5])],
|
|
219
|
+
> [Transformation([2, 5, 6, 1, 1, 3]),
|
|
220
|
+
> Transformation([3, 1, 6, 2, 5, 2]),
|
|
221
|
+
> Transformation([5, 4, 2, 3, 3, 5]),
|
|
222
|
+
> Transformation([6, 6, 5, 5, 2, 2])],
|
|
223
|
+
> [Transformation([1, 5, 3, 2, 3]), Transformation([4, 3, 2, 5, 2]),
|
|
224
|
+
> Transformation([5, 4, 1, 2, 2]), Transformation([5, 5, 5, 1, 1])],
|
|
225
|
+
> [Transformation([2, 4, 4, 7, 2, 1, 2])],
|
|
226
|
+
> [Transformation([3, 4, 2, 4, 6, 7, 4]),
|
|
227
|
+
> Transformation([4, 6, 3, 2, 4, 5, 4]),
|
|
228
|
+
> Transformation([6, 2, 3, 5, 5, 2, 2]),
|
|
229
|
+
> Transformation([6, 5, 4, 5, 2, 4, 4]),
|
|
230
|
+
> Transformation([7, 6, 7, 5, 6, 5, 7])],
|
|
231
|
+
> [Transformation([3, 2, 3, 3, 1]),
|
|
232
|
+
> Transformation([4, 5, 1, 2, 4])],
|
|
233
|
+
> [Transformation([1, 4, 3, 4]), Transformation([2, 2, 1, 1]),
|
|
234
|
+
> Transformation([3, 1, 3, 4]), Transformation([4, 4, 3, 1])],
|
|
235
|
+
> [Transformation([1, 2, 2, 3, 3]), Transformation([4, 3, 4, 3, 2]),
|
|
236
|
+
> Transformation([5, 3, 4, 5, 4])],
|
|
237
|
+
> [Transformation([4, 3, 6, 4, 6, 1]),
|
|
238
|
+
> Transformation([4, 4, 4, 6, 3, 1])],
|
|
239
|
+
> [Transformation([1, 4, 3, 4]), Transformation([3, 3, 3, 3]),
|
|
240
|
+
> Transformation([3, 4, 1, 4]), Transformation([4, 3, 1, 4])],
|
|
241
|
+
> [Transformation([1, 3, 3, 5, 2]), Transformation([3, 4, 5, 1, 1])],
|
|
242
|
+
> [Transformation([2, 6, 4, 6, 5, 2]),
|
|
243
|
+
> Transformation([3, 5, 6, 2, 5, 1]),
|
|
244
|
+
> Transformation([5, 1, 3, 3, 3, 1]),
|
|
245
|
+
> Transformation([6, 4, 4, 6, 6, 3])],
|
|
246
|
+
> [Transformation([1, 3, 3, 3])],
|
|
247
|
+
> [Transformation([4, 1, 2, 2, 3]), Transformation([4, 2, 3, 2, 2])],
|
|
248
|
+
> [Transformation([1, 4, 6, 4, 4, 7, 2]),
|
|
249
|
+
> Transformation([1, 6, 5, 1, 7, 2, 7]),
|
|
250
|
+
> Transformation([2, 2, 7, 2, 1, 4, 4]),
|
|
251
|
+
> Transformation([5, 6, 2, 6, 3, 3, 5])],
|
|
252
|
+
> [Transformation([1, 1, 3, 1]), Transformation([4, 2, 3, 4]),
|
|
253
|
+
> Transformation([4, 4, 2, 2])], [Transformation([3, 2, 1, 1]),
|
|
254
|
+
> Transformation([4, 1, 3, 2]), Transformation([4, 4, 1, 2])],
|
|
255
|
+
> [Transformation([1, 6, 4, 2, 5, 3, 2]),
|
|
256
|
+
> Transformation([4, 1, 4, 7, 4, 4, 5])],
|
|
257
|
+
> [Transformation([2, 4, 5, 4, 4])],
|
|
258
|
+
> [Transformation([1, 4, 2, 3]), Transformation([4, 3, 3, 3])],
|
|
259
|
+
> [Transformation([1, 1, 3, 1, 4])],
|
|
260
|
+
> [Transformation([4, 3, 3, 6, 7, 2, 3]),
|
|
261
|
+
> Transformation([6, 6, 4, 4, 2, 1, 4])],
|
|
262
|
+
> [Transformation([2, 2, 4, 6, 4, 3]),
|
|
263
|
+
> Transformation([3, 4, 1, 1, 5, 2]),
|
|
264
|
+
> Transformation([4, 4, 6, 4, 6, 1])],
|
|
265
|
+
> [Transformation([3, 5, 4, 2, 1, 2, 2]),
|
|
266
|
+
> Transformation([7, 7, 1, 5, 7, 1, 6])],
|
|
267
|
+
> [Transformation([3, 4, 1, 4]), Transformation([4, 3, 2, 2]),
|
|
268
|
+
> Transformation([4, 4, 1, 4])],
|
|
269
|
+
> [Transformation([3, 7, 4, 4, 3, 3, 5]),
|
|
270
|
+
> Transformation([4, 6, 1, 1, 6, 4, 1]),
|
|
271
|
+
> Transformation([6, 5, 7, 2, 1, 1, 3])],
|
|
272
|
+
> [Transformation([1, 2, 4, 1]), Transformation([4, 1, 2, 1]),
|
|
273
|
+
> Transformation([4, 2, 2, 4])],
|
|
274
|
+
> [Transformation([2, 1, 2, 2]), Transformation([2, 4, 1, 1]),
|
|
275
|
+
> Transformation([4, 2, 4, 3]), Transformation([4, 4, 1, 2])],
|
|
276
|
+
> [Transformation([1, 1, 1, 1, 1, 4]),
|
|
277
|
+
> Transformation([3, 3, 2, 4, 1, 3]),
|
|
278
|
+
> Transformation([4, 5, 2, 4, 4, 5]),
|
|
279
|
+
> Transformation([5, 3, 2, 6, 6, 4]),
|
|
280
|
+
> Transformation([6, 6, 5, 5, 1, 1])],
|
|
281
|
+
> [Transformation([1, 2, 4, 1]), Transformation([2, 4, 1, 2]),
|
|
282
|
+
> Transformation([3, 3, 1, 4]), Transformation([3, 4, 1, 2]),
|
|
283
|
+
> Transformation([4, 1, 4, 3])],
|
|
284
|
+
> [Transformation([1, 7, 6, 1, 7, 5, 5]),
|
|
285
|
+
> Transformation([2, 7, 1, 4, 7, 6, 2]),
|
|
286
|
+
> Transformation([4, 3, 7, 2, 6, 3, 4]),
|
|
287
|
+
> Transformation([4, 7, 2, 1, 7, 5, 4]),
|
|
288
|
+
> Transformation([5, 7, 5, 5, 5, 3, 5])],
|
|
289
|
+
> [Transformation([2, 4, 4, 3])],
|
|
290
|
+
> [Transformation([4, 6, 5, 1, 4, 4])],
|
|
291
|
+
> [Transformation([2, 3, 4, 5, 3]), Transformation([4, 1, 5, 1, 3]),
|
|
292
|
+
> Transformation([4, 1, 5, 5, 3])],
|
|
293
|
+
> [Transformation([1, 3, 1, 2, 2]), Transformation([2, 3, 5, 2, 4]),
|
|
294
|
+
> Transformation([2, 4, 3, 2, 5]), Transformation([4, 4, 2, 1, 2])],
|
|
295
|
+
> [Transformation([1, 4, 2, 4]), Transformation([2, 2, 1, 4]),
|
|
296
|
+
> Transformation([3, 2, 2, 2])],
|
|
297
|
+
> [Transformation([1, 5, 1, 1, 5]),
|
|
298
|
+
> Transformation([4, 3, 1, 3, 2])],
|
|
299
|
+
> [Transformation([1, 3, 4, 4]), Transformation([2, 1, 3, 3]),
|
|
300
|
+
> Transformation([4, 1, 3, 4]), Transformation([4, 2, 3, 3])],
|
|
301
|
+
> [Transformation([4, 3, 2, 2, 1, 4, 2]),
|
|
302
|
+
> Transformation([6, 5, 2, 7, 2, 2, 7])],
|
|
303
|
+
> [Transformation([2, 4, 4, 3]), Transformation([3, 4, 1, 3]),
|
|
304
|
+
> Transformation([4, 1, 3, 2]), Transformation([4, 4, 1, 1])],
|
|
305
|
+
> [Transformation([1, 2, 5, 2, 1]), Transformation([3, 2, 2, 4, 2]),
|
|
306
|
+
> Transformation([4, 5, 1, 1, 2]), Transformation([5, 5, 5, 2, 1])],
|
|
307
|
+
> [Transformation([1, 2, 4, 4]), Transformation([2, 1, 2, 1]),
|
|
308
|
+
> Transformation([2, 3, 2, 3]), Transformation([3, 2, 1, 3]),
|
|
309
|
+
> Transformation([3, 4, 3, 2])],
|
|
310
|
+
> [Transformation([1, 1, 1, 2, 2])],
|
|
311
|
+
> [Transformation([4, 4, 3, 3, 3, 2]),
|
|
312
|
+
> Transformation([4, 6, 3, 6, 4, 3]),
|
|
313
|
+
> Transformation([6, 4, 1, 3, 4, 5])],
|
|
314
|
+
> [Transformation([1, 1, 4, 3]), Transformation([3, 1, 3, 2])],
|
|
315
|
+
> [Transformation([1, 3, 5, 3, 3]), Transformation([1, 5, 4, 4, 3]),
|
|
316
|
+
> Transformation([2, 5, 3, 1, 1])],
|
|
317
|
+
> [Transformation([3, 2, 3, 4]), Transformation([3, 4, 3, 1]),
|
|
318
|
+
> Transformation([3, 4, 4, 4]), Transformation([4, 3, 1, 3])],
|
|
319
|
+
> [Transformation([2, 2, 5, 2, 2, 5]),
|
|
320
|
+
> Transformation([2, 6, 5, 2, 6, 3]),
|
|
321
|
+
> Transformation([4, 2, 4, 5, 5, 6]),
|
|
322
|
+
> Transformation([5, 4, 1, 4, 2, 2])],
|
|
323
|
+
> [Transformation([1, 1, 3, 4]), Transformation([3, 1, 2, 2])],
|
|
324
|
+
> [Transformation([1, 1, 4, 5, 5, 3]),
|
|
325
|
+
> Transformation([6, 4, 4, 5, 6, 5])],
|
|
326
|
+
> [Transformation([1, 4, 5, 3, 1, 7, 3]),
|
|
327
|
+
> Transformation([1, 6, 6, 5, 2, 4, 2])],
|
|
328
|
+
> [Transformation([3, 3, 1, 2, 3]), Transformation([5, 5, 1, 5, 3]),
|
|
329
|
+
> Transformation([5, 5, 5, 5, 2])],
|
|
330
|
+
> [Transformation([1, 2, 5, 1, 5, 6]),
|
|
331
|
+
> Transformation([5, 4, 5, 5, 3, 2])],
|
|
332
|
+
> [Transformation([1, 2, 1, 3]), Transformation([2, 3, 4, 4]),
|
|
333
|
+
> Transformation([4, 1, 1, 1])],
|
|
334
|
+
> [Transformation([1, 2, 2, 3, 2]), Transformation([4, 3, 2, 4, 1]),
|
|
335
|
+
> Transformation([5, 1, 2, 2, 1]), Transformation([5, 2, 4, 1, 4]),
|
|
336
|
+
> Transformation([5, 5, 4, 2, 2])],
|
|
337
|
+
> [Transformation([2, 1, 2, 3]), Transformation([2, 2, 3, 2])],
|
|
338
|
+
> [Transformation([4, 2, 1, 3])],
|
|
339
|
+
> [Transformation([1, 2, 3, 4]), Transformation([2, 2, 3, 4]),
|
|
340
|
+
> Transformation([2, 2, 4, 3])],
|
|
341
|
+
> [Transformation([2, 1, 2, 1]), Transformation([3, 4, 2, 4])],
|
|
342
|
+
> [Transformation([3, 4, 1, 2, 2, 2]),
|
|
343
|
+
> Transformation([4, 4, 4, 2, 5, 3]),
|
|
344
|
+
> Transformation([5, 6, 6, 5, 5, 4])],
|
|
345
|
+
> [Transformation([1, 4, 1, 6, 4, 6]),
|
|
346
|
+
> Transformation([2, 4, 2, 5, 5, 6]),
|
|
347
|
+
> Transformation([3, 6, 2, 1, 4, 6]),
|
|
348
|
+
> Transformation([4, 6, 2, 4, 1, 2])],
|
|
349
|
+
> [Transformation([1, 3, 3, 3]), Transformation([2, 1, 3, 1]),
|
|
350
|
+
> Transformation([3, 1, 2, 3])],
|
|
351
|
+
> [Transformation([1, 4, 1, 2]), Transformation([2, 2, 3, 2]),
|
|
352
|
+
> Transformation([3, 3, 4, 3]), Transformation([4, 3, 3, 4]),
|
|
353
|
+
> Transformation([4, 4, 4, 2])],
|
|
354
|
+
> [Transformation([1, 2, 1, 4]), Transformation([4, 1, 1, 2]),
|
|
355
|
+
> Transformation([4, 3, 3, 2])],
|
|
356
|
+
> [Transformation([2, 3, 6, 7, 1, 2, 6])],
|
|
357
|
+
> [Transformation([4, 1, 1, 3, 3, 3])],
|
|
358
|
+
> [Transformation([3, 3, 2, 7, 5, 5, 1]),
|
|
359
|
+
> Transformation([3, 5, 5, 4, 1, 3, 2]),
|
|
360
|
+
> Transformation([4, 1, 3, 6, 6, 6, 5]),
|
|
361
|
+
> Transformation([7, 2, 7, 2, 7, 7, 2])],
|
|
362
|
+
> [Transformation([1, 1, 7, 5, 2, 1, 2]),
|
|
363
|
+
> Transformation([2, 7, 2, 6, 7, 5, 7]),
|
|
364
|
+
> Transformation([4, 5, 7, 4, 3, 1, 4])],
|
|
365
|
+
> [Transformation([3, 6, 4, 4, 2, 5, 1]),
|
|
366
|
+
> Transformation([4, 1, 2, 5, 7, 7, 3]),
|
|
367
|
+
> Transformation([4, 4, 1, 1, 6, 2, 7]),
|
|
368
|
+
> Transformation([5, 7, 6, 6, 1, 4, 5])],
|
|
369
|
+
> [Transformation([1, 1, 1, 2]), Transformation([1, 3, 1, 3]),
|
|
370
|
+
> Transformation([1, 4, 3, 3]), Transformation([3, 1, 1, 1]),
|
|
371
|
+
> Transformation([4, 2, 3, 4])],
|
|
372
|
+
> [Transformation([1, 3, 3, 2, 1, 3]),
|
|
373
|
+
> Transformation([1, 5, 5, 6, 5, 2]),
|
|
374
|
+
> Transformation([6, 3, 1, 1, 5, 5]),
|
|
375
|
+
> Transformation([6, 3, 1, 5, 2, 4])],
|
|
376
|
+
> [Transformation([2, 6, 1, 3, 1, 5]),
|
|
377
|
+
> Transformation([4, 3, 3, 5, 5, 5]),
|
|
378
|
+
> Transformation([4, 5, 6, 4, 4, 2]),
|
|
379
|
+
> Transformation([6, 3, 5, 4, 1, 4])],
|
|
380
|
+
> [Transformation([3, 1, 2, 2, 3]), Transformation([3, 2, 1, 2, 5]),
|
|
381
|
+
> Transformation([3, 3, 4, 2, 4])],
|
|
382
|
+
> [Transformation([1, 7, 1, 6, 6, 5, 3]),
|
|
383
|
+
> Transformation([2, 6, 5, 6, 1, 5, 6]),
|
|
384
|
+
> Transformation([3, 4, 6, 1, 5, 1, 6]),
|
|
385
|
+
> Transformation([7, 5, 7, 2, 5, 7, 4])],
|
|
386
|
+
> [Transformation([2, 1, 2, 2, 4]),
|
|
387
|
+
> Transformation([2, 1, 4, 1, 3]),
|
|
388
|
+
> Transformation([3, 3, 1, 3, 2]),
|
|
389
|
+
> Transformation([5, 4, 5, 4, 5])],
|
|
390
|
+
> [Transformation([2, 1, 4, 3]), Transformation([2, 3, 4, 4]),
|
|
391
|
+
> Transformation([3, 3, 1, 1])],
|
|
392
|
+
> [Transformation([2, 1, 1, 2])],
|
|
393
|
+
> [Transformation([1, 3, 1, 3, 3]), Transformation([2, 1, 1, 4, 1]),
|
|
394
|
+
> Transformation([4, 5, 1, 5, 4]), Transformation([5, 4, 3, 4, 2]),
|
|
395
|
+
> Transformation([5, 5, 5, 3, 4])],
|
|
396
|
+
> [Transformation([5, 5, 5, 5, 5])],
|
|
397
|
+
> [Transformation([3, 2, 1, 2, 6, 6]),
|
|
398
|
+
> Transformation([6, 2, 1, 4, 3, 2])],
|
|
399
|
+
> [Transformation([3, 4, 4, 2, 4, 7, 2]),
|
|
400
|
+
> Transformation([4, 1, 7, 7, 7, 1, 3]),
|
|
401
|
+
> Transformation([5, 5, 5, 4, 4, 3, 4]),
|
|
402
|
+
> Transformation([6, 6, 6, 3, 6, 7, 2]),
|
|
403
|
+
> Transformation([7, 7, 5, 1, 7, 2, 3])],
|
|
404
|
+
> [Transformation([1, 5, 3, 3, 1, 2, 2]),
|
|
405
|
+
> Transformation([3, 4, 1, 6, 3, 4, 5]),
|
|
406
|
+
> Transformation([4, 1, 2, 1, 6, 7, 5]),
|
|
407
|
+
> Transformation([4, 2, 7, 2, 4, 1, 1]),
|
|
408
|
+
> Transformation([7, 7, 7, 1, 5, 4, 4])],
|
|
409
|
+
> [Transformation([1, 3, 2, 6, 5, 5]),
|
|
410
|
+
> Transformation([3, 1, 2, 5, 6, 2]),
|
|
411
|
+
> Transformation([5, 5, 1, 5, 3, 5]),
|
|
412
|
+
> Transformation([6, 6, 1, 5, 6, 2])],
|
|
413
|
+
> [Transformation([1, 4, 3, 3, 4, 3]),
|
|
414
|
+
> Transformation([3, 1, 2, 5, 2, 5]),
|
|
415
|
+
> Transformation([3, 2, 1, 6, 5, 4]),
|
|
416
|
+
> Transformation([5, 2, 1, 1, 3, 1]),
|
|
417
|
+
> Transformation([6, 4, 1, 1, 1, 1])],
|
|
418
|
+
> [Transformation([4, 2, 3, 3, 4])],
|
|
419
|
+
> [Transformation([1, 4, 4, 4, 3, 1, 5]),
|
|
420
|
+
> Transformation([4, 7, 3, 6, 1, 7, 6])],
|
|
421
|
+
> [Transformation([4, 3, 5, 7, 7, 1, 6])],
|
|
422
|
+
> [Transformation([2, 2, 4, 1])],
|
|
423
|
+
> [Transformation([1, 1, 2, 6, 4, 6]),
|
|
424
|
+
> Transformation([4, 2, 3, 1, 2, 2]),
|
|
425
|
+
> Transformation([4, 2, 4, 3, 6, 5])],
|
|
426
|
+
> [Transformation([2, 3, 6, 4, 7, 4, 6]),
|
|
427
|
+
> Transformation([4, 4, 3, 2, 6, 4, 6]),
|
|
428
|
+
> Transformation([4, 6, 6, 5, 4, 6, 7]),
|
|
429
|
+
> Transformation([5, 6, 1, 6, 3, 5, 1])],
|
|
430
|
+
> [Transformation([1, 1, 5, 3, 1]),
|
|
431
|
+
> Transformation([2, 2, 4, 2, 3]),
|
|
432
|
+
> Transformation([2, 3, 4, 4, 5]),
|
|
433
|
+
> Transformation([2, 4, 2, 4, 5])],
|
|
434
|
+
> [Transformation([3, 1, 1, 5, 3]),
|
|
435
|
+
> Transformation([3, 3, 5, 3, 1])],
|
|
436
|
+
> [Transformation([4, 3, 3, 5, 2, 5]),
|
|
437
|
+
> Transformation([6, 1, 2, 4, 1, 3])],
|
|
438
|
+
> [Transformation([2, 3, 4, 3, 3]), Transformation([3, 5, 2, 4, 2]),
|
|
439
|
+
> Transformation([3, 5, 2, 5, 2]),
|
|
440
|
+
> Transformation([5, 3, 3, 5, 2])]];;
|
|
441
|
+
gap> semis := List(gens, Semigroup);;
|
|
442
|
+
gap> res := List(semis, x -> [NrRClasses(x), Size(x)]);
|
|
443
|
+
[ [ 3, 4 ], [ 2, 10 ], [ 3, 14 ], [ 12, 211 ], [ 4, 28 ], [ 378, 4818 ],
|
|
444
|
+
[ 2, 5 ], [ 92, 7142 ], [ 81, 615 ], [ 2, 4 ], [ 158, 2255 ], [ 18, 99 ],
|
|
445
|
+
[ 9, 50 ], [ 16, 76 ], [ 17, 77 ], [ 6, 13 ], [ 19, 330 ], [ 120, 1263 ],
|
|
446
|
+
[ 1, 1 ], [ 14, 53 ], [ 216, 1306 ], [ 6, 12 ], [ 15, 235 ], [ 23, 235 ],
|
|
447
|
+
[ 2, 2 ], [ 3, 9 ], [ 2, 2 ], [ 17, 206 ], [ 22, 506 ], [ 24, 340 ],
|
|
448
|
+
[ 7, 39 ], [ 99, 495 ], [ 10, 18 ], [ 10, 100 ], [ 34, 843 ], [ 14, 210 ],
|
|
449
|
+
[ 546, 3538 ], [ 2, 3 ], [ 2, 3 ], [ 35, 448 ], [ 21, 515 ], [ 9, 14 ],
|
|
450
|
+
[ 5, 11 ], [ 17, 23 ], [ 28, 763 ], [ 15, 199 ], [ 21, 170 ], [ 11, 142 ],
|
|
451
|
+
[ 2, 2 ], [ 33, 1259 ], [ 6, 25 ], [ 64, 426 ], [ 9, 40 ], [ 46, 388 ],
|
|
452
|
+
[ 6, 25 ], [ 11, 49 ], [ 48, 391 ], [ 7, 40 ], [ 13, 18 ], [ 6, 48 ],
|
|
453
|
+
[ 30, 792 ], [ 7, 11 ], [ 1, 3 ], [ 2, 3 ], [ 8, 17 ], [ 15, 115 ],
|
|
454
|
+
[ 49, 1724 ], [ 8, 45 ], [ 6, 46 ], [ 8, 66 ], [ 2, 4 ], [ 1, 3 ],
|
|
455
|
+
[ 322, 4344 ], [ 30, 661 ], [ 1597, 63890 ], [ 10, 76 ], [ 173, 9084 ],
|
|
456
|
+
[ 74, 3931 ], [ 15, 117 ], [ 163, 4804 ], [ 14, 106 ], [ 10, 28 ],
|
|
457
|
+
[ 1, 2 ], [ 53, 328 ], [ 1, 1 ], [ 17, 26 ], [ 172, 1443 ], [ 230, 15176 ],
|
|
458
|
+
[ 83, 1382 ], [ 158, 1074 ], [ 2, 2 ], [ 26, 535 ], [ 3, 6 ], [ 3, 3 ],
|
|
459
|
+
[ 44, 1834 ], [ 158, 1776 ], [ 19, 326 ], [ 9, 45 ], [ 32, 379 ],
|
|
460
|
+
[ 23, 149 ] ]
|
|
461
|
+
gap> m := semis[32];;
|
|
462
|
+
gap> Size(m);
|
|
463
|
+
495
|
|
464
|
+
gap> ForAll(GreensRClasses(m), x -> ForAll(Idempotents(x), y -> y in x));
|
|
465
|
+
true
|
|
466
|
+
gap> idem := Set(Concatenation(List(GreensRClasses(m), Idempotents)));
|
|
467
|
+
[ Transformation( [ 1, 1, 1, 1, 1, 1, 1 ] ),
|
|
468
|
+
Transformation( [ 1, 1, 1, 1, 1, 1 ] ),
|
|
469
|
+
Transformation( [ 1, 1, 1, 4, 1, 1, 1 ] ),
|
|
470
|
+
Transformation( [ 1, 1, 3, 1, 1, 1, 1 ] ),
|
|
471
|
+
Transformation( [ 1, 1, 3, 1, 1, 1, 3 ] ),
|
|
472
|
+
Transformation( [ 1, 1, 3, 1, 1, 1 ] ),
|
|
473
|
+
Transformation( [ 1, 1, 3, 3, 1, 1, 1 ] ),
|
|
474
|
+
Transformation( [ 1, 1, 3, 3, 1, 1, 3 ] ),
|
|
475
|
+
Transformation( [ 1, 1, 3, 3, 1, 1 ] ),
|
|
476
|
+
Transformation( [ 1, 1, 3, 6, 6, 6 ] ),
|
|
477
|
+
Transformation( [ 1, 1, 4, 4, 1, 1, 1 ] ),
|
|
478
|
+
Transformation( [ 1, 1, 4, 4, 1, 1, 4 ] ),
|
|
479
|
+
Transformation( [ 1, 1, 7, 1, 1, 1, 7 ] ),
|
|
480
|
+
Transformation( [ 1, 1, 7, 7, 1, 1, 7 ] ),
|
|
481
|
+
Transformation( [ 1, 2, 1, 1, 1, 1, 1 ] ),
|
|
482
|
+
Transformation( [ 1, 2, 1, 1, 1, 1, 2 ] ),
|
|
483
|
+
Transformation( [ 1, 2, 1, 1, 1, 1 ] ),
|
|
484
|
+
Transformation( [ 1, 2, 2, 2, 1, 1, 2 ] ),
|
|
485
|
+
Transformation( [ 1, 2, 2, 2, 2, 1, 2 ] ),
|
|
486
|
+
Transformation( [ 1, 2, 3, 3, 1, 1 ] ),
|
|
487
|
+
Transformation( [ 1, 2, 7, 7, 1, 1, 7 ] ),
|
|
488
|
+
Transformation( [ 1, 3, 3, 3, 1, 1, 3 ] ),
|
|
489
|
+
Transformation( [ 1, 3, 3, 3, 3, 1, 3 ] ),
|
|
490
|
+
Transformation( [ 1, 4, 4, 4, 1, 1, 4 ] ),
|
|
491
|
+
Transformation( [ 1, 4, 4, 4, 4, 1, 4 ] ),
|
|
492
|
+
Transformation( [ 1, 5, 5, 5, 5, 1, 5 ] ),
|
|
493
|
+
Transformation( [ 1, 7, 1, 1, 1, 1, 7 ] ),
|
|
494
|
+
Transformation( [ 1, 7, 3, 3, 1, 1, 7 ] ),
|
|
495
|
+
Transformation( [ 1, 7, 7, 7, 1, 1, 7 ] ),
|
|
496
|
+
Transformation( [ 1, 7, 7, 7, 7, 1, 7 ] ),
|
|
497
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 2 ] ),
|
|
498
|
+
Transformation( [ 2, 2, 2, 2, 2, 2 ] ),
|
|
499
|
+
Transformation( [ 2, 2, 7, 2, 2, 2, 7 ] ),
|
|
500
|
+
Transformation( [ 2, 2, 7, 7, 2, 2, 7 ] ),
|
|
501
|
+
Transformation( [ 3, 3, 3, 3, 3, 3, 3 ] ),
|
|
502
|
+
Transformation( [ 3, 3, 3, 3, 3, 3 ] ),
|
|
503
|
+
Transformation( [ 3, 3, 3, 4, 3, 3, 3 ] ),
|
|
504
|
+
Transformation( [ 3, 7, 3, 3, 3, 3, 7 ] ),
|
|
505
|
+
Transformation( [ 4, 4, 3, 4, 4, 4, 3 ] ),
|
|
506
|
+
Transformation( [ 4, 4, 3, 4, 4, 4, 4 ] ),
|
|
507
|
+
Transformation( [ 4, 4, 4, 4, 4, 4, 4 ] ),
|
|
508
|
+
Transformation( [ 5, 3, 3, 3, 5, 5, 3 ] ),
|
|
509
|
+
Transformation( [ 5, 4, 4, 4, 5, 5, 4 ] ),
|
|
510
|
+
Transformation( [ 5, 5, 3, 3, 5, 5, 3 ] ),
|
|
511
|
+
Transformation( [ 5, 5, 3, 3, 5, 5, 5 ] ),
|
|
512
|
+
Transformation( [ 5, 5, 3, 3, 5, 5 ] ),
|
|
513
|
+
Transformation( [ 5, 5, 3, 4, 5, 5, 3 ] ),
|
|
514
|
+
Transformation( [ 5, 5, 3, 4, 5, 5, 5 ] ),
|
|
515
|
+
Transformation( [ 5, 5, 3, 4, 5, 5 ] ),
|
|
516
|
+
Transformation( [ 5, 5, 3, 5, 5, 5, 3 ] ),
|
|
517
|
+
Transformation( [ 5, 5, 3, 5, 5, 5, 5 ] ),
|
|
518
|
+
Transformation( [ 5, 5, 3, 5, 5, 5 ] ),
|
|
519
|
+
Transformation( [ 5, 5, 4, 4, 5, 5, 4 ] ),
|
|
520
|
+
Transformation( [ 5, 5, 4, 4, 5, 5, 5 ] ),
|
|
521
|
+
Transformation( [ 5, 5, 5, 4, 5, 5, 5 ] ),
|
|
522
|
+
Transformation( [ 5, 5, 5, 5, 5, 5, 5 ] ),
|
|
523
|
+
Transformation( [ 5, 5, 5, 5, 5, 5 ] ),
|
|
524
|
+
Transformation( [ 5, 5, 7, 5, 5, 5, 7 ] ),
|
|
525
|
+
Transformation( [ 5, 5, 7, 7, 5, 5, 7 ] ),
|
|
526
|
+
Transformation( [ 5, 7, 3, 3, 5, 5, 7 ] ),
|
|
527
|
+
Transformation( [ 5, 7, 5, 5, 5, 5, 7 ] ),
|
|
528
|
+
Transformation( [ 5, 7, 7, 7, 5, 5, 7 ] ),
|
|
529
|
+
Transformation( [ 6, 2, 2, 2, 2, 6, 2 ] ),
|
|
530
|
+
Transformation( [ 6, 2, 2, 2, 6, 6, 2 ] ),
|
|
531
|
+
Transformation( [ 6, 2, 6, 6, 6, 6, 2 ] ),
|
|
532
|
+
Transformation( [ 6, 2, 6, 6, 6, 6, 6 ] ),
|
|
533
|
+
Transformation( [ 6, 3, 3, 3, 3, 6, 3 ] ),
|
|
534
|
+
Transformation( [ 6, 3, 3, 3, 6, 6, 3 ] ),
|
|
535
|
+
Transformation( [ 6, 4, 4, 4, 4, 6, 4 ] ),
|
|
536
|
+
Transformation( [ 6, 4, 4, 4, 6, 6, 4 ] ),
|
|
537
|
+
Transformation( [ 6, 5, 5, 5, 5, 6, 5 ] ),
|
|
538
|
+
Transformation( [ 6, 6, 3, 3, 6, 6, 3 ] ),
|
|
539
|
+
Transformation( [ 6, 6, 3, 3, 6, 6, 6 ] ),
|
|
540
|
+
Transformation( [ 6, 6, 3, 3, 6, 6 ] ),
|
|
541
|
+
Transformation( [ 6, 6, 3, 6, 6, 6, 3 ] ),
|
|
542
|
+
Transformation( [ 6, 6, 3, 6, 6, 6, 6 ] ),
|
|
543
|
+
Transformation( [ 6, 6, 3, 6, 6, 6 ] ),
|
|
544
|
+
Transformation( [ 6, 6, 4, 4, 6, 6, 4 ] ),
|
|
545
|
+
Transformation( [ 6, 6, 4, 4, 6, 6, 6 ] ),
|
|
546
|
+
Transformation( [ 6, 6, 6, 4, 6, 6, 6 ] ),
|
|
547
|
+
Transformation( [ 6, 6, 6, 6, 6, 6, 6 ] ),
|
|
548
|
+
Transformation( [ 6, 6, 6, 6, 6, 6 ] ),
|
|
549
|
+
Transformation( [ 6, 6, 7, 6, 6, 6, 7 ] ),
|
|
550
|
+
Transformation( [ 6, 6, 7, 7, 6, 6, 7 ] ),
|
|
551
|
+
Transformation( [ 6, 7, 3, 3, 6, 6, 7 ] ),
|
|
552
|
+
Transformation( [ 6, 7, 6, 6, 6, 6, 7 ] ),
|
|
553
|
+
Transformation( [ 6, 7, 7, 7, 6, 6, 7 ] ),
|
|
554
|
+
Transformation( [ 6, 7, 7, 7, 7, 6, 7 ] ),
|
|
555
|
+
Transformation( [ 7, 2, 7, 7, 7, 7, 7 ] ),
|
|
556
|
+
Transformation( [ 7, 7, 3, 3, 7, 7, 7 ] ),
|
|
557
|
+
Transformation( [ 7, 7, 3, 7, 7, 7, 7 ] ),
|
|
558
|
+
Transformation( [ 7, 7, 7, 7, 7, 7, 7 ] ) ]
|
|
559
|
+
gap> idem = Set(Idempotents(m));
|
|
560
|
+
true
|
|
561
|
+
gap> H := GreensHClasses(m);;
|
|
562
|
+
gap> I := Concatenation(List(GreensRClasses(m), GreensHClasses));;
|
|
563
|
+
gap> ForAll(H, x -> Number(I, y -> Representative(x) in y) = 1);
|
|
564
|
+
true
|
|
565
|
+
gap> m := semis[68];;
|
|
566
|
+
gap> H := GreensHClasses(m);;
|
|
567
|
+
gap> I := Concatenation(List(GreensRClasses(m), GreensHClasses));;
|
|
568
|
+
gap> ForAll(H, x -> Number(I, y -> Representative(x) in y) = 1);
|
|
569
|
+
true
|
|
570
|
+
gap> m := semis[74];;
|
|
571
|
+
gap> r := GreensRClassOfElement(m, Transformation([2, 1, 2, 2, 1, 2, 1]));;
|
|
572
|
+
gap> d := DClassOfRClass(r);;
|
|
573
|
+
gap> dr := GreensRClasses(d);;
|
|
574
|
+
gap> r2 := First(dr, x -> x = r);;
|
|
575
|
+
gap> DClassOfRClass(r2) = d;
|
|
576
|
+
true
|
|
577
|
+
gap> m := Semigroup(GeneratorsOfSemigroup(m));
|
|
578
|
+
<transformation semigroup of degree 7 with 3 generators>
|
|
579
|
+
gap> r := GreensRClassOfElement(m, Transformation([2, 1, 2, 2, 1, 2, 1]));;
|
|
580
|
+
gap> d := DClassOfRClass(r);;
|
|
581
|
+
gap> dr := GreensRClasses(d);;
|
|
582
|
+
gap> r2 := First(dr, x -> x = r);;
|
|
583
|
+
gap> DClassOfRClass(r2) = d;
|
|
584
|
+
true
|
|
585
|
+
gap> res := List(semis, x -> [Length(GreensLClasses(x)), Size(x)]);
|
|
586
|
+
[ [ 3, 4 ], [ 5, 10 ], [ 2, 14 ], [ 19, 211 ], [ 9, 28 ], [ 46, 4818 ],
|
|
587
|
+
[ 2, 5 ], [ 39, 7142 ], [ 25, 615 ], [ 2, 4 ], [ 789, 2255 ], [ 21, 99 ],
|
|
588
|
+
[ 11, 50 ], [ 25, 76 ], [ 42, 77 ], [ 10, 13 ], [ 23, 330 ], [ 87, 1263 ],
|
|
589
|
+
[ 1, 1 ], [ 24, 53 ], [ 195, 1306 ], [ 9, 12 ], [ 15, 235 ], [ 28, 235 ],
|
|
590
|
+
[ 2, 2 ], [ 7, 9 ], [ 2, 2 ], [ 18, 206 ], [ 26, 506 ], [ 25, 340 ],
|
|
591
|
+
[ 10, 39 ], [ 45, 495 ], [ 13, 18 ], [ 11, 100 ], [ 94, 843 ], [ 15, 210 ],
|
|
592
|
+
[ 80, 3538 ], [ 2, 3 ], [ 2, 3 ], [ 103, 448 ], [ 21, 515 ], [ 10, 14 ],
|
|
593
|
+
[ 7, 11 ], [ 14, 23 ], [ 27, 763 ], [ 14, 199 ], [ 20, 170 ], [ 13, 142 ],
|
|
594
|
+
[ 2, 2 ], [ 30, 1259 ], [ 9, 25 ], [ 23, 426 ], [ 17, 40 ], [ 34, 388 ],
|
|
595
|
+
[ 8, 25 ], [ 13, 49 ], [ 31, 391 ], [ 10, 40 ], [ 17, 18 ], [ 12, 48 ],
|
|
596
|
+
[ 68, 792 ], [ 10, 11 ], [ 1, 3 ], [ 2, 3 ], [ 8, 17 ], [ 22, 115 ],
|
|
597
|
+
[ 201, 1724 ], [ 7, 45 ], [ 10, 46 ], [ 11, 66 ], [ 2, 4 ], [ 1, 3 ],
|
|
598
|
+
[ 363, 4344 ], [ 68, 661 ], [ 2423, 63890 ], [ 11, 76 ], [ 57, 9084 ],
|
|
599
|
+
[ 84, 3931 ], [ 12, 117 ], [ 156, 4804 ], [ 16, 106 ], [ 10, 28 ],
|
|
600
|
+
[ 1, 2 ], [ 52, 328 ], [ 1, 1 ], [ 20, 26 ], [ 257, 1443 ], [ 74, 15176 ],
|
|
601
|
+
[ 333, 1382 ], [ 74, 1074 ], [ 2, 2 ], [ 28, 535 ], [ 3, 6 ], [ 3, 3 ],
|
|
602
|
+
[ 35, 1834 ], [ 93, 1776 ], [ 18, 326 ], [ 16, 45 ], [ 25, 379 ],
|
|
603
|
+
[ 33, 149 ] ]
|
|
604
|
+
gap> ForAll(GreensLClasses(m), x ->
|
|
605
|
+
> ForAll(Idempotents(x), y -> y in x));
|
|
606
|
+
true
|
|
607
|
+
gap> idem := Set(Concatenation(List(GreensLClasses(m), Idempotents)));
|
|
608
|
+
[ Transformation( [ 1, 1, 1, 1, 1, 1, 1 ] ),
|
|
609
|
+
Transformation( [ 1, 1, 1, 1, 5, 1, 1 ] ),
|
|
610
|
+
Transformation( [ 1, 1, 1, 1, 5, 1, 5 ] ),
|
|
611
|
+
Transformation( [ 1, 1, 1, 1, 5, 5, 1 ] ),
|
|
612
|
+
Transformation( [ 1, 1, 1, 4, 1, 1, 1 ] ),
|
|
613
|
+
Transformation( [ 1, 1, 1, 4, 1, 4, 1 ] ),
|
|
614
|
+
Transformation( [ 1, 1, 1, 4, 4, 1, 4 ] ),
|
|
615
|
+
Transformation( [ 1, 1, 1, 4, 5, 1, 5 ] ),
|
|
616
|
+
Transformation( [ 1, 1, 1, 5, 5, 1, 5 ] ),
|
|
617
|
+
Transformation( [ 1, 1, 4, 4, 1, 1, 1 ] ),
|
|
618
|
+
Transformation( [ 1, 1, 4, 4, 4, 1, 4 ] ),
|
|
619
|
+
Transformation( [ 1, 1, 5, 5, 5, 1, 5 ] ),
|
|
620
|
+
Transformation( [ 1, 2, 1, 1, 1, 1, 1 ] ),
|
|
621
|
+
Transformation( [ 1, 2, 1, 1, 2, 1, 1 ] ),
|
|
622
|
+
Transformation( [ 1, 2, 1, 1, 2, 1, 2 ] ),
|
|
623
|
+
Transformation( [ 1, 2, 1, 1, 2, 2, 2 ] ),
|
|
624
|
+
Transformation( [ 1, 2, 1, 1, 5, 1, 1 ] ),
|
|
625
|
+
Transformation( [ 1, 2, 1, 2, 2, 1, 2 ] ),
|
|
626
|
+
Transformation( [ 1, 2, 1, 2, 2, 2, 2 ] ),
|
|
627
|
+
Transformation( [ 1, 2, 2, 1, 1, 1, 1 ] ),
|
|
628
|
+
Transformation( [ 1, 2, 2, 1, 1, 2, 1 ] ),
|
|
629
|
+
Transformation( [ 1, 2, 2, 1, 2, 2, 1 ] ),
|
|
630
|
+
Transformation( [ 1, 2, 2, 1, 5, 5, 1 ] ),
|
|
631
|
+
Transformation( [ 1, 4, 1, 4, 4, 1, 4 ] ),
|
|
632
|
+
Transformation( [ 1, 4, 1, 4, 4, 4, 4 ] ),
|
|
633
|
+
Transformation( [ 1, 5, 1, 1, 5, 1, 1 ] ),
|
|
634
|
+
Transformation( [ 1, 5, 1, 1, 5, 1, 5 ] ),
|
|
635
|
+
Transformation( [ 1, 5, 1, 1, 5, 5, 5 ] ),
|
|
636
|
+
Transformation( [ 1, 5, 1, 4, 5, 4, 5 ] ),
|
|
637
|
+
Transformation( [ 1, 5, 1, 5, 5, 1, 5 ] ),
|
|
638
|
+
Transformation( [ 1, 5, 1, 5, 5, 5, 5 ] ),
|
|
639
|
+
Transformation( [ 1, 5, 5, 1, 5, 5, 1 ] ),
|
|
640
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 2 ] ),
|
|
641
|
+
Transformation( [ 2, 2, 2, 2, 2, 6, 2 ] ),
|
|
642
|
+
Transformation( [ 2, 2, 2, 2, 5, 2, 2 ] ),
|
|
643
|
+
Transformation( [ 2, 2, 2, 2, 5, 2, 5 ] ),
|
|
644
|
+
Transformation( [ 2, 2, 2, 2, 5, 5, 2 ] ),
|
|
645
|
+
Transformation( [ 2, 2, 2, 2, 6, 6, 2 ] ),
|
|
646
|
+
Transformation( [ 2, 2, 2, 2, 7, 2, 7 ] ),
|
|
647
|
+
Transformation( [ 2, 2, 2, 5, 5, 2, 5 ] ),
|
|
648
|
+
Transformation( [ 2, 2, 2, 6, 2, 6, 2 ] ),
|
|
649
|
+
Transformation( [ 2, 2, 2, 7, 7, 2, 7 ] ),
|
|
650
|
+
Transformation( [ 2, 2, 5, 5, 5, 2, 5 ] ),
|
|
651
|
+
Transformation( [ 2, 2, 7, 7, 7, 2, 7 ] ),
|
|
652
|
+
Transformation( [ 3, 3, 3, 3, 3, 3, 3 ] ),
|
|
653
|
+
Transformation( [ 3, 3, 3, 3, 5, 3, 3 ] ),
|
|
654
|
+
Transformation( [ 3, 3, 3, 3, 5, 3, 5 ] ),
|
|
655
|
+
Transformation( [ 3, 3, 3, 3, 5, 5, 3 ] ),
|
|
656
|
+
Transformation( [ 3, 3, 3, 3, 7, 3, 7 ] ),
|
|
657
|
+
Transformation( [ 3, 3, 3, 4, 3, 3, 3 ] ),
|
|
658
|
+
Transformation( [ 3, 3, 3, 4, 3, 4, 3 ] ),
|
|
659
|
+
Transformation( [ 3, 3, 3, 4, 4, 3, 4 ] ),
|
|
660
|
+
Transformation( [ 3, 3, 3, 4, 5, 3, 5 ] ),
|
|
661
|
+
Transformation( [ 3, 3, 3, 4, 7, 3, 7 ] ),
|
|
662
|
+
Transformation( [ 3, 3, 3, 5, 5, 3, 5 ] ),
|
|
663
|
+
Transformation( [ 3, 3, 3, 7, 7, 3, 7 ] ),
|
|
664
|
+
Transformation( [ 3, 4, 3, 4, 4, 3, 4 ] ),
|
|
665
|
+
Transformation( [ 3, 4, 3, 4, 4, 4, 4 ] ),
|
|
666
|
+
Transformation( [ 3, 5, 3, 3, 5, 3, 3 ] ),
|
|
667
|
+
Transformation( [ 3, 5, 3, 3, 5, 3, 5 ] ),
|
|
668
|
+
Transformation( [ 3, 5, 3, 3, 5, 5, 5 ] ),
|
|
669
|
+
Transformation( [ 3, 5, 3, 4, 5, 4, 5 ] ),
|
|
670
|
+
Transformation( [ 3, 5, 3, 5, 5, 3, 5 ] ),
|
|
671
|
+
Transformation( [ 3, 5, 3, 5, 5, 5, 5 ] ),
|
|
672
|
+
Transformation( [ 3, 7, 3, 3, 7, 3, 7 ] ),
|
|
673
|
+
Transformation( [ 3, 7, 3, 3, 7, 7, 7 ] ),
|
|
674
|
+
Transformation( [ 3, 7, 3, 4, 7, 4, 7 ] ),
|
|
675
|
+
Transformation( [ 3, 7, 3, 7, 7, 3, 7 ] ),
|
|
676
|
+
Transformation( [ 3, 7, 3, 7, 7, 7, 7 ] ),
|
|
677
|
+
Transformation( [ 4, 3, 3, 4, 3, 3, 4 ] ),
|
|
678
|
+
Transformation( [ 4, 3, 3, 4, 4, 3, 4 ] ),
|
|
679
|
+
Transformation( [ 4, 3, 3, 4, 4, 4, 4 ] ),
|
|
680
|
+
Transformation( [ 4, 3, 3, 4, 5, 5, 4 ] ),
|
|
681
|
+
Transformation( [ 4, 4, 4, 4, 4, 4, 4 ] ),
|
|
682
|
+
Transformation( [ 4, 4, 4, 4, 5, 4, 4 ] ),
|
|
683
|
+
Transformation( [ 4, 4, 4, 4, 5, 4, 5 ] ),
|
|
684
|
+
Transformation( [ 4, 4, 4, 4, 5, 5, 4 ] ),
|
|
685
|
+
Transformation( [ 4, 4, 4, 4, 7, 4, 7 ] ),
|
|
686
|
+
Transformation( [ 4, 5, 4, 4, 5, 4, 4 ] ),
|
|
687
|
+
Transformation( [ 4, 5, 4, 4, 5, 4, 5 ] ),
|
|
688
|
+
Transformation( [ 4, 5, 4, 4, 5, 5, 5 ] ),
|
|
689
|
+
Transformation( [ 4, 5, 5, 4, 5, 5, 4 ] ),
|
|
690
|
+
Transformation( [ 4, 7, 4, 4, 7, 4, 7 ] ),
|
|
691
|
+
Transformation( [ 4, 7, 4, 4, 7, 7, 7 ] ),
|
|
692
|
+
Transformation( [ 5, 2, 2, 5, 5, 2, 5 ] ),
|
|
693
|
+
Transformation( [ 5, 2, 2, 5, 5, 5, 5 ] ),
|
|
694
|
+
Transformation( [ 5, 2, 5, 5, 5, 5, 5 ] ),
|
|
695
|
+
Transformation( [ 5, 3, 3, 5, 5, 3, 5 ] ),
|
|
696
|
+
Transformation( [ 5, 3, 3, 5, 5, 5, 5 ] ),
|
|
697
|
+
Transformation( [ 5, 5, 3, 3, 5, 5, 5 ] ),
|
|
698
|
+
Transformation( [ 5, 5, 4, 4, 5, 5, 5 ] ),
|
|
699
|
+
Transformation( [ 5, 5, 5, 4, 5, 4, 5 ] ),
|
|
700
|
+
Transformation( [ 5, 5, 5, 4, 5, 5, 5 ] ),
|
|
701
|
+
Transformation( [ 5, 5, 5, 5, 5, 5, 5 ] ),
|
|
702
|
+
Transformation( [ 6, 2, 2, 6, 6, 6, 6 ] ),
|
|
703
|
+
Transformation( [ 6, 2, 6, 2, 2, 6, 2 ] ),
|
|
704
|
+
Transformation( [ 6, 2, 6, 6, 2, 6, 2 ] ),
|
|
705
|
+
Transformation( [ 6, 2, 6, 6, 2, 6, 6 ] ),
|
|
706
|
+
Transformation( [ 6, 2, 6, 6, 6, 6, 6 ] ),
|
|
707
|
+
Transformation( [ 6, 6, 6, 6, 6, 6, 6 ] ),
|
|
708
|
+
Transformation( [ 6, 6, 6, 6, 7, 6, 7 ] ),
|
|
709
|
+
Transformation( [ 6, 6, 6, 7, 7, 6, 7 ] ),
|
|
710
|
+
Transformation( [ 6, 6, 7, 7, 7, 6, 7 ] ),
|
|
711
|
+
Transformation( [ 6, 7, 6, 6, 7, 6, 7 ] ),
|
|
712
|
+
Transformation( [ 6, 7, 6, 7, 7, 6, 7 ] ),
|
|
713
|
+
Transformation( [ 7, 2, 2, 7, 2, 2, 7 ] ),
|
|
714
|
+
Transformation( [ 7, 2, 2, 7, 5, 5, 7 ] ),
|
|
715
|
+
Transformation( [ 7, 2, 2, 7, 6, 6, 7 ] ),
|
|
716
|
+
Transformation( [ 7, 2, 2, 7, 7, 2, 7 ] ),
|
|
717
|
+
Transformation( [ 7, 2, 2, 7, 7, 7, 7 ] ),
|
|
718
|
+
Transformation( [ 7, 2, 7, 7, 2, 7, 7 ] ),
|
|
719
|
+
Transformation( [ 7, 2, 7, 7, 5, 7, 7 ] ),
|
|
720
|
+
Transformation( [ 7, 2, 7, 7, 7, 7, 7 ] ),
|
|
721
|
+
Transformation( [ 7, 3, 3, 7, 3, 3, 7 ] ),
|
|
722
|
+
Transformation( [ 7, 3, 3, 7, 7, 3, 7 ] ),
|
|
723
|
+
Transformation( [ 7, 3, 3, 7, 7, 7, 7 ] ),
|
|
724
|
+
Transformation( [ 7, 5, 5, 7, 5, 5, 7 ] ),
|
|
725
|
+
Transformation( [ 7, 5, 7, 7, 5, 7, 7 ] ),
|
|
726
|
+
Transformation( [ 7, 6, 6, 7, 6, 6, 7 ] ),
|
|
727
|
+
Transformation( [ 7, 6, 6, 7, 7, 6, 7 ] ),
|
|
728
|
+
Transformation( [ 7, 7, 3, 3, 7, 7, 7 ] ),
|
|
729
|
+
Transformation( [ 7, 7, 4, 4, 7, 7, 7 ] ),
|
|
730
|
+
Transformation( [ 7, 7, 7, 4, 7, 4, 7 ] ),
|
|
731
|
+
Transformation( [ 7, 7, 7, 4, 7, 7, 7 ] ),
|
|
732
|
+
Transformation( [ 7, 7, 7, 6, 7, 6, 7 ] ),
|
|
733
|
+
Transformation( [ 7, 7, 7, 7, 5, 5, 7 ] ),
|
|
734
|
+
Transformation( [ 7, 7, 7, 7, 5, 7, 7 ] ),
|
|
735
|
+
Transformation( [ 7, 7, 7, 7, 6, 6, 7 ] ),
|
|
736
|
+
Transformation( [ 7, 7, 7, 7, 7, 6, 7 ] ),
|
|
737
|
+
Transformation( [ 7, 7, 7, 7, 7, 7, 7 ] ) ]
|
|
738
|
+
gap> idem = Set(Idempotents(m));
|
|
739
|
+
true
|
|
740
|
+
gap> m := semis[30];;
|
|
741
|
+
gap> r := GreensLClassOfElement(m, Transformation([3, 3, 3, 3, 3, 3, 5]));;
|
|
742
|
+
gap> d := DClassOfLClass(r);;
|
|
743
|
+
gap> dr := GreensLClasses(d);;
|
|
744
|
+
gap> r2 := First(dr, x -> x = r);;
|
|
745
|
+
gap> DClassOfLClass(r2) = d;
|
|
746
|
+
true
|
|
747
|
+
gap> m := Semigroup(GeneratorsOfSemigroup(m));
|
|
748
|
+
<transformation semigroup of degree 7 with 2 generators>
|
|
749
|
+
gap> r := GreensLClassOfElement(m, Transformation([3, 3, 3, 3, 3, 3, 5]));
|
|
750
|
+
<Green's L-class: Transformation( [ 3, 3, 3, 3, 3, 3, 5 ] )>
|
|
751
|
+
gap> Transformation([3, 3, 3, 3, 3, 3, 5]) in last;
|
|
752
|
+
true
|
|
753
|
+
gap> d := DClassOfLClass(r);;
|
|
754
|
+
gap> dr := GreensLClasses(d);;
|
|
755
|
+
gap> r2 := First(dr, x -> x = r);;
|
|
756
|
+
gap> DClassOfLClass(r2) = d;
|
|
757
|
+
true
|
|
758
|
+
gap> List(semis, s -> Length(GreensHClasses(s)));
|
|
759
|
+
[ 3, 5, 3, 77, 13, 1281, 2, 1032, 231, 2, 1355, 57, 28, 48, 57, 12, 139, 508,
|
|
760
|
+
1, 36, 801, 10, 71, 130, 2, 7, 2, 83, 158, 172, 22, 285, 17, 40, 377, 67,
|
|
761
|
+
1285, 2, 2, 212, 153, 14, 9, 22, 239, 65, 91, 55, 2, 367, 15, 168, 26, 207,
|
|
762
|
+
14, 29, 274, 22, 17, 26, 253, 10, 1, 2, 13, 64, 605, 20, 25, 33, 2, 1,
|
|
763
|
+
1520, 307, 9625, 41, 1885, 945, 54, 1297, 58, 18, 1, 173, 1, 25, 737, 2807,
|
|
764
|
+
636, 495, 2, 201, 3, 3, 471, 715, 118, 28, 197, 88 ]
|
|
765
|
+
gap> ForAll(semis, s ->
|
|
766
|
+
> Number(GreensHClasses(s), IsGroupHClass) = Length(Idempotents(s)));
|
|
767
|
+
true
|
|
768
|
+
gap> List(semis, s -> Number(GreensDClasses(s), IsRegularDClass));
|
|
769
|
+
[ 1, 2, 2, 4, 3, 6, 1, 5, 4, 1, 6, 3, 3, 4, 3, 3, 4, 4, 1, 4, 6, 4, 4, 4, 1,
|
|
770
|
+
2, 1, 3, 5, 5, 3, 5, 3, 3, 5, 4, 6, 1, 1, 4, 4, 3, 3, 4, 4, 4, 4, 3, 1, 4,
|
|
771
|
+
3, 4, 4, 4, 4, 3, 6, 3, 3, 3, 4, 3, 1, 2, 2, 4, 4, 3, 3, 3, 1, 1, 5, 3, 7,
|
|
772
|
+
3, 5, 5, 5, 5, 2, 3, 1, 4, 1, 4, 5, 6, 5, 5, 1, 3, 1, 1, 6, 4, 3, 3, 4, 3 ]
|
|
773
|
+
gap> List(semis, s -> Set(GreensDClasses(s), x -> Length(Idempotents(x))));
|
|
774
|
+
[ [ 0, 1 ], [ 1, 4 ], [ 1, 2 ], [ 1, 5, 7, 30 ], [ 1, 4 ],
|
|
775
|
+
[ 0, 1, 6, 11, 167, 168 ], [ 0, 1 ], [ 2, 6, 42, 169, 197 ],
|
|
776
|
+
[ 0, 2, 5, 18, 58 ], [ 0, 1 ], [ 0, 1, 5, 8, 46, 159 ], [ 0, 1, 5, 19 ],
|
|
777
|
+
[ 0, 2, 4, 11 ], [ 0, 1, 2, 4, 14 ], [ 0, 1, 3, 12 ], [ 0, 1, 2, 3 ],
|
|
778
|
+
[ 2, 5, 17, 39 ], [ 0, 1, 6, 24, 137 ], [ 1 ], [ 0, 1, 3, 10 ],
|
|
779
|
+
[ 0, 1, 4, 6, 7, 221 ], [ 0, 1, 2, 3 ], [ 1, 4, 12, 24 ], [ 0, 1, 7, 34 ],
|
|
780
|
+
[ 0, 1 ], [ 0, 1, 3 ], [ 0, 1 ], [ 0, 5, 9, 36 ], [ 0, 1, 5, 17, 50 ],
|
|
781
|
+
[ 0, 1, 7, 63 ], [ 0, 1, 4, 8 ], [ 0, 1, 2, 7, 13, 69 ], [ 0, 1, 2, 4 ],
|
|
782
|
+
[ 4, 17 ], [ 0, 1, 2, 6, 20, 93 ], [ 1, 4, 10, 24 ], [ 0, 1, 7, 105, 199 ],
|
|
783
|
+
[ 0, 1 ], [ 0, 1 ], [ 0, 1, 5, 13, 48 ], [ 1, 5, 20, 51 ], [ 0, 1, 2, 3 ],
|
|
784
|
+
[ 0, 1, 3 ], [ 0, 1, 2, 3 ], [ 2, 7, 27, 82 ], [ 1, 4, 9, 24 ],
|
|
785
|
+
[ 0, 1, 3, 5, 38 ], [ 4, 6, 24 ], [ 0, 1 ], [ 1, 6, 47, 121 ],
|
|
786
|
+
[ 0, 1, 4, 5 ], [ 0, 1, 5, 14, 42 ], [ 0, 1, 3, 8 ], [ 0, 1, 6, 80 ],
|
|
787
|
+
[ 1, 3, 6 ], [ 0, 1, 4, 11 ], [ 0, 1, 4, 6, 20, 65 ], [ 0, 1, 4, 10 ],
|
|
788
|
+
[ 0, 1, 2 ], [ 2, 4, 10 ], [ 0, 1, 5, 34, 62 ], [ 0, 1, 2 ], [ 1 ], [ 1 ],
|
|
789
|
+
[ 0, 3, 4 ], [ 0, 1, 6, 26 ], [ 0, 2, 6, 47, 121 ], [ 2, 3, 10 ],
|
|
790
|
+
[ 1, 4, 11 ], [ 3, 4, 15 ], [ 0, 1 ], [ 1 ], [ 0, 1, 3, 7, 122, 248 ],
|
|
791
|
+
[ 0, 7, 12, 111 ], [ 0, 1, 7, 9, 258, 430, 889 ], [ 0, 1, 4, 20 ],
|
|
792
|
+
[ 0, 1, 6, 12, 231, 324 ], [ 0, 1, 3, 6, 143, 163 ], [ 1, 3, 4, 24 ],
|
|
793
|
+
[ 0, 1, 5, 7, 140, 277 ], [ 0, 5, 23 ], [ 0, 1, 4 ], [ 1 ], [ 0, 1, 5, 52 ],
|
|
794
|
+
[ 1 ], [ 0, 1, 2 ], [ 0, 1, 7, 11, 177 ], [ 0, 1, 2, 7, 38, 390, 434 ],
|
|
795
|
+
[ 0, 5, 9, 40, 114 ], [ 0, 1, 2, 6, 32, 65 ], [ 0, 1 ], [ 0, 6, 16, 74 ],
|
|
796
|
+
[ 0, 1 ], [ 0, 1 ], [ 1, 4, 6, 65, 114 ], [ 0, 1, 7, 40, 200 ],
|
|
797
|
+
[ 0, 5, 8, 44 ], [ 0, 1, 3, 10 ], [ 0, 1, 6, 73 ], [ 0, 1, 4, 33 ] ]
|
|
798
|
+
gap> List(semis, x -> [Length(GreensDClasses(x))]);
|
|
799
|
+
[ [ 3 ], [ 2 ], [ 2 ], [ 4 ], [ 3 ], [ 9 ], [ 2 ], [ 5 ], [ 6 ], [ 2 ],
|
|
800
|
+
[ 75 ], [ 10 ], [ 4 ], [ 8 ], [ 12 ], [ 5 ], [ 4 ], [ 16 ], [ 1 ], [ 10 ],
|
|
801
|
+
[ 101 ], [ 5 ], [ 4 ], [ 8 ], [ 2 ], [ 3 ], [ 2 ], [ 6 ], [ 7 ], [ 6 ],
|
|
802
|
+
[ 4 ], [ 19 ], [ 8 ], [ 3 ], [ 13 ], [ 4 ], [ 36 ], [ 2 ], [ 2 ], [ 14 ],
|
|
803
|
+
[ 4 ], [ 7 ], [ 4 ], [ 11 ], [ 4 ], [ 4 ], [ 7 ], [ 3 ], [ 2 ], [ 4 ],
|
|
804
|
+
[ 4 ], [ 7 ], [ 6 ], [ 16 ], [ 4 ], [ 7 ], [ 8 ], [ 4 ], [ 13 ], [ 3 ],
|
|
805
|
+
[ 7 ], [ 7 ], [ 1 ], [ 2 ], [ 4 ], [ 9 ], [ 10 ], [ 3 ], [ 3 ], [ 3 ],
|
|
806
|
+
[ 2 ], [ 1 ], [ 54 ], [ 10 ], [ 32 ], [ 4 ], [ 7 ], [ 15 ], [ 5 ], [ 22 ],
|
|
807
|
+
[ 7 ], [ 5 ], [ 1 ], [ 17 ], [ 1 ], [ 14 ], [ 62 ], [ 11 ], [ 26 ], [ 15 ],
|
|
808
|
+
[ 2 ], [ 8 ], [ 3 ], [ 3 ], [ 6 ], [ 19 ], [ 4 ], [ 5 ], [ 6 ], [ 13 ] ]
|
|
809
|
+
gap> List(semis, s -> Length(Idempotents(s)));
|
|
810
|
+
[ 1, 5, 3, 43, 9, 354, 1, 416, 83, 1, 220, 25, 17, 21, 16, 6, 63, 168, 1, 15,
|
|
811
|
+
240, 8, 41, 43, 1, 4, 1, 50, 74, 79, 13, 92, 7, 25, 122, 39, 314, 1, 1, 67,
|
|
812
|
+
77, 6, 7, 7, 118, 38, 47, 34, 1, 175, 10, 62, 13, 93, 11, 16, 97, 15, 4,
|
|
813
|
+
16, 102, 4, 1, 2, 7, 34, 176, 15, 16, 22, 1, 1, 381, 130, 1595, 25, 574,
|
|
814
|
+
316, 33, 430, 28, 9, 1, 63, 1, 5, 197, 872, 173, 106, 1, 96, 1, 1, 191,
|
|
815
|
+
248, 57, 14, 86, 38 ]
|
|
816
|
+
gap> a := Transformation([2, 1, 4, 5, 6, 3]);;
|
|
817
|
+
gap> b := Transformation([2, 3, 1, 5, 4, 1]);;
|
|
818
|
+
gap> M := Semigroup(a, b);;
|
|
819
|
+
gap> GreensLClassOfElement(M, a);
|
|
820
|
+
<Green's L-class: Transformation( [ 2, 1, 4, 5, 6, 3 ] )>
|
|
821
|
+
gap> Transformation([2, 1, 4, 5, 6, 3]) in last;
|
|
822
|
+
true
|
|
823
|
+
gap> f := FreeSemigroup(3);;
|
|
824
|
+
gap> a := f.1;; b := f.2;; c := f.3;;
|
|
825
|
+
gap> s := f / [[a ^ 2, a], [b ^ 2, b], [c ^ 2, c], [a * b, a],
|
|
826
|
+
> [b * a, b], [a * c, a], [c * a, c], [b * c, b], [c * b, c]];
|
|
827
|
+
<fp semigroup with 3 generators and 9 relations of length 30>
|
|
828
|
+
gap> Size(s);
|
|
829
|
+
3
|
|
830
|
+
gap> GreensLClassOfElement(s, s.1);
|
|
831
|
+
<Green's L-class: s1>
|
|
832
|
+
gap> gens := [Transformation([2, 2, 5, 2, 3]),
|
|
833
|
+
> Transformation([2, 5, 3, 5, 3])];;
|
|
834
|
+
gap> S := Semigroup(gens);;
|
|
835
|
+
gap> f := Transformation([5, 5, 3, 5, 3]);;
|
|
836
|
+
gap> GreensHClassOfElement(S, f);;
|
|
837
|
+
gap> Representative(last);
|
|
838
|
+
Transformation( [ 5, 5, 3, 5, 3 ] )
|
|
839
|
+
gap> IsTrivial(SchutzenbergerGroup(last2));
|
|
840
|
+
true
|
|
841
|
+
gap> gens := [Transformation([4, 1, 4, 5, 3]),
|
|
842
|
+
> Transformation([5, 3, 5, 4, 3])];;
|
|
843
|
+
gap> S := Semigroup(gens);;
|
|
844
|
+
gap> C := GreensLClassOfElement(S, gens[1] * gens[2] * gens[1]);
|
|
845
|
+
<Green's L-class: Transformation( [ 5, 3, 5, 4, 3 ] )>
|
|
846
|
+
gap> Transformation([5, 3, 5, 4, 3]) in last;
|
|
847
|
+
true
|
|
848
|
+
gap> gens := [Transformation([5, 1, 1, 5, 1]),
|
|
849
|
+
> Transformation([5, 2, 4, 3, 2])];;
|
|
850
|
+
gap> S := Semigroup(gens);;
|
|
851
|
+
gap> gens := [Transformation([1, 2, 1, 2, 1]),
|
|
852
|
+
> Transformation([3, 4, 2, 1, 4])];;
|
|
853
|
+
gap> S := Semigroup(gens);;
|
|
854
|
+
gap> RClassReps(S);
|
|
855
|
+
[ Transformation( [ 1, 2, 1, 2, 1 ] ), Transformation( [ 3, 4, 2, 1, 4 ] ),
|
|
856
|
+
Transformation( [ 1, 2, 2, 1, 2 ] ), Transformation( [ 2, 1, 2, 1, 1 ] ) ]
|
|
857
|
+
gap> a := Transformation([2, 1, 4, 5, 6, 3]);;
|
|
858
|
+
gap> b := Transformation([2, 3, 1, 5, 4, 1]);;
|
|
859
|
+
gap> M := Semigroup(a, b);;
|
|
860
|
+
gap> rc := GreensRClassOfElement(M, a * b * a);
|
|
861
|
+
<Green's R-class: Transformation( [ 4, 1, 6, 5, 2, 2 ] )>
|
|
862
|
+
gap> Transformation([5, 2, 1, 4, 3, 3]) in last;
|
|
863
|
+
true
|
|
864
|
+
gap> gens := [Transformation([3, 5, 2, 5, 1]),
|
|
865
|
+
> Transformation([4, 3, 2, 1, 5])];;
|
|
866
|
+
gap> S := Semigroup(gens);;
|
|
867
|
+
gap> f := Transformation([2, 4, 2, 5, 3]);;
|
|
868
|
+
gap> r := RClass(S, f);
|
|
869
|
+
<Green's R-class: Transformation( [ 2, 4, 2, 5, 3 ] )>
|
|
870
|
+
gap> Transformation([3, 1, 3, 5, 2]) in last;
|
|
871
|
+
true
|
|
872
|
+
gap> LambdaOrb(r);
|
|
873
|
+
<closed orbit, 25 points with Schreier tree with log>
|
|
874
|
+
gap> AsList(last);
|
|
875
|
+
[ [ 0 ], [ 1, 2, 3, 5 ], [ 1, 2, 3, 4, 5 ], [ 2, 3, 4, 5 ], [ 1, 2, 5 ],
|
|
876
|
+
[ 1, 3, 5 ], [ 3, 4, 5 ], [ 1, 2, 3 ], [ 2, 4, 5 ], [ 2, 3, 5 ],
|
|
877
|
+
[ 2, 3, 4 ], [ 1, 5 ], [ 2, 5 ], [ 1, 3 ], [ 4, 5 ], [ 3, 5 ], [ 2, 3 ],
|
|
878
|
+
[ 2, 4 ], [ 1, 2 ], [ 5 ], [ 3, 4 ], [ 1 ], [ 3 ], [ 4 ], [ 2 ] ]
|
|
879
|
+
gap> LambdaOrbMults(LambdaOrb(r), LambdaOrbSCCIndex(r))[LambdaOrbSCCIndex(r)];
|
|
880
|
+
[ IdentityTransformation, IdentityTransformation ]
|
|
881
|
+
gap> SchutzenbergerGroup(r);
|
|
882
|
+
Group([ (1,3,2,5) ])
|
|
883
|
+
gap> gens := [Transformation([4, 1, 5, 2, 4]),
|
|
884
|
+
> Transformation([4, 4, 1, 5, 3])];;
|
|
885
|
+
gap> gens := [Transformation([4, 4, 3, 5, 3]),
|
|
886
|
+
> Transformation([5, 1, 1, 4, 1]),
|
|
887
|
+
> Transformation([5, 5, 4, 4, 5])];;
|
|
888
|
+
gap> S := Semigroup(gens);;
|
|
889
|
+
gap> f := Transformation([4, 5, 5, 5, 5]);;
|
|
890
|
+
gap> SchutzenbergerGroup(GreensDClassOfElement(S, f));
|
|
891
|
+
Group([ (4,5) ])
|
|
892
|
+
gap> SchutzenbergerGroup(GreensRClassOfElement(S, f));
|
|
893
|
+
Group([ (4,5) ])
|
|
894
|
+
gap> SchutzenbergerGroup(GreensLClassOfElement(S, f));
|
|
895
|
+
Group([ (4,5) ])
|
|
896
|
+
gap> SchutzenbergerGroup(GreensHClassOfElement(S, f));
|
|
897
|
+
Group([ (4,5) ])
|
|
898
|
+
gap> S := Semigroup([Transformation([6, 4, 4, 4, 6, 1]),
|
|
899
|
+
> Transformation([6, 5, 1, 6, 2, 2])]);;
|
|
900
|
+
gap> AsSet(Enumerate(LambdaOrb(S)));
|
|
901
|
+
[ [ 0 ], [ 1 ], [ 1, 2, 5, 6 ], [ 1, 4 ], [ 1, 4, 6 ], [ 2 ], [ 2, 5 ],
|
|
902
|
+
[ 2, 5, 6 ], [ 2, 6 ], [ 4 ], [ 4, 6 ], [ 5 ], [ 6 ] ]
|
|
903
|
+
gap> S := Semigroup([Transformation([2, 3, 4, 1]),
|
|
904
|
+
> Transformation([3, 3, 1, 1])]);;
|
|
905
|
+
gap> Idempotents(S, 1);
|
|
906
|
+
[ ]
|
|
907
|
+
gap> Idempotents(S, 2);
|
|
908
|
+
[ Transformation( [ 1, 1, 3, 3 ] ), Transformation( [ 1, 3, 3, 1 ] ),
|
|
909
|
+
Transformation( [ 2, 2, 4, 4 ] ), Transformation( [ 4, 2, 2, 4 ] ) ]
|
|
910
|
+
gap> Idempotents(S, 3);
|
|
911
|
+
[ ]
|
|
912
|
+
gap> Idempotents(S, 4);
|
|
913
|
+
[ IdentityTransformation ]
|
|
914
|
+
gap> Idempotents(S);
|
|
915
|
+
[ IdentityTransformation, Transformation( [ 1, 1, 3, 3 ] ),
|
|
916
|
+
Transformation( [ 1, 3, 3, 1 ] ), Transformation( [ 2, 2, 4, 4 ] ),
|
|
917
|
+
Transformation( [ 4, 2, 2, 4 ] ) ]
|
|
918
|
+
gap> S := Semigroup([Transformation([2, 4, 1, 2]),
|
|
919
|
+
> Transformation([3, 3, 4, 1])]);;
|
|
920
|
+
gap> AsSet(Enumerate(RhoOrb(S)));
|
|
921
|
+
[ [ 0 ], [ 1, 1, 1, 1 ], [ 1, 1, 1, 2 ], [ 1, 1, 2, 1 ], [ 1, 1, 2, 2 ],
|
|
922
|
+
[ 1, 1, 2, 3 ], [ 1, 2, 1, 1 ], [ 1, 2, 2, 1 ], [ 1, 2, 3, 1 ] ]
|
|
923
|
+
|
|
924
|
+
# MonoidPkgTest7: from install_no_grape.tst
|
|
925
|
+
gap> gens := [Transformation([4, 3, 3, 6, 7, 2, 3]),
|
|
926
|
+
> Transformation([6, 6, 4, 4, 2, 1, 4])];;
|
|
927
|
+
gap> s := Semigroup(gens);;
|
|
928
|
+
gap> Length(GreensRClasses(s));
|
|
929
|
+
17
|
|
930
|
+
gap> s := Semigroup(gens);;
|
|
931
|
+
gap> NrRClasses(s);
|
|
932
|
+
17
|
|
933
|
+
gap> f := Transformation([3, 3, 3, 3, 3, 2, 3]);;
|
|
934
|
+
gap> r := RClass(s, f);
|
|
935
|
+
<Green's R-class: Transformation( [ 3, 3, 3, 3, 3, 2, 3 ] )>
|
|
936
|
+
gap> Transformation([3, 3, 3, 3, 3, 2, 3]) in last;
|
|
937
|
+
true
|
|
938
|
+
gap> LambdaOrb(r);
|
|
939
|
+
<closed orbit, 19 points with Schreier tree with log>
|
|
940
|
+
gap> AsSet(LambdaOrb(r));
|
|
941
|
+
[ [ 0 ], [ 1 ], [ 1, 2, 4, 6 ], [ 1, 4 ], [ 1, 4, 6 ], [ 1, 6 ], [ 2 ],
|
|
942
|
+
[ 2, 3 ], [ 2, 3, 4, 6 ], [ 2, 3, 4, 6, 7 ], [ 2, 3, 6 ], [ 2, 4 ],
|
|
943
|
+
[ 2, 4, 6 ], [ 2, 6 ], [ 3 ], [ 3, 6 ], [ 4 ], [ 4, 6 ], [ 6 ] ]
|
|
944
|
+
gap> SchutzenbergerGroup(r);
|
|
945
|
+
Group([ (2,3) ])
|
|
946
|
+
gap> Number(GreensDClasses(s), IsRegularDClass);
|
|
947
|
+
3
|
|
948
|
+
gap> s := Semigroup(gens);
|
|
949
|
+
<transformation semigroup of degree 7 with 2 generators>
|
|
950
|
+
gap> NrRegularDClasses(s);
|
|
951
|
+
3
|
|
952
|
+
|
|
953
|
+
# MonoidPkgTest8
|
|
954
|
+
gap> g1 := Transformation([2, 2, 4, 4, 5, 6]);;
|
|
955
|
+
gap> g2 := Transformation([5, 3, 4, 4, 6, 6]);;
|
|
956
|
+
gap> m1 := Monoid(g1, g2);;
|
|
957
|
+
gap> g1 := Transformation([5, 4, 4, 2, 1]);;
|
|
958
|
+
gap> g2 := Transformation([2, 5, 5, 4, 1]);;
|
|
959
|
+
gap> m2 := Monoid(g1, g2);;
|
|
960
|
+
gap> g1 := Transformation([1, 2, 1, 3, 3]);;
|
|
961
|
+
gap> g2 := Transformation([2, 2, 3, 5, 5]);;
|
|
962
|
+
gap> m3 := Monoid(g1, g2);;
|
|
963
|
+
gap> g1 := Transformation([8, 7, 5, 3, 1, 3, 8, 8]);;
|
|
964
|
+
gap> g2 := Transformation([5, 1, 4, 1, 4, 4, 7, 8]);;
|
|
965
|
+
gap> m4 := Monoid(g1, g2);;
|
|
966
|
+
gap> g1 := Transformation([3, 1, 2, 3, 2, 3, 2, 3]);;
|
|
967
|
+
gap> g2 := Transformation([2, 5, 8, 5, 2, 5, 7, 8]);;
|
|
968
|
+
gap> m5 := Monoid(g1, g2);;
|
|
969
|
+
gap> g1 := Transformation([3, 3, 2, 6, 2, 4, 4, 6]);;
|
|
970
|
+
gap> g2 := Transformation([5, 1, 7, 8, 7, 5, 8, 1]);;
|
|
971
|
+
gap> m6 := Semigroup(g1, g2);;
|
|
972
|
+
gap> g1 := Transformation([3, 3, 2, 6, 2, 4, 4, 6, 3, 4, 6]);;
|
|
973
|
+
gap> g2 := Transformation([4, 4, 6, 1, 3, 3, 3, 3, 11, 11, 11]);;
|
|
974
|
+
gap> m7 := Monoid(g1, g2);; # (this is a good example!)
|
|
975
|
+
gap> g1 := Transformation([3, 3, 2, 6, 2, 4, 4, 6, 3, 4, 6]);;
|
|
976
|
+
gap> g2 := Transformation([4, 4, 6, 1, 3, 3, 3, 3, 11, 11, 11]);;
|
|
977
|
+
gap> g3 := Transformation([2, 2, 3, 4, 4, 6, 6, 6, 6, 6, 11]);;
|
|
978
|
+
gap> m8 := Monoid(g1, g2, g3);;
|
|
979
|
+
gap> g1 := Transformation([3, 3, 2, 6, 2, 4, 4, 6, 3, 4, 6]);;
|
|
980
|
+
gap> g2 := Transformation([4, 4, 6, 1, 3, 3, 3, 3, 11, 11, 11]);;
|
|
981
|
+
gap> g3 := Transformation([2, 2, 3, 4, 4, 6, 6, 6, 6, 6, 11]);;
|
|
982
|
+
gap> g4 := Transformation([2, 2, 3, 4, 4, 6, 6, 6, 6, 11, 11]);;
|
|
983
|
+
gap> m9 := Monoid(g1, g2, g3, g4);;
|
|
984
|
+
gap> g1 := Transformation([12, 3, 6, 4, 6, 11, 9, 6, 6, 7, 6, 12]);;
|
|
985
|
+
gap> g2 := Transformation([10, 7, 2, 11, 7, 3, 12, 4, 3, 8, 7, 5]);;
|
|
986
|
+
gap> m11 := Monoid(g1, g2);;
|
|
987
|
+
gap> g1 := Transformation([3, 2, 12, 2, 7, 9, 4, 2, 1, 12, 11, 12]);;
|
|
988
|
+
gap> g2 := Transformation([3, 6, 12, 7, 2, 2, 3, 6, 1, 7, 11, 1]);;
|
|
989
|
+
gap> m14 := Monoid(g1, g2);;
|
|
990
|
+
gap> g1 := Transformation([2, 2, 3, 4, 5, 6]);;
|
|
991
|
+
gap> g2 := Transformation([2, 3, 4, 5, 6, 1]);;
|
|
992
|
+
gap> m15 := Monoid(g1, g2);;
|
|
993
|
+
gap> g1 := Transformation([2, 1, 4, 5, 6, 7, 3, 2, 1]);;
|
|
994
|
+
gap> g2 := Transformation([2, 1, 4, 2, 1, 4, 2, 1, 4]);;
|
|
995
|
+
gap> m18 := Monoid(g1, g2);;
|
|
996
|
+
gap> g1 := Transformation([5, 2, 5, 5, 8, 10, 8, 5, 2, 10]);;
|
|
997
|
+
gap> g2 := Transformation([2, 2, 5, 5, 5, 8, 8, 8, 8, 8]);;
|
|
998
|
+
gap> m22 := Monoid(g1, g2);;
|
|
999
|
+
gap> g1 := Transformation([4, 6, 3, 8, 5, 6, 10, 4, 3, 7]);;
|
|
1000
|
+
gap> g2 := Transformation([5, 6, 6, 3, 8, 6, 3, 7, 8, 4]);;
|
|
1001
|
+
gap> g3 := Transformation([8, 6, 3, 2, 8, 10, 9, 2, 6, 2]);;
|
|
1002
|
+
gap> m23 := Monoid(g1, g2, g3);;
|
|
1003
|
+
|
|
1004
|
+
# MonoidPkgTest9
|
|
1005
|
+
gap> SmallMonoids := [m1, m2, m3, m4, m5, m6, m7, m8, m9, m11, m14, m15, m18,
|
|
1006
|
+
> m22, m23];;
|
|
1007
|
+
gap> List(SmallMonoids, IsCompletelyRegularSemigroup);
|
|
1008
|
+
[ false, true, false, false, true, true, true, true, true, false, false,
|
|
1009
|
+
false, false, true, false ]
|
|
1010
|
+
gap> List(SmallMonoids, IsRegularSemigroup);
|
|
1011
|
+
[ false, true, false, false, true, true, true, true, true, false, false,
|
|
1012
|
+
true, true, true, false ]
|
|
1013
|
+
gap> List(SmallMonoids, IsSimpleSemigroup);
|
|
1014
|
+
[ false, false, false, false, false, true, false, false, false, false, false,
|
|
1015
|
+
false, false, false, false ]
|
|
1016
|
+
gap> List(SmallMonoids, IsCompletelySimpleSemigroup);
|
|
1017
|
+
[ false, false, false, false, false, true, false, false, false, false, false,
|
|
1018
|
+
false, false, false, false ]
|
|
1019
|
+
gap> List(SmallMonoids, IsInverseSemigroup);
|
|
1020
|
+
[ false, true, false, false, false, false, false, false, false, false, false,
|
|
1021
|
+
false, false, false, false ]
|
|
1022
|
+
gap> List(SmallMonoids, IsCliffordSemigroup);
|
|
1023
|
+
[ false, true, false, false, false, false, false, false, false, false, false,
|
|
1024
|
+
false, false, false, false ]
|
|
1025
|
+
gap> List(SmallMonoids, IsGroupAsSemigroup);
|
|
1026
|
+
[ false, false, false, false, false, false, false, false, false, false,
|
|
1027
|
+
false, false, false, false, false ]
|
|
1028
|
+
gap> List(SmallMonoids, IsZeroSemigroup);
|
|
1029
|
+
[ false, false, false, false, false, false, false, false, false, false,
|
|
1030
|
+
false, false, false, false, false ]
|
|
1031
|
+
gap> List(SmallMonoids, IsLeftZeroSemigroup);
|
|
1032
|
+
[ false, false, false, false, false, false, false, false, false, false,
|
|
1033
|
+
false, false, false, false, false ]
|
|
1034
|
+
gap> List(SmallMonoids, IsRightZeroSemigroup);
|
|
1035
|
+
[ false, false, false, false, false, false, false, false, false, false,
|
|
1036
|
+
false, false, false, false, false ]
|
|
1037
|
+
gap> List(SmallMonoids, IsCommutativeSemigroup);
|
|
1038
|
+
[ false, false, false, false, false, false, false, false, false, false,
|
|
1039
|
+
false, false, false, false, false ]
|
|
1040
|
+
gap> List(SmallMonoids, IsZeroGroup);
|
|
1041
|
+
[ false, false, false, false, false, false, false, false, false, false,
|
|
1042
|
+
false, false, false, false, false ]
|
|
1043
|
+
|
|
1044
|
+
# MonoidPkgTest10
|
|
1045
|
+
gap> gens := [Transformation([2, 4, 1, 5, 4, 4, 7, 3, 8, 1]),
|
|
1046
|
+
> Transformation([3, 2, 8, 8, 4, 4, 8, 6, 5, 7]),
|
|
1047
|
+
> Transformation([4, 10, 6, 6, 1, 2, 4, 10, 9, 7]),
|
|
1048
|
+
> Transformation([6, 2, 2, 4, 9, 9, 5, 10, 1, 8]),
|
|
1049
|
+
> Transformation([6, 4, 1, 6, 6, 8, 9, 6, 2, 2]),
|
|
1050
|
+
> Transformation([6, 8, 1, 10, 6, 4, 9, 1, 9, 4]),
|
|
1051
|
+
> Transformation([8, 6, 2, 3, 3, 4, 8, 6, 2, 9]),
|
|
1052
|
+
> Transformation([9, 1, 2, 8, 1, 5, 9, 9, 9, 5]),
|
|
1053
|
+
> Transformation([9, 3, 1, 5, 10, 3, 4, 6, 10, 2]),
|
|
1054
|
+
> Transformation([10, 7, 3, 7, 1, 9, 8, 8, 4, 10])];;
|
|
1055
|
+
gap> s := Semigroup(gens);;
|
|
1056
|
+
gap> o := Orb(s, [1, 2, 3, 4], OnSets);
|
|
1057
|
+
<open orbit, 1 points>
|
|
1058
|
+
gap> Enumerate(o);
|
|
1059
|
+
<closed orbit, 351 points>
|
|
1060
|
+
gap> List(OrbSCC(o), x -> o{x});
|
|
1061
|
+
[ [ [ 1, 2, 3, 4 ], [ 1, 2, 4, 5 ], [ 2, 3, 4, 8 ], [ 1, 2, 8, 9 ],
|
|
1062
|
+
[ 2, 3, 5, 6 ], [ 1, 4, 6, 8 ], [ 1, 4, 6, 10 ], [ 4, 6, 8, 9 ],
|
|
1063
|
+
[ 3, 4, 5, 8 ], [ 1, 3, 4, 5 ], [ 2, 4, 6, 9 ], [ 2, 4, 6, 8 ],
|
|
1064
|
+
[ 1, 5, 8, 9 ], [ 2, 3, 6, 8 ], [ 1, 2, 5, 9 ], [ 1, 2, 6, 9 ],
|
|
1065
|
+
[ 2, 3, 4, 5 ], [ 1, 6, 8, 10 ], [ 3, 4, 6, 7 ], [ 3, 7, 8, 9 ],
|
|
1066
|
+
[ 4, 6, 9, 10 ], [ 4, 5, 7, 8 ], [ 1, 6, 9, 10 ], [ 1, 6, 8, 9 ],
|
|
1067
|
+
[ 3, 6, 9, 10 ], [ 2, 6, 7, 9 ], [ 2, 4, 5, 8 ], [ 3, 5, 6, 10 ],
|
|
1068
|
+
[ 1, 2, 3, 10 ], [ 4, 6, 7, 10 ], [ 2, 4, 6, 7 ], [ 4, 8, 9, 10 ],
|
|
1069
|
+
[ 2, 3, 6, 9 ], [ 1, 2, 4, 8 ], [ 2, 4, 6, 10 ], [ 2, 4, 7, 8 ],
|
|
1070
|
+
[ 1, 8, 9, 10 ], [ 1, 4, 6, 9 ], [ 3, 5, 9, 10 ], [ 1, 3, 4, 10 ],
|
|
1071
|
+
[ 2, 5, 8, 9 ], [ 2, 4, 5, 6 ], [ 1, 2, 6, 10 ], [ 2, 4, 7, 10 ],
|
|
1072
|
+
[ 1, 4, 5, 7 ], [ 2, 4, 5, 7 ], [ 6, 8, 9, 10 ], [ 1, 3, 4, 8 ],
|
|
1073
|
+
[ 1, 5, 6, 9 ], [ 1, 2, 4, 9 ], [ 1, 2, 4, 6 ], [ 3, 4, 6, 8 ],
|
|
1074
|
+
[ 1, 3, 5, 6 ], [ 1, 3, 9, 10 ], [ 3, 5, 7, 8 ], [ 1, 3, 4, 7 ],
|
|
1075
|
+
[ 3, 7, 8, 10 ], [ 2, 6, 8, 9 ], [ 4, 7, 8, 9 ], [ 4, 5, 6, 10 ],
|
|
1076
|
+
[ 1, 2, 6, 7 ], [ 7, 8, 9, 10 ], [ 1, 3, 7, 8 ], [ 2, 5, 6, 10 ],
|
|
1077
|
+
[ 3, 4, 6, 9 ], [ 1, 4, 9, 10 ], [ 2, 3, 8, 9 ], [ 3, 4, 7, 8 ],
|
|
1078
|
+
[ 1, 3, 5, 7 ], [ 2, 5, 6, 9 ], [ 2, 3, 4, 6 ], [ 1, 4, 8, 10 ],
|
|
1079
|
+
[ 3, 6, 8, 9 ], [ 3, 4, 8, 9 ], [ 1, 5, 6, 10 ], [ 2, 3, 9, 10 ],
|
|
1080
|
+
[ 1, 4, 8, 9 ], [ 4, 7, 8, 10 ], [ 4, 5, 8, 10 ], [ 1, 7, 8, 10 ],
|
|
1081
|
+
[ 3, 6, 7, 8 ], [ 2, 5, 9, 10 ], [ 1, 4, 7, 10 ], [ 2, 4, 5, 9 ],
|
|
1082
|
+
[ 4, 5, 6, 8 ], [ 1, 7, 8, 9 ], [ 3, 5, 6, 8 ], [ 1, 3, 6, 10 ],
|
|
1083
|
+
[ 1, 2, 6, 8 ], [ 2, 6, 9, 10 ], [ 2, 7, 9, 10 ], [ 4, 7, 9, 10 ],
|
|
1084
|
+
[ 2, 4, 5, 10 ], [ 2, 3, 5, 10 ], [ 1, 3, 7, 10 ], [ 2, 5, 6, 8 ],
|
|
1085
|
+
[ 1, 6, 7, 10 ], [ 2, 3, 4, 9 ], [ 1, 3, 5, 10 ], [ 1, 2, 9, 10 ],
|
|
1086
|
+
[ 2, 3, 5, 7 ], [ 1, 4, 6, 7 ], [ 4, 5, 6, 9 ], [ 1, 4, 7, 9 ],
|
|
1087
|
+
[ 1, 4, 5, 6 ], [ 1, 7, 9, 10 ], [ 2, 4, 9, 10 ], [ 6, 7, 9, 10 ],
|
|
1088
|
+
[ 1, 4, 7, 8 ], [ 2, 3, 4, 10 ], [ 1, 2, 5, 8 ], [ 1, 2, 3, 5 ],
|
|
1089
|
+
[ 2, 4, 8, 9 ], [ 1, 2, 4, 10 ], [ 2, 3, 5, 9 ], [ 4, 6, 8, 10 ],
|
|
1090
|
+
[ 2, 6, 7, 10 ], [ 4, 6, 7, 8 ], [ 3, 4, 5, 6 ], [ 1, 3, 7, 9 ],
|
|
1091
|
+
[ 1, 2, 7, 8 ], [ 2, 3, 4, 7 ], [ 1, 2, 5, 6 ], [ 3, 4, 8, 10 ],
|
|
1092
|
+
[ 2, 4, 8, 10 ], [ 2, 6, 7, 8 ], [ 3, 4, 5, 7 ], [ 1, 4, 5, 10 ],
|
|
1093
|
+
[ 4, 5, 9, 10 ], [ 1, 6, 7, 9 ], [ 3, 4, 9, 10 ], [ 1, 2, 5, 10 ],
|
|
1094
|
+
[ 3, 4, 7, 10 ], [ 1, 4, 5, 8 ], [ 5, 6, 9, 10 ], [ 1, 2, 7, 9 ],
|
|
1095
|
+
[ 2, 3, 5, 8 ], [ 2, 3, 7, 8 ], [ 1, 3, 4, 6 ], [ 1, 3, 5, 9 ],
|
|
1096
|
+
[ 3, 7, 9, 10 ], [ 4, 6, 7, 9 ], [ 3, 4, 5, 10 ], [ 1, 4, 5, 9 ],
|
|
1097
|
+
[ 2, 4, 7, 9 ], [ 2, 5, 7, 8 ], [ 3, 4, 6, 10 ], [ 1, 5, 6, 8 ],
|
|
1098
|
+
[ 3, 4, 5, 9 ], [ 1, 2, 4, 7 ], [ 5, 6, 8, 9 ], [ 1, 5, 7, 8 ],
|
|
1099
|
+
[ 1, 2, 3, 9 ], [ 1, 3, 8, 9 ], [ 1, 2, 3, 8 ], [ 1, 3, 6, 9 ],
|
|
1100
|
+
[ 1, 2, 5, 7 ], [ 1, 2, 3, 7 ], [ 1, 3, 4, 9 ], [ 1, 5, 9, 10 ],
|
|
1101
|
+
[ 5, 6, 8, 10 ], [ 2, 3, 6, 10 ], [ 1, 2, 7, 10 ], [ 1, 3, 5, 8 ],
|
|
1102
|
+
[ 1, 3, 8, 10 ], [ 2, 6, 8, 10 ], [ 2, 8, 9, 10 ], [ 2, 5, 6, 7 ],
|
|
1103
|
+
[ 1, 2, 8, 10 ], [ 2, 3, 6, 7 ], [ 3, 4, 7, 9 ], [ 5, 6, 7, 8 ],
|
|
1104
|
+
[ 1, 5, 8, 10 ], [ 2, 5, 8, 10 ], [ 4, 5, 6, 7 ], [ 3, 5, 6, 7 ],
|
|
1105
|
+
[ 3, 5, 6, 9 ], [ 4, 5, 8, 9 ] ],
|
|
1106
|
+
[ [ 2, 4, 5 ], [ 6, 8, 10 ], [ 1, 3, 4 ], [ 2, 3, 8 ], [ 1, 4, 6 ],
|
|
1107
|
+
[ 4, 6, 10 ], [ 2, 6, 8 ], [ 2, 4, 6 ], [ 2, 4, 8 ], [ 1, 8, 9 ],
|
|
1108
|
+
[ 4, 8, 10 ], [ 5, 8, 9 ], [ 3, 4, 8 ], [ 3, 7, 8 ], [ 1, 6, 9 ],
|
|
1109
|
+
[ 2, 4, 9 ], [ 8, 9, 10 ], [ 7, 9, 10 ], [ 1, 5, 8 ], [ 3, 6, 8 ],
|
|
1110
|
+
[ 1, 3, 6 ], [ 2, 5, 9 ], [ 1, 2, 9 ], [ 2, 3, 5 ], [ 1, 6, 10 ],
|
|
1111
|
+
[ 4, 8, 9 ], [ 4, 7, 8 ], [ 1, 9, 10 ], [ 4, 6, 9 ], [ 4, 9, 10 ],
|
|
1112
|
+
[ 1, 4, 8 ], [ 7, 8, 10 ], [ 1, 4, 9 ], [ 2, 5, 8 ], [ 2, 9, 10 ],
|
|
1113
|
+
[ 2, 6, 9 ], [ 4, 7, 9 ], [ 1, 4, 5 ], [ 1, 7, 10 ], [ 1, 2, 7 ],
|
|
1114
|
+
[ 3, 4, 9 ], [ 1, 2, 6 ], [ 4, 6, 8 ], [ 2, 6, 10 ], [ 2, 8, 9 ],
|
|
1115
|
+
[ 1, 2, 10 ], [ 1, 2, 4 ], [ 3, 5, 9 ], [ 4, 5, 8 ], [ 5, 6, 10 ],
|
|
1116
|
+
[ 2, 3, 10 ], [ 3, 7, 10 ], [ 4, 6, 7 ], [ 7, 8, 9 ], [ 5, 6, 8 ],
|
|
1117
|
+
[ 3, 4, 6 ], [ 1, 6, 8 ], [ 2, 4, 10 ], [ 6, 7, 10 ], [ 2, 4, 7 ],
|
|
1118
|
+
[ 3, 4, 5 ], [ 1, 3, 7 ], [ 3, 8, 10 ], [ 6, 7, 8 ], [ 6, 8, 9 ],
|
|
1119
|
+
[ 4, 5, 6 ], [ 3, 5, 10 ], [ 2, 3, 9 ], [ 6, 9, 10 ], [ 4, 5, 7 ],
|
|
1120
|
+
[ 4, 5, 10 ], [ 2, 5, 10 ], [ 3, 6, 9 ], [ 1, 3, 10 ], [ 1, 2, 8 ],
|
|
1121
|
+
[ 2, 3, 6 ], [ 1, 2, 5 ], [ 3, 9, 10 ], [ 5, 7, 8 ], [ 5, 9, 10 ],
|
|
1122
|
+
[ 1, 5, 9 ], [ 1, 4, 10 ], [ 3, 8, 9 ], [ 1, 3, 8 ], [ 1, 2, 3 ],
|
|
1123
|
+
[ 1, 3, 9 ], [ 3, 5, 8 ], [ 3, 4, 10 ], [ 1, 7, 9 ], [ 1, 5, 6 ],
|
|
1124
|
+
[ 2, 7, 8 ], [ 3, 4, 7 ], [ 1, 5, 7 ], [ 1, 8, 10 ], [ 4, 7, 10 ],
|
|
1125
|
+
[ 3, 6, 7 ], [ 1, 4, 7 ], [ 2, 5, 7 ], [ 1, 7, 8 ], [ 2, 3, 7 ],
|
|
1126
|
+
[ 4, 5, 9 ], [ 5, 6, 9 ], [ 2, 3, 4 ], [ 1, 3, 5 ], [ 6, 7, 9 ],
|
|
1127
|
+
[ 3, 7, 9 ], [ 1, 6, 7 ], [ 2, 7, 9 ], [ 3, 6, 10 ], [ 2, 6, 7 ],
|
|
1128
|
+
[ 2, 8, 10 ], [ 2, 5, 6 ], [ 1, 5, 10 ], [ 2, 7, 10 ], [ 3, 5, 6 ],
|
|
1129
|
+
[ 5, 8, 10 ], [ 3, 5, 7 ], [ 5, 6, 7 ] ],
|
|
1130
|
+
[ [ 4, 6 ], [ 2, 6 ], [ 2, 10 ], [ 4, 8 ], [ 6, 10 ], [ 4, 9 ], [ 5, 8 ],
|
|
1131
|
+
[ 1, 8 ], [ 4, 10 ], [ 7, 8 ], [ 6, 8 ], [ 5, 9 ], [ 4, 5 ], [ 1, 7 ],
|
|
1132
|
+
[ 8, 10 ], [ 1, 4 ], [ 8, 9 ], [ 1, 9 ], [ 3, 5 ], [ 1, 6 ], [ 3, 4 ],
|
|
1133
|
+
[ 2, 8 ], [ 3, 6 ], [ 2, 4 ], [ 2, 9 ], [ 4, 7 ], [ 3, 8 ], [ 1, 3 ],
|
|
1134
|
+
[ 1, 2 ], [ 2, 3 ], [ 3, 7 ], [ 2, 5 ], [ 1, 10 ], [ 3, 10 ], [ 6, 7 ],
|
|
1135
|
+
[ 7, 10 ], [ 3, 9 ], [ 6, 9 ], [ 9, 10 ], [ 7, 9 ], [ 1, 5 ], [ 5, 7 ],
|
|
1136
|
+
[ 5, 6 ], [ 2, 7 ], [ 5, 10 ] ],
|
|
1137
|
+
[ [ 9 ], [ 4 ], [ 5 ], [ 6 ], [ 3 ], [ 8 ], [ 10 ], [ 1 ], [ 2 ], [ 7 ] ] ]
|
|
1138
|
+
gap> g1 := Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]);;
|
|
1139
|
+
gap> g2 := Transformation([2, 4, 4, 2, 10, 5, 11, 11, 11, 6, 7]);;
|
|
1140
|
+
gap> m10 := Monoid(g1, g2);;
|
|
1141
|
+
gap> g1 := Transformation([10, 8, 7, 4, 1, 4, 10, 10, 7, 2]);;
|
|
1142
|
+
gap> g2 := Transformation([5, 2, 5, 5, 9, 10, 8, 3, 8, 10]);;
|
|
1143
|
+
gap> m12 := Monoid(g1, g2);;
|
|
1144
|
+
gap> g1 := Transformation([2, 1, 4, 5, 3, 7, 8, 9, 10, 6]);;
|
|
1145
|
+
gap> g2 := Transformation([1, 2, 4, 3, 5, 6, 7, 8, 9, 10]);;
|
|
1146
|
+
gap> g3 := Transformation([1, 2, 3, 4, 5, 6, 10, 9, 8, 7]);;
|
|
1147
|
+
gap> g4 := Transformation([9, 1, 4, 3, 6, 9, 3, 4, 3, 9]);;
|
|
1148
|
+
gap> m13 := Monoid(g1, g2, g3, g4);;
|
|
1149
|
+
gap> g1 := Transformation([13, 10, 9, 5, 1, 5, 13, 13, 8, 2, 7, 2, 6]);;
|
|
1150
|
+
gap> g2 := Transformation([6, 11, 12, 10, 4, 10, 13, 5, 8, 5, 11, 6, 9]);;
|
|
1151
|
+
gap> m16 := Semigroup(g1, g2);;
|
|
1152
|
+
gap> g1 := Transformation([12, 10, 8, 5, 1, 5, 12, 12, 8, 2, 6, 2]);;
|
|
1153
|
+
gap> g2 := Transformation([5, 6, 10, 11, 10, 4, 10, 12, 5, 7, 4, 10]);;
|
|
1154
|
+
gap> g3 := Transformation([6, 8, 12, 5, 4, 8, 10, 7, 4, 1, 10, 11]);;
|
|
1155
|
+
gap> m17 := Monoid(g1, g2, g3);;
|
|
1156
|
+
gap> g1 := Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]);;
|
|
1157
|
+
gap> g2 := Transformation([5, 4, 1, 2, 3, 7, 6, 5, 4, 1]);;
|
|
1158
|
+
gap> g3 := Transformation([2, 1, 4, 3, 2, 1, 4, 4, 3, 3]);;
|
|
1159
|
+
gap> m19 := Monoid(g1, g2, g3);;
|
|
1160
|
+
gap> g1 := Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]);;
|
|
1161
|
+
gap> g2 := Transformation([2, 3, 4, 5, 6, 8, 7, 1, 2, 2]);;
|
|
1162
|
+
gap> m20 := Monoid(g1, g2);;
|
|
1163
|
+
gap> g1 := Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]);;
|
|
1164
|
+
gap> g2 := Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 2]);;
|
|
1165
|
+
gap> m21 := Monoid(g1, g2);;
|
|
1166
|
+
gap> BigMonoids := [m10, m12, m13, m16, m17, m19, m20, m21];;
|
|
1167
|
+
gap> g1 := Transformation([2, 2, 4, 4, 5, 6]);;
|
|
1168
|
+
gap> g2 := Transformation([5, 3, 4, 4, 6, 6]);;
|
|
1169
|
+
gap> m1 := Monoid(g1, g2);;
|
|
1170
|
+
gap> g1 := Transformation([5, 4, 4, 2, 1]);;
|
|
1171
|
+
gap> g2 := Transformation([2, 5, 5, 4, 1]);;
|
|
1172
|
+
gap> m2 := Monoid(g1, g2);;
|
|
1173
|
+
gap> g1 := Transformation([1, 2, 1, 3, 3]);;
|
|
1174
|
+
gap> g2 := Transformation([2, 2, 3, 5, 5]);;
|
|
1175
|
+
gap> m3 := Monoid(g1, g2);;
|
|
1176
|
+
gap> g1 := Transformation([8, 7, 5, 3, 1, 3, 8, 8]);;
|
|
1177
|
+
gap> g2 := Transformation([5, 1, 4, 1, 4, 4, 7, 8]);;
|
|
1178
|
+
gap> m4 := Monoid(g1, g2);;
|
|
1179
|
+
gap> g1 := Transformation([3, 1, 2, 3, 2, 3, 2, 3]);;
|
|
1180
|
+
gap> g2 := Transformation([2, 5, 8, 5, 2, 5, 7, 8]);;
|
|
1181
|
+
gap> m5 := Monoid(g1, g2);;
|
|
1182
|
+
gap> g1 := Transformation([3, 3, 2, 6, 2, 4, 4, 6]);;
|
|
1183
|
+
gap> g2 := Transformation([5, 1, 7, 8, 7, 5, 8, 1]);;
|
|
1184
|
+
gap> m6 := Semigroup(g1, g2);;
|
|
1185
|
+
gap> g1 := Transformation([3, 3, 2, 6, 2, 4, 4, 6, 3, 4, 6]);;
|
|
1186
|
+
gap> g2 := Transformation([4, 4, 6, 1, 3, 3, 3, 3, 11, 11, 11]);;
|
|
1187
|
+
gap> m7 := Monoid(g1, g2);; # (this is a good example!)
|
|
1188
|
+
gap> g1 := Transformation([3, 3, 2, 6, 2, 4, 4, 6, 3, 4, 6]);;
|
|
1189
|
+
gap> g2 := Transformation([4, 4, 6, 1, 3, 3, 3, 3, 11, 11, 11]);;
|
|
1190
|
+
gap> g3 := Transformation([2, 2, 3, 4, 4, 6, 6, 6, 6, 6, 11]);;
|
|
1191
|
+
gap> m8 := Monoid(g1, g2, g3);;
|
|
1192
|
+
gap> g1 := Transformation([3, 3, 2, 6, 2, 4, 4, 6, 3, 4, 6]);;
|
|
1193
|
+
gap> g2 := Transformation([4, 4, 6, 1, 3, 3, 3, 3, 11, 11, 11]);;
|
|
1194
|
+
gap> g3 := Transformation([2, 2, 3, 4, 4, 6, 6, 6, 6, 6, 11]);;
|
|
1195
|
+
gap> g4 := Transformation([2, 2, 3, 4, 4, 6, 6, 6, 6, 11, 11]);;
|
|
1196
|
+
gap> m9 := Monoid(g1, g2, g3, g4);;
|
|
1197
|
+
gap> g1 := Transformation([12, 3, 6, 4, 6, 11, 9, 6, 6, 7, 6, 12]);;
|
|
1198
|
+
gap> g2 := Transformation([10, 7, 2, 11, 7, 3, 12, 4, 3, 8, 7, 5]);;
|
|
1199
|
+
gap> m11 := Monoid(g1, g2);;
|
|
1200
|
+
gap> g1 := Transformation([3, 2, 12, 2, 7, 9, 4, 2, 1, 12, 11, 12]);;
|
|
1201
|
+
gap> g2 := Transformation([3, 6, 12, 7, 2, 2, 3, 6, 1, 7, 11, 1]);;
|
|
1202
|
+
gap> m14 := Monoid(g1, g2);;
|
|
1203
|
+
gap> g1 := Transformation([2, 2, 3, 4, 5, 6]);;
|
|
1204
|
+
gap> g2 := Transformation([2, 3, 4, 5, 6, 1]);;
|
|
1205
|
+
gap> m15 := Monoid(g1, g2);;
|
|
1206
|
+
gap> g1 := Transformation([2, 1, 4, 5, 6, 7, 3, 2, 1]);;
|
|
1207
|
+
gap> g2 := Transformation([2, 1, 4, 2, 1, 4, 2, 1, 4]);;
|
|
1208
|
+
gap> m18 := Monoid(g1, g2);;
|
|
1209
|
+
gap> g1 := Transformation([5, 2, 5, 5, 8, 10, 8, 5, 2, 10]);;
|
|
1210
|
+
gap> g2 := Transformation([2, 2, 5, 5, 5, 8, 8, 8, 8, 8]);;
|
|
1211
|
+
gap> m22 := Monoid(g1, g2);;
|
|
1212
|
+
gap> g1 := Transformation([4, 6, 3, 8, 5, 6, 10, 4, 3, 7]);;
|
|
1213
|
+
gap> g2 := Transformation([5, 6, 6, 3, 8, 6, 3, 7, 8, 4]);;
|
|
1214
|
+
gap> g3 := Transformation([8, 6, 3, 2, 8, 10, 9, 2, 6, 2]);;
|
|
1215
|
+
gap> m23 := Monoid(g1, g2, g3);;
|
|
1216
|
+
gap> SmallMonoids :=
|
|
1217
|
+
> [m1, m2, m3, m4, m5, m6, m7, m8, m9, m11, m14, m15, m18, m22, m23];;
|
|
1218
|
+
gap> List(SmallMonoids, IsCompletelyRegularSemigroup);
|
|
1219
|
+
[ false, true, false, false, true, true, true, true, true, false, false,
|
|
1220
|
+
false, false, true, false ]
|
|
1221
|
+
gap> List(BigMonoids, IsCompletelyRegularSemigroup);
|
|
1222
|
+
[ true, false, false, false, false, false, true, false ]
|
|
1223
|
+
gap> g1 := Transformation([3, 3, 2, 6, 2, 4, 4, 6]);;
|
|
1224
|
+
gap> g2 := Transformation([5, 1, 7, 8, 7, 5, 8, 1]);;
|
|
1225
|
+
gap> cs1 := Semigroup(g1, g2);;
|
|
1226
|
+
gap> IsCompletelySimpleSemigroup(cs1);
|
|
1227
|
+
true
|
|
1228
|
+
gap> g1 := Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]);;
|
|
1229
|
+
gap> g2 := Transformation([2, 3, 4, 5, 6, 8, 7, 1, 2, 2]);;
|
|
1230
|
+
gap> cs2 := Semigroup(g1, g2);;
|
|
1231
|
+
gap> IsCompletelySimpleSemigroup(cs2);
|
|
1232
|
+
true
|
|
1233
|
+
gap> g1 := Transformation([2, 1, 1, 2, 1]);;
|
|
1234
|
+
gap> g2 := Transformation([3, 4, 3, 4, 4]);;
|
|
1235
|
+
gap> g3 := Transformation([3, 4, 3, 4, 3]);;
|
|
1236
|
+
gap> g4 := Transformation([4, 3, 3, 4, 4]);;
|
|
1237
|
+
gap> cs3 := Semigroup(g1, g2, g3, g4);;
|
|
1238
|
+
gap> IsCompletelySimpleSemigroup(cs3);
|
|
1239
|
+
true
|
|
1240
|
+
gap> g1 := Transformation([4, 4, 4, 1, 1, 6, 7, 8, 9, 10, 11, 1]);;
|
|
1241
|
+
gap> g2 := Transformation([6, 6, 6, 7, 7, 1, 4, 8, 9, 10, 11, 7]);;
|
|
1242
|
+
gap> g3 := Transformation([8, 8, 8, 9, 9, 10, 11, 1, 4, 6, 7, 9]);;
|
|
1243
|
+
gap> g4 := Transformation([2, 2, 2, 4, 4, 6, 7, 8, 9, 10, 11, 4]);;
|
|
1244
|
+
gap> g5 := Transformation([1, 1, 1, 5, 5, 6, 7, 8, 9, 10, 11, 5]);;
|
|
1245
|
+
gap> g6 := Transformation([1, 1, 4, 4, 4, 6, 7, 8, 9, 10, 11, 1]);;
|
|
1246
|
+
gap> g7 := Transformation([1, 1, 7, 4, 4, 6, 7, 8, 9, 10, 11, 6]);;
|
|
1247
|
+
gap> cs4 := Semigroup(g1, g2, g3, g4, g5, g6, g7);;
|
|
1248
|
+
gap> IsCompletelySimpleSemigroup(cs4);
|
|
1249
|
+
true
|
|
1250
|
+
gap> g1 := Transformation([1, 2, 2, 1, 2]);;
|
|
1251
|
+
gap> g2 := Transformation([3, 4, 3, 4, 4]);;
|
|
1252
|
+
gap> g3 := Transformation([3, 4, 3, 4, 3]);;
|
|
1253
|
+
gap> g4 := Transformation([4, 3, 3, 4, 4]);;
|
|
1254
|
+
gap> cs5 := Semigroup(g1, g2, g3, g4);;
|
|
1255
|
+
gap> IsCompletelySimpleSemigroup(cs5);
|
|
1256
|
+
true
|
|
1257
|
+
gap> dc := GreensDClassOfElement(m14, Transformation(
|
|
1258
|
+
> [12, 2, 1, 3, 6, 6, 12, 2, 3, 3, 11, 3]));;
|
|
1259
|
+
gap> dc = MinimalIdeal(m14);
|
|
1260
|
+
false
|
|
1261
|
+
gap> dc := GreensDClassOfElement(m9, Transformation(
|
|
1262
|
+
> [3, 3, 2, 6, 2, 4, 4, 6, 3, 4, 6]));;
|
|
1263
|
+
gap> d := GreensDClassOfElement(m14, Transformation(
|
|
1264
|
+
> [12, 2, 1, 3, 6, 6, 12, 2, 3, 3, 11, 3]));;
|
|
1265
|
+
gap> g := GroupHClassOfGreensDClass(d);;
|
|
1266
|
+
gap> s := Semigroup(AsList(g));;
|
|
1267
|
+
gap> IsGroupAsSemigroup(s);
|
|
1268
|
+
true
|
|
1269
|
+
gap> IsGroupAsSemigroup(Range(IsomorphismTransformationSemigroup(
|
|
1270
|
+
> Group([(2, 4)(3, 5), (1, 2, 3, 5, 4)]))));
|
|
1271
|
+
true
|
|
1272
|
+
gap> IsGroupAsSemigroup(m14);
|
|
1273
|
+
false
|
|
1274
|
+
gap> List(SmallMonoids, IsCliffordSemigroup);
|
|
1275
|
+
[ false, true, false, false, false, false, false, false, false, false, false,
|
|
1276
|
+
false, false, false, false ]
|
|
1277
|
+
gap> List(BigMonoids, IsCliffordSemigroup);
|
|
1278
|
+
[ false, false, false, false, false, false, false, false ]
|
|
1279
|
+
gap> ForAll(GreensDClasses(m2), x -> Length(GreensHClasses(x)) = 1 and
|
|
1280
|
+
> IsRegularDClass(x));
|
|
1281
|
+
true
|
|
1282
|
+
gap> IsCliffordSemigroup(m2);
|
|
1283
|
+
true
|
|
1284
|
+
gap> ForAll(GreensDClasses(m2), x -> Length(GreensHClasses(x)) = 1 and
|
|
1285
|
+
> IsRegularDClass(x));
|
|
1286
|
+
true
|
|
1287
|
+
gap> g1 := Transformation([1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
1288
|
+
> 4, 4, 4, 4]);;
|
|
1289
|
+
gap> g2 := Transformation([1, 2, 3, 4, 5, 6, 7, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
1290
|
+
> 4, 4, 4, 4]);;
|
|
1291
|
+
gap> g3 := Transformation([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 4, 4, 4, 4, 4,
|
|
1292
|
+
> 4, 4, 4, 4, 4]);;
|
|
1293
|
+
gap> g4 := Transformation([1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 12, 13, 14, 15,
|
|
1294
|
+
> 16, 4, 4, 4, 4, 4]);;
|
|
1295
|
+
gap> g5 := Transformation([1 .. 21]);;
|
|
1296
|
+
gap> c3 := Semigroup(g1, g2, g3, g4, g5);;
|
|
1297
|
+
gap> IsCliffordSemigroup(c3);
|
|
1298
|
+
true
|
|
1299
|
+
gap> Size(c3);
|
|
1300
|
+
5
|
|
1301
|
+
gap> ForAll(GreensDClasses(c3), x -> Length(GreensHClasses(x)) = 1 and
|
|
1302
|
+
> IsRegularDClass(x));
|
|
1303
|
+
true
|
|
1304
|
+
gap> g1 := g1 * (1, 2);;
|
|
1305
|
+
gap> g2 := Transformation([1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
1306
|
+
> 4, 4, 4, 4]) * (1, 2, 3, 4);;
|
|
1307
|
+
gap> g3 := Transformation([1, 2, 3, 4, 5, 6, 7, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
1308
|
+
> 4, 4, 4, 4]) * (5, 6);;
|
|
1309
|
+
gap> g4 := Transformation([1, 2, 3, 4, 5, 6, 7, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
1310
|
+
> 4, 4, 4, 4]) * (5, 6, 7);;
|
|
1311
|
+
gap> g5 := Transformation([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 4, 4, 4, 4, 4,
|
|
1312
|
+
> 4, 4, 4, 4, 4]) * (8, 9);;
|
|
1313
|
+
gap> g6 := Transformation([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 4, 4, 4, 4, 4,
|
|
1314
|
+
> 4, 4, 4, 4, 4]) * (10, 11);;
|
|
1315
|
+
gap> g7 := Transformation([1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 12, 13, 14, 15,
|
|
1316
|
+
> 16, 17, 18, 19, 20, 21]) * (12, 13);;
|
|
1317
|
+
gap> g8 := Transformation(
|
|
1318
|
+
> [1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]) *
|
|
1319
|
+
> (12, 13, 14, 15, 16);;
|
|
1320
|
+
gap> g9 := Transformation([1 .. 21]) * (17, 18, 19, 20, 21);;
|
|
1321
|
+
gap> c4 := Semigroup(g1, g2, g3, g4, g5, g6, g7, g8, g9);;
|
|
1322
|
+
gap> IsCliffordSemigroup(c4);
|
|
1323
|
+
true
|
|
1324
|
+
gap> ForAll(GreensDClasses(c3), x -> Length(GreensHClasses(x)) = 1 and
|
|
1325
|
+
> IsRegularDClass(x));
|
|
1326
|
+
true
|
|
1327
|
+
gap> ForAll(GreensDClasses(c4), x -> Length(GreensHClasses(x)) = 1 and
|
|
1328
|
+
> IsRegularDClass(x));
|
|
1329
|
+
true
|
|
1330
|
+
gap> List(SmallMonoids, IsRegularSemigroup);
|
|
1331
|
+
[ false, true, false, false, true, true, true, true, true, false, false,
|
|
1332
|
+
true, true, true, false ]
|
|
1333
|
+
gap> List(BigMonoids, IsRegularSemigroup);
|
|
1334
|
+
[ true, false, false, false, false, true, true, false ]
|
|
1335
|
+
gap> List([c3, c4], IsInverseSemigroup);
|
|
1336
|
+
[ true, true ]
|
|
1337
|
+
gap> IsBand(c3);
|
|
1338
|
+
true
|
|
1339
|
+
gap> IsBand(c4);
|
|
1340
|
+
false
|
|
1341
|
+
gap> List(SmallMonoids, IsBand);
|
|
1342
|
+
[ false, false, false, false, false, false, false, false, false, false,
|
|
1343
|
+
false, false, false, false, false ]
|
|
1344
|
+
gap> List(BigMonoids, IsBand);
|
|
1345
|
+
[ false, false, false, false, false, false, false, false ]
|
|
1346
|
+
gap> g := Group(());;
|
|
1347
|
+
gap> mat := [[(), (), ()], [(), (), ()], [(), (), ()], [(), (), ()]];;
|
|
1348
|
+
gap> rms := ReesMatrixSemigroup(g, mat);;
|
|
1349
|
+
gap> s := Range(IsomorphismTransformationSemigroup(rms));;
|
|
1350
|
+
gap> IsRectangularBand(s);
|
|
1351
|
+
true
|
|
1352
|
+
gap> IsBand(s);
|
|
1353
|
+
true
|
|
1354
|
+
gap> IsSemiband(FullTransformationSemigroup(4));
|
|
1355
|
+
false
|
|
1356
|
+
gap> Size(Semigroup(Idempotents(FullTransformationSemigroup(4))));
|
|
1357
|
+
233
|
|
1358
|
+
gap> 4 ^ 4 - Factorial(4) + 1;
|
|
1359
|
+
233
|
|
1360
|
+
gap> ForAll(SmallMonoids, x -> not IsSemiband(x));
|
|
1361
|
+
true
|
|
1362
|
+
gap> List(SmallMonoids, IsOrthodoxSemigroup);
|
|
1363
|
+
[ false, true, false, false, false, false, true, true, true, false, false,
|
|
1364
|
+
false, false, true, false ]
|
|
1365
|
+
gap> s := SmallMonoids[1];
|
|
1366
|
+
<non-regular transformation monoid of degree 6 with 2 generators>
|
|
1367
|
+
gap> IsRegularSemigroup(s);
|
|
1368
|
+
false
|
|
1369
|
+
gap> IsOrthodoxSemigroup(s);
|
|
1370
|
+
false
|
|
1371
|
+
gap> t := Semigroup(Idempotents(s));
|
|
1372
|
+
<transformation monoid of degree 6 with 3 generators>
|
|
1373
|
+
gap> Size(t);
|
|
1374
|
+
4
|
|
1375
|
+
gap> s := SmallMonoids[7];;
|
|
1376
|
+
gap> Size(s);;
|
|
1377
|
+
gap> t := Semigroup(Idempotents(s));;
|
|
1378
|
+
gap> IsBand(t);
|
|
1379
|
+
true
|
|
1380
|
+
gap> IsRectangularBand(t);
|
|
1381
|
+
false
|
|
1382
|
+
gap> g := Group(());;
|
|
1383
|
+
gap> mat := [[(), (), (), (), (), ()]];;
|
|
1384
|
+
gap> rms := ReesMatrixSemigroup(g, mat);;
|
|
1385
|
+
gap> s := Range(IsomorphismTransformationSemigroup(rms));;
|
|
1386
|
+
gap> IsLeftZeroSemigroup(s);
|
|
1387
|
+
true
|
|
1388
|
+
gap> IsRightZeroSemigroup(s);
|
|
1389
|
+
false
|
|
1390
|
+
gap> mat := TransposedMat(mat);;
|
|
1391
|
+
gap> rms := ReesMatrixSemigroup(g, mat);;
|
|
1392
|
+
gap> s := Range(IsomorphismTransformationSemigroup(rms));;
|
|
1393
|
+
gap> IsRightZeroSemigroup(s);
|
|
1394
|
+
true
|
|
1395
|
+
gap> IsLeftZeroSemigroup(s);
|
|
1396
|
+
false
|
|
1397
|
+
gap> List(BigMonoids, IsLeftZeroSemigroup);
|
|
1398
|
+
[ false, false, false, false, false, false, false, false ]
|
|
1399
|
+
gap> List(BigMonoids, IsRightZeroSemigroup);
|
|
1400
|
+
[ false, false, false, false, false, false, false, false ]
|
|
1401
|
+
gap> gens := [Transformation([2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 2]),
|
|
1402
|
+
> Transformation([1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 3]),
|
|
1403
|
+
> Transformation([1, 7, 3, 9, 5, 11, 7, 1, 9, 3, 11, 5, 5]),
|
|
1404
|
+
> Transformation([7, 7, 9, 9, 11, 11, 1, 1, 3, 3, 5, 5, 7])];;
|
|
1405
|
+
gap> S := Semigroup(gens);;
|
|
1406
|
+
gap> IsSimpleSemigroup(S);
|
|
1407
|
+
true
|
|
1408
|
+
gap> IsCompletelySimpleSemigroup(S);
|
|
1409
|
+
true
|
|
1410
|
+
gap> gens := [Transformation([1, 2, 4, 3, 6, 5, 4]),
|
|
1411
|
+
> Transformation([1, 2, 5, 6, 3, 4, 5]),
|
|
1412
|
+
> Transformation([2, 1, 2, 2, 2, 2, 2])];;
|
|
1413
|
+
gap> S := Semigroup(gens);;
|
|
1414
|
+
gap> IsCompletelyRegularSemigroup(S);
|
|
1415
|
+
true
|
|
1416
|
+
gap> gens := [Transformation([2, 4, 5, 3, 7, 8, 6, 9, 1]),
|
|
1417
|
+
> Transformation([3, 5, 6, 7, 8, 1, 9, 2, 4])];;
|
|
1418
|
+
gap> S := Semigroup(gens);;
|
|
1419
|
+
gap> IsGroupAsSemigroup(S);
|
|
1420
|
+
true
|
|
1421
|
+
gap> IsCommutativeSemigroup(S);
|
|
1422
|
+
true
|
|
1423
|
+
gap> gens := [Transformation([1, 2, 4, 5, 6, 3, 7, 8]),
|
|
1424
|
+
> Transformation([3, 3, 4, 5, 6, 2, 7, 8]),
|
|
1425
|
+
> Transformation([1, 2, 5, 3, 6, 8, 4, 4])];;
|
|
1426
|
+
gap> S := Semigroup(gens);;
|
|
1427
|
+
gap> IsCliffordSemigroup(S);
|
|
1428
|
+
true
|
|
1429
|
+
gap> gens := [Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 1]),
|
|
1430
|
+
> Transformation([2, 2, 2, 5, 5, 5, 8, 8, 8, 2]),
|
|
1431
|
+
> Transformation([3, 3, 3, 6, 6, 6, 9, 9, 9, 3]),
|
|
1432
|
+
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 4]),
|
|
1433
|
+
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 7])];;
|
|
1434
|
+
gap> S := Semigroup(gens);;
|
|
1435
|
+
gap> IsBand(S);
|
|
1436
|
+
true
|
|
1437
|
+
gap> IsRectangularBand(S);
|
|
1438
|
+
true
|
|
1439
|
+
gap> S := FullTransformationSemigroup(4);;
|
|
1440
|
+
gap> x := Transformation([1, 2, 3, 1]);;
|
|
1441
|
+
gap> D := GreensDClassOfElement(S, x);;
|
|
1442
|
+
gap> T := Semigroup(Elements(D));;
|
|
1443
|
+
gap> IsSemiband(T);
|
|
1444
|
+
true
|
|
1445
|
+
gap> gens := [Transformation([1, 1, 1, 4, 5, 4]),
|
|
1446
|
+
> Transformation([1, 2, 3, 1, 1, 2]),
|
|
1447
|
+
> Transformation([1, 2, 3, 1, 1, 3]),
|
|
1448
|
+
> Transformation([5, 5, 5, 5, 5, 5])];;
|
|
1449
|
+
gap> S := Semigroup(gens);;
|
|
1450
|
+
gap> IsOrthodoxSemigroup(S);
|
|
1451
|
+
true
|
|
1452
|
+
gap> gens := [Transformation([2, 1, 4, 3, 5]),
|
|
1453
|
+
> Transformation([3, 2, 3, 1, 1])];;
|
|
1454
|
+
gap> S := Semigroup(gens);;
|
|
1455
|
+
gap> IsRightZeroSemigroup(S);
|
|
1456
|
+
false
|
|
1457
|
+
gap> gens := [Transformation([1, 2, 3, 3, 1]),
|
|
1458
|
+
> Transformation([1, 2, 4, 4, 1])];;
|
|
1459
|
+
gap> S := Semigroup(gens);;
|
|
1460
|
+
gap> IsRightZeroSemigroup(S);
|
|
1461
|
+
true
|
|
1462
|
+
gap> gens := [Transformation([2, 1, 4, 3, 5]),
|
|
1463
|
+
> Transformation([3, 2, 3, 1, 1])];;
|
|
1464
|
+
gap> S := Semigroup(gens);;
|
|
1465
|
+
gap> IsRightZeroSemigroup(S);
|
|
1466
|
+
false
|
|
1467
|
+
gap> gens := [Transformation([1, 2, 3, 3, 1]),
|
|
1468
|
+
> Transformation([1, 2, 3, 3, 3])];;
|
|
1469
|
+
gap> S := Semigroup(gens);;
|
|
1470
|
+
gap> IsLeftZeroSemigroup(S);
|
|
1471
|
+
true
|
|
1472
|
+
gap> gens := [Transformation([4, 7, 6, 3, 1, 5, 3, 6, 5, 9]),
|
|
1473
|
+
> Transformation([5, 3, 5, 1, 9, 3, 8, 7, 4, 3]),
|
|
1474
|
+
> Transformation([5, 10, 10, 1, 7, 6, 6, 8, 7, 7]),
|
|
1475
|
+
> Transformation([7, 4, 3, 3, 2, 2, 3, 2, 9, 3]),
|
|
1476
|
+
> Transformation([8, 1, 3, 4, 9, 6, 3, 7, 1, 6])];;
|
|
1477
|
+
gap> S := Semigroup(gens);;
|
|
1478
|
+
gap> IsZeroSemigroup(S);
|
|
1479
|
+
false
|
|
1480
|
+
gap> gens := [Transformation([1, 4, 2, 6, 6, 5, 2]),
|
|
1481
|
+
> Transformation([1, 6, 3, 6, 2, 1, 6])];;
|
|
1482
|
+
gap> S := Semigroup(gens);;
|
|
1483
|
+
gap> MultiplicativeZero(S);
|
|
1484
|
+
Transformation( [ 1, 1, 1, 1, 1, 1, 1 ] )
|
|
1485
|
+
|
|
1486
|
+
#
|
|
1487
|
+
gap> SEMIGROUPS.StopTest();
|
|
1488
|
+
gap> STOP_TEST("Semigroups package: extreme/monoid_pkg.tst");
|